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Abstract. In this paper, we present some sufficient conditions for the

boundedness of convolution operators that their kernel satisfies a certain version

of Hörmander’s condition, in the weighted Lebesgue spaces Lp,ω(Rn) .

1. Introduction

Let R
n be n–dimensional Euclidean space, x = (x1, ..., xn), ξ =

(ξ1, ..., ξn) are vectors in R
n , x · ξ = x1ξ1 + . . . + xnξn , |x| = (x · x)1/2 ,

R
n
0 = R

n \ {0} .
Suppose that ω be a positive, measurable, and real function defined

in R
n, i.e., is a weight function. By Lp,ω(Rn) we denote the space of

measurable functions f(x) on R
n with finite norm

‖f‖Lp,ω(Rn) =
(∫

Rn

|f(x)|p ω(x)dx
)1/p

, 1 ≤ p <∞.
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For ω = 1, we obtain the nonweighted space Lp, i.e., Lp,1(Rn) = Lp(Rn).
We write f ∈ Lloc

p (Rn), 1 ≤ p <∞, if f belongs to Lp(F ) on any closed
bounded set F ⊂ R

n.

Let K : R
n
0 → R, K ∈ Lloc

1 (Rn
0 ), R

n
0 = R

n \ {0} , be a function satisfying
the following conditions:

1) K(t x) ≡ K (t x1, . . . , t xn) = t−nK(x) for any t > 0, x ∈ Rn
0 ;

2)
∫
|x|=1

K(x) dσ(x) = 0;

3)
∫ 1

0

w(t)
t

dt <∞, where w(t) = sup
|ξ−η|≤t

|K(ξ)−K(η)| for |ξ| = |η| =

1.

Let f ∈ Lp(Rn), 1 < p <∞ , and consider the following singular integral
(1)

Tf(x) = p.v.

∫
Rn

K(x− y)f(y)dy = lim
ε→0

∫
{y∈Rn:|x−y|>ε}

K(x− y)f(y)dy.

In the following theorem Calderon and Zygmund [5] proved the
boundedness of the operator T .

Theorem 1. Suppose that the kernel K of the singular integral (1)
satisfies conditions 1)−3) and f ∈ Lp(Rn) , 1 ≤ p <∞. Then the singular
integral exists for x ∈ R

n almost everywhere and the following inequalities
holds

‖Tf‖Lp(Rn) ≤ C1 ‖f‖Lp(Rn), 1 < p <∞,∫
{x∈Rn : |Tf(x)|>λ}

dx ≤ C2

λ

∫
Rn

|f(x)|dx,

where C1, C2 > 0 is independent of f.

Hörmander [13] imposed a weaker constraint on the kernel of the singular
integral (1), namely,

(2)
∫
{x∈Rn : |x|>2|y|}

|K(x− y) −K(x)| dx ≤ C,

where K ∈ Lloc
1 (Rn

0 ) and C > 0 is a constant independent of y . By
replacing condition 3) with condition (2), under conditions 1), 2) he proved
Theorem 1 for singular integrals with kernels satisfying condition (2). This
condition is related to condition 3), and under this condition, inequality (2)
holds ( see [19]).
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On the other hand, singular integrals whose kernels do not satisfy
Hörmander’s condition (2) are widely considered, for example oscillatory
and some other singular integrals ( see [20]).

Suppose that K ∈ L2(Rn) is a function, satisfying the following
conditions:

(K1) ‖K̂‖∞ ≤ C;

(K2) |K(x)| ≤ C

|x|n ;

(K3) There exist functions A1, . . . , Am ∈ Lloc
1 (Rn

0 ), and the finite family
Φ = {φ1, . . . , φm} of essentially bounded functions in R

n such that
|det [φj(yi))]|2 ∈ RH∞(Rnm), yi ∈ R

n, i, j = 1, . . . ,m;

(K4) For a fixed γ > 0 and for any |x| > 2|y| > 0,

(3)

∣∣∣∣∣K(x− y) −
m∑

i=1

Ai(x)φi(y)

∣∣∣∣∣ ≤ C
|y|γ

|x− y|n+γ
,

where C > 0 is a constant and K̂(ξ) =
∫

Rn

e−i (x,ξ)K(x)dx is the

Fourier transform of the function K . In general, the functions Ai,

φi, i = 1, . . . ,m defined in R
n
0 are complex-valued.

Remark 1. Any kernel satisfying condition (3) also satisfies the condition

(4)
∫
|x|>2|y|

∣∣∣∣∣K(x− y) −
m∑

i=1

Ai(x)φi(y)

∣∣∣∣∣ dx ≤ C, |x| > 2|y|.

Note that conditions (K1)− (K4) were imposed in [20] and condition (4)
was studied in [10]. For example, for m = 1, A1(x) = K(x), φ1(y) ≡ 1
condition (4) yields Hörmander’s condition (2). Note that, in this sense,
condition (4) is a generalization of Hörmander’s condition (2).

There exist other conditions stronger than condition (2) (see [9, 21]). The
function K(x) = (sin x)/x satisfies conditions (K1) − (K4) and does not
satisfy conditions 1), 2), and Hörmander’s condition (2) (see [3]).

Definition 1. [17] It is said that a locally integrable weight function ω

belongs to Ap(Rn), where 1 < p <∞, if

sup
B

(
|B|−1

∫
B

ω(x)dx
)(

|B|−1

∫
B

ω(x)1−p′
dx

)p−1

<∞,

where the supremum is taken over all balls B ⊂ R
n and p′ = p

p−1 .
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For p = 1, we say ω ∈ A1(Rn), if

sup
B

(
|B|−1

∫
B

ω(x)dx
)

ess sup
B

1
ω(x)

<∞,

or

|B|−1

∫
B

ω(x) dx ≤ Cω(x) a.e. x ∈ B

for any balls B ⊂ R
n .

Suppose that the function K satisfies conditions (K1) − (K4). For
f ∈ Lp(Rn), 1 ≤ p <∞ define the following convolution operator generated
by the kernel K as

(5) Af(x) =
∫

Rn

K(x− y) f(y) dy.

For the convolution operator (5), the following theorem holds.

Theorem 2. [20] Suppose that w ∈ Ap(Rn) , 1 ≤ p <∞, and the kernel
of the convolution operator (5) satisfies conditions (K1) − (K4). Then the
following inequalities holds:

‖Af‖Lp,w(Rn) ≤ C3 ‖f‖Lp,w(Rn), 1 < p <∞,

∫
{x∈Rn : |Af(x)|>λ}

ω(x)dx ≤ C4

λ

∫
Rn

|f(x)|ω(x)dx,

where C3, C4 > 0 is independent of f.

Note that in the ”nonweighted” case, when condition (K2) is not imposed
and condition (3) is replaced by condition (4), Theorem 2 was proved in [10].

Lemma 1. Suppose that 1 ≤ p ≤ q ≤ ∞ and u(t) and v(t) are positive
functions defined on (0,∞) .

(i) For the validity of the inequality(∫ ∞

0

u(t)
∣∣∣∣∫ t

0

ϕ(τ)dτ
∣∣∣∣q dt

)1/q

≤ K1

(∫ ∞

0

|ϕ(t)|pv(t)dt
)1/p

with a constant K1 , not depending on ϕ , it is necessary and sufficient that

sup
t>0

(∫ ∞

t

u(τ)dτ
)p/q (∫ t

0

v(τ)1−p′
dτ

)p−1

<∞.
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(ii) For the validity of the inequality(∫ ∞

0

u(t)
∣∣∣∣∫ ∞

t

ϕ(τ)dτ
∣∣∣∣q dt)1/q

≤ K2

(∫ ∞

0

|ϕ(t)|p v(t)dt
)1/p

with a constant K2 , not depending on ϕ , it is necessary and sufficient that

sup
t>0

(∫ t

0

u(τ)dτ
)p/q (∫ ∞

t

v(τ)1−p′
dτ

)p−1

<∞.

Lemma 1 was established by Muckenhoupt [18] for 1 ≤ p = q ≤ ∞ and
J.S. Bradley [4], V.M. Kokilashvili [14], V.G. Maz’ya [16] for p < q .

Lemma 2. [15] Let u(t) and v(t) be positive functions on (0,∞) .
(i) If the following condition is satisfied

sup
t>0

(∫ ∞

t

v(τ)dτ
)

ess sup
τ∈(0,2t)

1
u(τ)

<∞,

then the inequality∫ ∞

0

v(t)
∣∣∣∣∫ t

0

F (τ)dτ
∣∣∣∣ dt ≤ c

∫ ∞

0

u(t)|F (t)|dt

holds, where the constant c > 0 does not depend on F.

(ii) If the following condition is satisfied

sup
t>0

(∫ t

0

v(τ)dτ
)

ess sup
τ∈( t

2 ,∞)

1
u(τ)

<∞,

then the inequality∫ ∞

0

v(t)
∣∣∣∣∫ ∞

t

F (τ)dτ
∣∣∣∣ dt ≤ c

∫ ∞

0

u(t)|F (t)|dt

holds, where the constant c > 0 does not depend on F.

Lemma 3. [1, 6] Suppose that 1 ≤ p ≤ q ≤ ∞ and u(x) and v(x) are
positive functions defined on R

n .
(i) For the n-dimensional Hardy inequality(∫

Rn

(∫
|y|<|x|/2

|f(y)| dy
)q

ω(x) dx

)1/q

≤ C5

(∫
Rn

|f(x)|pυ(x) dx
)1/p
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with a constant C5 , independent on f , to hold, it is necessary and sufficient
that the following condition be satisfied:

sup
R>0

(∫
|x|>2R

ω(x) dx

)1/q (∫
|x|<R

υ1−p′
(x) dx

)1/p′

<∞.

(ii) For the n-dimensional (dual) Hardy inequality(∫
Rn

(∫
|y|>2|x|

|f(y)| dy
)q

u(x) dx

)1/q

≤ C6

(∫
Rn

|f(x)|pω(x) dx
)1/p

with a constant C6 , independent on f , to hold, it is necessary and sufficient
that the following condition be satisfied:

sup
R>0

(∫
|x|<R

u(x) dx

)1/q (∫
|x|>2R

ω1−p′
(x) dx

)1/p′

<∞.

Lemma 4. [8, 15] Suppose that 1 ≤ p < ∞ , β > 1 , ϕ ∈ Ap(Rn) , and
suppose that u , u1 are positive increasing (decreasing) functions defined
on (0,∞) . Suppose that ω(x) = u(|x|)ϕ(x) , ω1(x) = u1(|x|)ϕ(x) and the
weighted pair (ω(x), ω1(x)) satisfies the following condition:

(i) For 1 < p <∞, Ap(ω, ω1) <∞ , where

Ap(ω, ω1) := sup
r>0

( ∫
|x|>2r

ω1(x)|x|−npdx
)( ∫

|x|<r

ω1−p′
(x)dx

)p−1

(ii) For p = 1, A1(ω, ω1) <∞ , where

A1(ω, ω1) := sup
r>0

(∫
|x|>2r

ω1(x)|x|−ndx
)

ess sup
|x|<r

1
ω(x)

(iii) For 1 < p <∞, Bp(ω, ω1) <∞ , where

Bp(ω, ω1) := sup
r>0

( ∫
|x|<r

ω1(x)dx
)( ∫

|x|>2r

ω1−p′
(x)|x|−np′

dx
)p−1

(iv) For p = 1, B1(ω, ω1) <∞ , where

B1(ω, ω1) := sup
r>0

(∫
|x|<r

ω1(x)dx
)

ess sup
|x|>2r

1
ω(x)|x|n
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Then there exists a positive constant C depending only on p , n such that,
for any t > 0 , the following inequality holds:

u1(2t) ≤ CAp(ω, ω1)u(t) (u1 (t/2) ≤ CBp(ω, ω1)u(t)) .

In the case ϕ = 1 Lemma 4 was proved also in [11].

2. Main results

Theorem 3. Suppose that the kernel K of the convolution operator (5)
satisfies the conditions (K1) − (K4) and φ ∈ Ap(Rn) , 1 ≤ p < ∞ . If
ω(x) = u(x)φ(x) and ω1(x) = u1(x)φ(x) are weight functions on R

n ,
satisfies the conditions

Ap(ω, ω1) <∞, Bp(ω, ω1) <∞,

and there exist b > 0 such that

(6) sup
|x|/4<|y|≤4|x|

u1(y) ≤ b u(x) for a.e. x ∈ R
n.

Then there exists a C7 > 0 such that, for any f ∈ Lp,ω(Rn) , 1 < p <∞
the following inequality holds

(7)
∫

Rn

|Af(x)|p ω1(x) dx ≤ C7

∫
Rn

|f(x)|p ω(x) dx.

Moreover, the condition (6) can be replaced by the condition : there exist
b > 0 such that

u1(x)

(
sup

|x|/4≤|y|≤|x|

1
u(y)

)
≤ b for a.e. x ∈ R

n.

Proof. For k ∈ Z we define Ek = {x ∈ R
n : 2k < |x| ≤ 2k+1},

Ek,1 = {x ∈ R
n : |x| ≤ 2k−1}, Ek,2 = {x ∈ R

n : 2k−1 < |x| ≤ 2k+2},
Ek,3 = {x ∈ R

n : |x| > 2k+2}. Then Ek,2 = Ek−1 ∪ Ek ∪ Ek+1 and the
multiplicity of the covering {Ek,2}k∈Z is equal to 3.
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Let 1 < p <∞ . Given f ∈ Lp,ω(Rn), we write

|Af(x)| =
∑
k∈Z

|Af(x)|χEk
(x)

≤
∑
k∈Z

|Afk,1(x)|χEk
(x) +

∑
k∈Z

|Afk,2(x)|χEk
(x)

+
∑
k∈Z

|Afk,3(x)|χEk
(x)

≡ A1f(x) +A2f(x) +A3f(x),(8)

where χEk
is the characteristic function of the set Ek, fk,i = fχEk,i

,

i = 1, 2, 3.
First we shall estimate ‖A1f‖Lp,ω1

. Note that for x ∈ Ek , y ∈ Ek,1 we
have |y| ≤ 2k−1 ≤ |x|/2. Moreover, Ek ∩ suppfk,1 = ∅ and |x− y| ≥ |x|/2.
Hence by condition (K2)

A1f(x) ≤ C
∑
k∈Z

(∫
Rn

|fk,1(y)|
|x− y|n dy

)
χEk

≤ C

∫
|y|≤|x|/2

|x− y|−n|f(y)|dy ≤ 2nC|x|−n

∫
|y|≤|x|/2

|f(y)|dy

for any x ∈ Ek . Hence we have∫
Rn

|A1f(x)|pω1(x)dx ≤ (2nC)p
∫

Rn

(∫
|y|<|x|/2

|f(y)|dy
)p

|x|−npω1(x)dx.

Since Ap(ω, ω1) <∞ , the Hardy inequality∫
Rn

ω1(x)|x|−np

(∫
|y|<|x|/2

|f(y)|dy
)p

dx ≤ C8

∫
Rn

|f(x)|pω(x)dx

holds and C9 ≤ c′Ap(ω, ω1), where c′ depends only on n and p . In fact
the condition Ap(ω, ω1) < ∞ is necessary and sufficient for the validity of
this inequality (see [1], [6]). Hence, we obtain

(9)
∫

Rn

|A1f(x)|pω1(x)dx ≤ C8

∫
Rn

|f(x)|pω(x)dx.

where C9 is independent of f .
Next we estimate ‖A3f‖Lp,ω1

. It is easy to verify, for x ∈ Ek , y ∈ Ek,3

we have |y| > 2|x| and |x−y| ≥ |y|/2. Since Ek ∩suppfk,3 = ∅ , for x ∈ Ek
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by condition (K2) we obtain

A3f(x) ≤ C

∫
|y|>2|x|

|f(y)|
|x− y|n dy ≤ 2nC

∫
|y|>2|x|

|f(y)| |y|−ndy.

Hence we have∫
Rn

|A3f(x)|pω1(x)dx ≤ (2nC)p
∫

Rn

(∫
|y|>2|x|

|f(y)| |y|−ndy

)p

ω1(x)dx.

Since Bp(ω, ω1) <∞ , the Hardy inequality∫
Rn

(∫
|y|>2|x|

|f(y)| |y|−ndy

)p

ω1(x)dx ≤ C6

∫
Rn

|f(x)|pω(x)dx

holds and C6 ≤ c′′Bp(ω, ω1), where c′′ depends only on n and p . In fact
the condition Bp(ω, ω1) < ∞ is necessary and sufficient for the validity of
this inequality (see [1], [6]). Hence, we obtain

(10)
∫

Rn

|A3f(x)|pω1(x)dx ≤ C9

∫
Rn

|f(x)|pω(x)dx,

where C9 is independent of f .
Finally, we estimate ‖A2f‖Lp,ω1

. From the Lp,φ(Rn) boundedness of T
and condition (6) we have∫

Rn

|A2f(x)|pω1(x)dx =
∫

Rn

(∑
k∈Z

|Afk,2(x)|χEk
(x)

)p

ω1(x)dx

=
∫

Rn

(∑
k∈Z

|Afk,2(x)|p χEk
(x)

)
ω1(x)dx

=
∑
k∈Z

∫
Ek

|Afk,2(x)|p u1(x)φ(x)dx

≤
∑
k∈Z

sup
x∈Ek

u1(x)
∫

Rn

|Afk,2(x)|p φ(x)dx

≤ ‖A‖p
φ

∑
k∈Z

sup
x∈Ek

u1(x)
∫

Rn

|fk,2(x)|p φ(x)dx

= ‖A‖p
φ

∑
k∈Z

sup
y∈Ek

u1(y)
∫

Ek,2

|f(x)|pφ(x)dx,
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where ‖A‖φ ≡ ‖A‖Lp,φ→Lp,φ
. Since 2k−1 < |x| ≤ 2k+2 , x ∈ Ek,2 , we have

by condition (a)

sup
y∈Ek

u1(y) = sup
2k−1<|y|≤2k+2

u1(y) ≤ sup
|x|/4<|y|≤4|x|

u1(y) ≤ b u(x)

for almost all x ∈ Ek,2 . Therefore we get∫
Rn

|A2f(x)|pω1(x)dx ≤ ‖A‖p
φb
∑
k∈Z

∫
Ek,2

|f(x)|pu(x)φ(x)dx

≤ C10

∫
Rn

|f(x)|pω(x)dx(11)

since the multiplicity of covering {Ek,2}k∈Z is equal to 3, where C10 =
3‖A‖p

φb .
Inequalities (8), (9), (10), (11) imply (7) which completes the proof. �
Analogously proved the following theorem.

Theorem 4. Suppose that the kernel K of the convolution operator
(5) satisfies the conditions (K1) − (K4) , and ω(x) = u(x)φ(x) , ω1(x) =
u1(x)φ(x) are weight functions on R

n , φ ∈ A1(Rn) . If the weighted pair
(ω(x), ω1(x)) satisfies condition (6) and

A1(ω, ω1) ≡ sup
r>0

(∫
|x|>2r

ω1(x)|x|−ndx

)
ess sup
|x|<r

1
ω(x)

<∞,

B1(ω, ω1) ≡ sup
r>0

(∫
|x|<r

ω1(x)dx

)
ess sup
|x|>2r

1
ω(x)|x|n <∞.

Then there exists a C11 > 0 such that, for any f ∈ L1,ω(Rn), the following
inequality holds

(12)
∫
{x∈Rn : |Af(x)|>λ}

ω1(x) dx ≤ C11

λ

∫
Rn

|f(x)|ω(x) dx.

Theorem 5. Suppose that the kernel K of the convolution operator (5)
satisfies the conditions (K1) − (K4) , and ϕ ∈ A1(Rn) . Let u and u1

are positive increasing functions on (0,∞) , such that the weights functions
ω(x) = u(|x|)ϕ(x) and ω1(x) = u1(|x|)ϕ(x) satisfy the condition

A1(ω, ω1) <∞

Then inequality (12) is valid.
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Proof. Suppose that f ∈ L1,ω(Rn). Let u1 are positive increasing
functions on (0,∞) and A1(ω, ω1) <∞ .

Without loss of generality we can suppose that u1 may be represented
by

u1(t) = u1(0+) +
∫ t

0

ψ(τ)dτ,

where u1(0+) = limt→0 u1(t) and u1(t) ≥ 0 on (0,∞). In fact there
exists a sequence of increasing absolutely continuous functions �n such
that �n(t) ≤ ω1(t) and lim

n→∞�n(t) = ω1(t) for any t ∈ (0,∞) ( see

[2, 11, 7, 8, 12] for details).
We have∫

{x∈Rn:|Af(x)|>λ}
ω1(x)dx = u1(0+)

∫
{x∈Rn:|Af(x)|>λ}

φ(x)dx

+
∫
{x∈Rn:|Af(x)|>λ}

(∫ |x|

0

ψ(τ)dτ

)
φ(x)dx

= J1 + J2.

If u1(0+) = 0, then J1 = 0. If u1(0+) 
= 0 by the weak L1 boundedness
of A , φ ∈ A1(Rn) thanks to Lemma 4

J1 ≤ 1
λ
‖A‖φu1(0+)

∫
Rn

|f(x)|φ(x)dx

≤ 1
λ
‖A‖φ

∫
Rn

|f(x)|u1(|x|)φ(x)dx

≤ b

λ
‖A‖φ

∫
Rn

|f(x)|ω(x)dx.

After changing the order of integration in J2 we have

J2 =
∫ ∞

0

ψ(t)

(∫
|x|>t

χ{x : |Af(x)| > λ}φ(x)dx

)
dt

≤
∫ ∞

0

ψ(t)

(∫
|x|>t

χ
{
x : |A(fχ{|y|>t/2})(x)| > λ

}
φ(x)dx

+
∫
|x|>t

χ
{
x : |A(fχ{|y|≤t/2})(x)| > λ

}
φ(x)dx

)
dt

= J21 + J22.
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Using the weak L1 boundeedness of A and Lemma 4 we have

J21 ≤ ‖A‖
λ

∫ ∞

0

ψ(t)

(∫
|y|>t/2

|f(y)|φ(y)dy

)
dt

=
‖A‖
λ

∫
Rn

|f(y)|
(∫ 2|y|

0

ψ(t)dt

)
φ(y)dy

≤ ‖A‖
λ

∫
Rn

|f(y)|u1(2|y|)φ(y)dy

≤ b
‖A‖
λ

∫
Rn

|f(y)|ω(y)dy.

Let us estimate J22 . For |x| > t and |y| ≤ t/2 we have |x|/2 ≤ |x− y| ≤
3|x|/2, and so

J22 ≤ c4

∫ ∞

0

ψ(t)

(∫
|x|>t

χ

{
y :
∫
|y|≤t/2

|f(y)| |x− y|−ndy > λ

}
φ(x)dx

)
dt

≤ c5

∫ ∞

0

ψ(t) χ

{
y :
∫
|y|≤t/2

|f(y)| |y|−ndy > λ

}(∫
|x|>t

φ(x)|x|−ndx

)
dt

=
c6
λ

∫ ∞

0

ψ(t)

(∫
|x|>t

φ(x)|x|−ndx

)(∫
|y|≤t/2

|f(y)|dy
)
dt.

The Hardy inequality∫ ∞

0

ψ(t)

(∫
|y|≤t/2

|f(y)|dy
)
dt ≤ C

∫
Rn

|f(y)|ω(|y|)dy

for p = 1 is characterized by the condition C ≤ c′A′
1 (see [4], [14]), where

A′
1 ≡ sup

r>0

(∫ ∞

2r

(∫
|x|>t

φ(x)|x|−ndx

)
ψ(t)dt

)
ess sup
|x|<r

1
ω(x)

= sup
r>0

(∫
|x|>2r

φ(x)|x|−n

(∫ |x|

2r

ψ(t)dt

)
dx

)
ess sup
|x|<r

1
ω(x)

≤ sup
r>0

(∫
|x|>2r

φ(x)|x|−nu1(|x|)dx
)

ess sup
|x|<r

1
ω(x)

= sup
r>0

(∫
|x|>2r

ω1(|x|)|x|−ndx

)
ess sup
|x|<r

1
ω(x)

= A1(ω, ω1) <∞.
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Hence, applying the Hardy inequality, we obtain

J22 ≤ C12

λ

∫
Rn

|f(x)|ω(|x|)dx.

Combining the estimates of J1 and J2 , we get (12) for ω1(t) = ω1(0+)+∫ t

0 ψ(τ)dτ . By Fatou’s theorem on passing to the limit under the Lebesgue
integral sign, this implies (12). The theorem is proved. �

Analogously proved the following theorem.

Theorem 6. Suppose that 1 < p < ∞ , the kernel K of the convolution
operator (5) satisfies the conditions (K1) − (K4) and ϕ ∈ Ap(Rn) . Let
u, u1 are positive increasing functions on (0,∞) , ω(x) = u(|x|)ϕ(x) ,
ω1(x) = u1(|x|)ϕ(x) and Ap(ω, ω1) <∞ . Then inequality (7) is valid.

Theorem 7. Suppose that the kernel K of the convolution operator (5)
satisfies the conditions (K1) − (K4) and ϕ ∈ A1(Rn) . Let u and u1

are positive decreasing functions on (0,∞) , such that the weights functions
ω(x) = u(|x|)ϕ(x) and ω1(x) = u1(|x|)ϕ(x) satisfy the condition

B1(ω, ω1) <∞

Then inequality (12) is valid.

Proof. Without loss of generality we can suppose that ω1 may be
represented by

ω1(t) = ω1(+∞) +
∫ ∞

t

ψ(τ)dτ,

where ω1(+∞) = lim
t→∞ω1(t) and ω1(t) ≥ 0 on (0,∞). In fact there

exists a sequence of decreasing absolutely continuous fuctions �n such
that �n(t) ≤ ω1(t) and lim

n→∞�n(t) = ω1(t) for any t ∈ (0,∞)( see

[2, 11, 7, 8, 12] for details).
We have∫

{x∈Rn:|Af(x)|>λ}
ω1(x)dx = u1(+∞)

∫
{x∈Rn:|Af(x)|>λ}

φ(x)dx

+
∫
{x∈Rn:|Af(x)|>λ}

(∫ ∞

|x|
ψ(τ)dτ

)
φ(x)dx

= I1 + I2.
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If u1(+∞) = 0, then I1 = 0. If u1(+∞) 
= 0, by the weak L1

boundedness of A , φ ∈ A1(Rn) thanks to Lemma 4

J1 ≤ 1
λ
‖A‖φu1(+∞)

∫
Rn

|f(x)|φ(x)dx

≤ 1
λ
‖A‖φ

∫
Rn

|f(x)|u1(|x|)φ(x)dx

≤ b

λ
‖A‖φ

∫
Rn

|f(x)|ω(|x|)dx.

After changing the order of integration in J2 we have

J2 =
∫ ∞

0

ψ(t)

(∫
|x|<t

χ{x : |Af(x)| > λ}φ(x)dx

)
dt

≤
∫ ∞

0

ψ(t)

(∫
|x|<2t

χ
{
x : |A(fχ{|y|>t/2})(x)| > λ

}
φ(x)dx

+
∫
|x|<t

χ
{
x : |A(fχ{|y|≤2t})(x)| > λ

}
φ(x)dx

)
dt

= I21 + I22.

Using the weak L1 boundedness of A and Lemma 4 we obtain

I21 ≤ ‖A‖
∫ ∞

0

ψ(t)

(∫
|x|<2t

|f(x)|φ(x)dx

)
dt

= ‖A‖
∫

Rn

|f(x)|φ(x)

(∫ ∞

|x|/2

ψ(t)dt

)
dx

≤ ‖A‖
∫

Rn

|f(x)|u1(|x|/2)φ(x) dx

≤ b ‖A‖
∫

Rn

|f(x)|u(|x|)φ(x) dx

= b ‖A‖
∫

Rn

|f(x)|ω(x) dx.
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Let us estimate J22 . For |x| < t and |y| ≥ 2t we have |y|/2 ≤ |x− y| ≤
3|y|/2, and so

I22 ≤ c8

∫ ∞

0

ψ(t)

(∫
|x|<t

χ

{
y :
∫
|y|≥2t

|f(y)| |x− y|−ndy > λ

}
φ(x)dx

)
dt

≤ c9

∫ ∞

0

ψ(t) χ

{
y :
∫
|y|≥2t

|f(y)| |y|−ndy > λ

}(∫
|x|<t

φ(x)dx

)
dt

=
c9
λ

∫ ∞

0

ψ(t)

(∫
|x|<t

φ(x)dx

)(∫
|y|≥2t

|f(y)| |y|−ndy

)
dt.

The Hardy inequality∫ ∞

0

ψ(t)

(∫
|y|≥2t

|y|−n|f(y)|dy
)
dt ≤ C

∫
Rn

|f(y)|ω(|y|)dy

for p = 1 is characterized by the condition C ≤ c′B′
1 (see [4], [14]), where

B′
1 ≡ sup

r>0

(∫ r

0

(∫
|x|<t

φ(x)dx

)
ψ(t)dt

)
ess sup
|x|>2r

1
ω(x)

= sup
r>0

(∫
|x|<r

φ(x)

(∫ r

|x|
ψ(t)dt

)
dx

)
ess sup
|x|>2r

1
ω(x)

≤ sup
r>0

(∫
|x|<r

φ(x)u1(|x|)dx
)

ess sup
|x|>2r

1
ω(x)

= sup
r>0

(∫
|x|<r

ω1(|x|)dx
)

ess sup
|x|>2r

1
ω(x)

<∞.

Condition (c′) of the theorem guarantees that B′ ≤ B < ∞ . Hence,
applying the Hardy inequality, we obtain

I22 ≤ C13

λ

∫
Rn

|f(x)|ω(|x|)dx.

Combining the estimates of I1 and I2 , we get (12) for ω1(t) = ω1(+∞) +∫∞
t
ψ(t)dt . By Fatou’s theorem on passing to the limit under the Lebesgue

integral sign, this implies (12). The theorem is proved. �

Analogously proved the following theorem.

Theorem 8. Suppose that 1 < p < ∞ , the kernel K of the convolution
operator (5) satisfies the conditions (K1)−(K4) and ϕ ∈ Ap(Rn) . Suppose
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that u, u1 are positive decreasing functions on (0,∞) , ω(x) = u(|x|)ϕ(x) ,
ω1(x) = u1(|x|)ϕ(x) and Bp(ω, ω1) <∞ . Then inequality (7) is valid.

Remark 2. Note that for the case in which u = u1 = 1, Theorem 3 was
proved in [20] by using different methods. Further, in the case 1 < p < ∞
Theorems 6 and 8 was proved in [3].
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