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Abstract. Let 𝜑 be a holomorphic self-map and 𝑔 be a fixed holomorphic
function on the unit ball 𝐵 . The boundedness and compactness of the operator

𝑇𝑔,𝜑𝑓(𝑧) =

∫ 1

0

𝑓(𝜑(𝑡𝑧))ℜ𝑔(𝑡𝑧)𝑑𝑡
𝑡

from the generalized weighted Bergman space into the 𝜇 -Bloch space are studied

in this paper.

1. Introduction

Let 𝐵 be the unit ball of ℂ𝑛 . Let 𝑧 = (𝑧1, . . . , 𝑧𝑛) and 𝑤 = (𝑤1, . . . , 𝑤𝑛)

be points in ℂ
𝑛 , we write

⟨𝑧, 𝑤⟩ = 𝑧1�̄�1 + ⋅ ⋅ ⋅+ 𝑧𝑛�̄�𝑛, ∣𝑧∣ =
√
∣𝑧1∣2 + ⋅ ⋅ ⋅+ ∣𝑧𝑛∣2.

Thus 𝐵 = {𝑧 ∈ ℂ𝑛 : ∣𝑧∣ < 1} . Let 𝑑𝑣 be the normalized Lebesgue measure

of 𝐵 , i.e. 𝑣(𝐵) = 1. Let 𝐻(𝐵) be the space of all holomorphic functions
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on 𝐵 . For 𝑓 ∈ 𝐻(𝐵), let ℜ𝑓(𝑧) =
∑𝑛

𝑗=1 𝑧𝑗
∂𝑓
∂𝑧𝑗

(𝑧) represent the radial

derivative of 𝑓 ∈ 𝐻(𝐵). We write ℜ𝑚𝑓 = ℜ(ℜ𝑚−1𝑓).

A positive continuous function 𝜇 on [0, 1) is called normal, if there exist

positive numbers 𝑠 and 𝑡, 0 < 𝑠 < 𝑡, and 𝛿 ∈ [0, 1) such that

𝜇(𝑟)

(1− 𝑟)𝑠
is decreasing on [𝛿, 1) and lim

𝑟→1

𝜇(𝑟)

(1− 𝑟)𝑠
= 0;

𝜇(𝑟)

(1 − 𝑟)𝑡
is increasing on [𝛿, 1) and lim

𝑟→1

𝜇(𝑟)

(1− 𝑟)𝑡
= ∞

(see, e.g. [4]).

Let 𝜇 be a normal function on [0, 1). The 𝜇-Bloch space, denoted by

ℬ𝜇 = ℬ𝜇(𝐵), is the set of all 𝑓 ∈ 𝐻(𝐵) such that

𝑏𝜇(𝑓) = sup
𝑧∈𝐵

𝜇(∣𝑧∣) ∣ℜ𝑓(𝑧)∣ < ∞.

ℬ𝜇 is a Banach space with the norm ∥𝑓∥ℬ𝜇 = ∣𝑓(0)∣ + 𝑏𝜇(𝑓). Let ℬ𝜇,0

denote the subspace of ℬ𝜇 consisting of those 𝑓 ∈ ℬ𝜇 for which

lim
∣𝑧∣→1

𝜇(∣𝑧∣)∣ℜ𝑓(𝑧)∣ = 0.

We call ℬ𝜇,0 the little 𝜇-Bloch space. When 𝜇(𝑟) = 1 − 𝑟2 and 𝜇(𝑟) =

(1 − 𝑟2)1−𝛽(0 < 𝛽 < 1), the induced spaces ℬ𝜇 are the Bloch spaces and

the Lipschitz type spaces, respectively.

For any 𝑝 > 0 and 𝛼 ∈ ℝ , let 𝑁 be the smallest nonnegative integer such

that 𝑝𝑁 + 𝛼 > −1. We say that an 𝑓 ∈ 𝐻(𝐵) belongs to the generalized

weighted Bergman space 𝐴𝑝
𝛼 , if

∥𝑓∥𝐴𝑝
𝛼
= ∣𝑓(0)∣+

[ ∫
𝐵

∣ℜ𝑁𝑓(𝑧)∣𝑝(1− ∣𝑧∣2)𝑝𝑁+𝛼𝑑𝑣(𝑧)
]1/𝑝

< ∞.

The generalized weighted Bergman space 𝐴𝑝
𝛼 is introduced by Zhao and

Zhu (see, e.g., [15]). This space covers the traditional weighted Bergman

space(𝑎 > −1), the Besov space, the Hardy space 𝐻2 and the so-called

Arveson space. For example, the space 𝐴𝑝
0 is the classical Bergman space;

the space 𝐴2
−𝑛 is the so-called Arveson space; the space 𝐴𝑝

−(𝑛+1) is the

Besov space. See [15, 16] for some basic facts on the weighted Bergman

space.

Let 𝜑 be a holomorphic self-map of 𝐵 . The composition operator 𝐶𝜑 is

defined by

(𝐶𝜑𝑓)(𝑧) = (𝑓 ∘ 𝜑)(𝑧), 𝑓 ∈ 𝐻(𝐵).
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The book [2] contains much information on this topic.

Suppose that 𝑔 : 𝐵 → ℂ1 is a holomorphic map, the extended Cesàro

operator, which was introduced in [4], is defined as following

𝑇𝑔𝑓(𝑧) =

∫ 1

0

𝑓(𝑡𝑧)
𝑑𝑔(𝑡𝑧)

𝑑𝑡
=

∫ 1

0

𝑓(𝑡𝑧)ℜ𝑔(𝑡𝑧)𝑑𝑡
𝑡
, 𝑓 ∈ 𝐻(𝐵), 𝑧 ∈ 𝐵.

This operator is also called the Riemann-Stieltjes operator(see, e.g. [14]).

See [1, 4, 5, 6, 8, 9, 10, 13, 14] for more information of the operator 𝑇𝑔 on

various spaces in the unit ball.

Motivated by the definition of operators 𝐶𝜑 and 𝑇𝑔 , we define a more

general operator

𝑇𝑔,𝜑𝑓(𝑧) =

∫ 1

0

𝑓(𝜑(𝑡𝑧))ℜ𝑔(𝑡𝑧)𝑑𝑡
𝑡
, 𝑓 ∈ 𝐻(𝐵), 𝑧 ∈ 𝐵.(1)

The operator 𝑇𝑔,𝜑 will be called the Volterra composition operator. In the

setting of the unit disk 𝐷 , this operator has the following form

𝑇𝑔,𝜑𝑓(𝑧) =

∫ 𝑧

0

(𝑓 ∘ 𝜑)(𝜉)𝑔′(𝜉)𝑑𝜉, 𝑓 ∈ 𝐻(𝐷), 𝑧 ∈ 𝐷,

which was first studied in [7]. To the best of our knowledge, the operator

𝑇𝑔,𝜑 in the unit ball is studied in the present paper for the first time.

In this paper we study the boundedness and compactness of Volterra

composition operators 𝑇𝑔,𝜑 from the generalized weighted Bergman space

into ℬ𝜇 and ℬ𝜇,0 . As some corollaries, we obtain characterizations of the

extended Cesàro operator 𝑇𝑔 from the generalized weighted Bergman space

into ℬ𝜇 and ℬ𝜇,0 .

Throughout the paper, constants are denoted by 𝐶 , they are positive and

may differ from one occurrence to the other.

2. Main results and proofs

In this section we give our main results and proofs. We will consider three

cases: 𝑛+1+𝛼 > 0, 𝑛+1+𝛼 = 0 and 𝑛+1+𝛼 < 0. Before we formulate

our main results, we state several auxiliary results which will be used in the

proofs. They are incorporated in the lemmas which follows.

Lemma 1. [15] (i) Suppose 𝑝 > 0 and 𝛼+ 𝑛+ 1 > 0 . Then there exists

a constant 𝐶 > 0 such that

∣𝑓(𝑧)∣ ≤ 𝐶∥𝑓∥𝐴𝑝
𝛼

(1− ∣𝑧∣2)𝑛+𝛼+1
𝑝
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for all 𝑓 ∈ 𝐴𝑝
𝛼 and 𝑧 ∈ 𝐵 .

(ii) Suppose 𝑝 > 0 and 𝛼 + 𝑛+ 1 < 0 or 0 < 𝑝 ≤ 1 and 𝛼 + 𝑛+ 1 = 0 .

Then every function in 𝐴𝑝
𝛼 is continuous on the closed unit ball and so is

bounded.

(iii) Suppose 𝑝 > 1 , 1/𝑝+ 1/𝑞 = 1 and 𝛼+ 𝑛+ 1 = 0 . Then there exists

a constant 𝐶 > 0 such that

∣𝑓(𝑧)∣ ≤ 𝐶
[
ln

2

1− ∣𝑧∣2
]1/𝑞

for all 𝑓 ∈ 𝐴𝑝
𝛼 and 𝑧 ∈ 𝐵 .

Lemma 2. A closed set 𝐾 in ℬ𝜇,0 is compact if and only if it is bounded

and satisfies

lim
∣𝑧∣→1

sup
𝑓∈𝐾

𝜇(∣𝑧∣)∣ℜ𝑓(𝑧)∣ = 0.

Proof. The proof is similar to the proof of Lemma 1 in [11]. We omit the

details. □
The following criterion for compactness follows from standard arguments

similar to those outlined in Proposition 3.11 of [2]. We omit the details of

the proof.

Lemma 3. Assume that 𝑝 > 0 , 𝛼 is a real number, 𝑔 ∈ 𝐻(𝐵) , 𝜑 is

a holomorphic self-map of 𝐵 and 𝜇 is a normal function on [0, 1) . Then

𝑇𝑔,𝜑 : 𝐴𝑝
𝛼 → ℬ𝜇 is compact if and only if 𝑇𝑔,𝜑 : 𝐴𝑝

𝛼 → ℬ𝜇 is bounded and

for any bounded sequence (𝑓𝑘)𝑘∈ℕ in 𝐴𝑝
𝛼 which converges to zero uniformly

on compact subsets of 𝐵 as 𝑘 → ∞ , we have ∥𝑇𝑔,𝜑𝑓𝑘∥ℬ𝜇 → 0 as 𝑘 → ∞.

Especially, when 𝑝 > 0 and 𝛼+𝑛+1 < 0, we need the following criterion

for compactness follows from arguments similar to those in Lemma 3.7 of

[12].

Lemma 4. Let 𝑝 > 0 and 𝛼 + 𝑛 + 1 < 0 . Let 𝑇 be a bounded linear

operator from 𝐴𝑝
𝛼 into a normed linear space 𝑌 . Then 𝑇 is compact if and

only if ∥𝑇𝑓𝑘∥𝑌 → 0 whenever (𝑓𝑘) is a norm-bounded sequence in 𝐴𝑝
𝛼 that

converges to 0 uniformly on 𝐵 .

Proof. The necessity is obvious. Now we prove the sufficiency part.

Suppose that 𝑇 is not compact. Then there is a bounded sequence (𝑔𝑘 )

in 𝐴𝑝
𝛼 such that (𝑇𝑔𝑘 ) has no convergent subsequence. Note that when

𝑝 > 0 and 𝛼+𝑛+1 < 0, 𝐴𝑝
𝛼 are indeed Lipschitz continuous (see Theorem

66 of [15]). Similarly to the proof of Lemma 3.6 of [12], we see that every

bounded sequence in 𝐴𝑝
𝛼 has a subsequence that converges uniformly on 𝐵

by Lemma 1 and Arzela-Ascoli Theorem. Hence (𝑔𝑘) has a subsequence

(𝑓𝑘) such that 𝑓𝑘 → 𝑓 uniformly on 𝐵 . By Fatou’s lemma we see that



X. Zhu 229

𝑓 ∈ 𝐴𝑝
𝛼 . The sequence (𝑓𝑘 − 𝑓) is bounded in 𝐴𝑝

𝛼 and converges to 0

uniformly on 𝐵 . By assumption ∥𝑇𝑓𝑘 − 𝑇𝑓∥𝑌 → 0 as 𝑘 → ∞ . This

implies that the subsequence (𝑇𝑓𝑘) of (𝑇𝑔𝑘) converges in 𝑌 (to 𝑇𝑓 ), a

contradiction. □

2.1. Case 𝑛+ 1 + 𝛼 > 0 .

Theorem 1. Assume that 𝑝 > 0 , 𝛼 is a real number such that

𝑛 + 𝛼 + 1 > 0 , 𝑔 ∈ 𝐻(𝐵) , 𝜑 is a holomorphic self-map of 𝐵 and 𝜇

is a normal function on [0, 1) . Then 𝑇𝑔,𝜑 : 𝐴𝑝
𝛼 → ℬ𝜇 is bounded if and

only if

𝑀 := sup
𝑧∈𝐵

𝜇(∣𝑧∣)∣ℜ𝑔(𝑧)∣
(1− ∣𝜑(𝑧)∣2)𝑛+1+𝛼

𝑝

< ∞.(2)

Proof. Suppose that (2) holds. A calculation with (1) gives the following

fundamental and useful formula(see, e.g. [4])

ℜ[𝑇𝑔,𝜑(𝑓)](𝑧) = 𝑓(𝜑(𝑧))ℜ𝑔(𝑧).

Then for arbitrary 𝑧 ∈ 𝐵 and 𝑓 ∈ 𝐴𝑝
𝛼 , by Lemma 1 we have

𝜇(∣𝑧∣)∣ℜ(𝑇𝑔,𝜑𝑓)(𝑧)∣ = 𝜇(∣𝑧∣)∣𝑓(𝜑(𝑧))∣∣ℜ𝑔(𝑧)∣
≤ 𝐶∥𝑓∥𝐴𝑝

𝛼

𝜇(∣𝑧∣)∣ℜ𝑔(𝑧)∣
(1− ∣𝜑(𝑧)∣2)𝑛+1+𝛼

𝑝

.(3)

Using the condition (2), the boundedness of the operator 𝑇𝑔,𝜑 : 𝐴𝑝
𝛼 → ℬ𝜇

follows by taking the supremum in (3) over 𝐵 .

Conversely, suppose that 𝑇𝑔,𝜑 : 𝐴𝑝
𝛼 → ℬ𝜇 is bounded. Assume that

𝑡 > 𝑛max(1,
1

𝑝
) +

𝛼+ 1

𝑝
.(4)

For 𝑎 ∈ 𝐵 , set

𝑓𝑎(𝑧) =
(1− ∣𝑎∣2)𝑡−𝑛+1+𝛼

𝑝

(1 − ⟨𝑧, 𝑎⟩)𝑡 .

Then from Theorem 32 of [15] we see that 𝑓𝑎 ∈ 𝐴𝑝
𝛼 and sup𝑎∈𝐵 ∥𝑓𝑎∥𝐴𝑝

𝛼
<

∞. Therefore

𝐶∥𝑇𝑔,𝜑∥𝐴𝑝
𝛼→ℬ𝜇

≥ ∥𝑇𝑔,𝜑𝑓𝜑(𝑏)∥ℬ𝜇 ≥ sup
𝑧∈𝐵

𝜇(∣𝑧∣)∣ℜ(𝑇𝑔,𝜑𝑓𝜑(𝑏))(𝑧)∣

≥ 𝜇(∣𝑏∣)∣ℜ𝑔(𝑏)∣
(1− ∣𝜑(𝑏)∣2)𝑛+1+𝛼

𝑝

,(5)
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from which we get (2). This completes the proof of Theorem 1. □

Theorem 2. Assume that 𝑝 > 0 , 𝛼 is a real number such that

𝑛 + 𝛼 + 1 > 0 , 𝑔 ∈ 𝐻(𝐵) , 𝜑 is a holomorphic self-map of 𝐵 and 𝜇

is a normal function on [0, 1) . Then 𝑇𝑔,𝜑 : 𝐴𝑝
𝛼 → ℬ𝜇 is compact if and

only if 𝑔 ∈ ℬ𝜇 and

lim
∣𝜑(𝑧)∣→1

𝜇(∣𝑧∣)∣ℜ𝑔(𝑧)∣
(1− ∣𝜑(𝑧)∣2)𝑛+1+𝛼

𝑝

= 0.(6)

Proof. Suppose that 𝑔 ∈ ℬ𝜇 and (6) holds. From 𝑔 ∈ ℬ𝜇 and (6), it is

easy to see that (2) holds. Hence 𝑇𝑔,𝜑 : 𝐴𝑝
𝛼 → ℬ𝜇 is bounded by Theorem

1. From (6), for given 𝜀 > 0, there is a constant 𝛿 ∈ (0, 1), such that

sup
{𝑧∈𝐵 : 𝛿<∣𝜑(𝑧)∣<1}

𝜇(∣𝑧∣)∣ℜ𝑔(𝑧)∣
(1− ∣𝜑(𝑧)∣2)𝑛+1+𝛼

𝑝

< 𝜀.(7)

Let (𝑓𝑘)𝑘∈ℕ be a bounded sequence in 𝐴𝑝
𝛼 such that 𝑓𝑘 → 0 uniformly on

compact subsets of 𝐵 as 𝑘 → ∞ . Let 𝐺 = {𝑤 ∈ 𝐵 : ∣𝑤∣ ≤ 𝛿} . From the

fact that 𝑔 ∈ ℬ𝜇 and (7), we have

∥𝑇𝑔,𝜑𝑓𝑘∥ℬ𝜇 = sup
𝑧∈𝐵

𝜇(∣𝑧∣)∣𝑓𝑘(𝜑(𝑧))ℜ𝑔(𝑧)∣

=
(

sup
{𝑧∈𝐵: ∣𝜑(𝑧)∣≤𝛿}

+ sup
{𝑧∈𝐵 : 𝛿<∣𝜑(𝑧)∣<1}

)
𝜇(∣𝑧∣)∣ℜ𝑔(𝑧)∣∣𝑓𝑘(𝜑(𝑧))∣

= ∥𝑔∥ℬ𝜇 sup
𝑤∈𝐺

∣𝑓𝑘(𝑤)∣+ 𝐶∥𝑓𝑘∥𝐴𝑝
𝛼

sup
{𝑧∈𝐵 : 𝛿<∣𝜑(𝑧)∣<1}

𝜇(∣𝑧∣)∣ℜ𝑔(𝑧)∣
(1− ∣𝜑(𝑧)∣2)𝑛+1+𝛼

𝑝

≤ ∥𝑔∥ℬ𝜇 sup
𝑤∈𝐺

∣𝑓𝑘(𝑤)∣+ 𝐶𝜀.(8)

Observe that 𝐺 is a compact subset of 𝐵 , then it gives lim𝑘→∞ sup𝑤∈𝐺 ∣𝑓𝑘(𝑤)∣ =
0. Using this fact and letting 𝑘 → ∞ in (8), we obtain lim sup𝑘→∞ ∥𝑇𝑔,𝜑𝑓𝑘∥ℬ𝜇 ≤
𝐶𝜀. Since 𝜀 is an arbitrary positive number, we obtain lim sup𝑘→∞ ∥𝑇𝑔,𝜑𝑓𝑘∥ℬ𝜇 =

0. Employing Lemma 3, we get that 𝑇𝑔,𝜑 : 𝐴𝑝
𝛼 → ℬ𝜇 is compact.

Conversely, suppose that 𝑇𝑔,𝜑 : 𝐴𝑝
𝛼 → ℬ𝜇 is compact, then 𝑇𝑔,𝜑 : 𝐴𝑝

𝛼 →
ℬ𝜇 is bounded. It follows from the proof of Theorem 1 that 𝑔 ∈ ℬ𝜇 . Let

(𝑧𝑘)𝑘∈ℕ be a sequence in 𝐵 such that ∣𝜑(𝑧𝑘)∣ → 1 as 𝑘 → ∞ . Set

𝑓𝑘(𝑧) =
(1− ∣𝜑(𝑧𝑘)∣2)𝑡−

𝑛+𝛼+1
𝑝

(1 − ⟨𝑧, 𝜑(𝑧𝑘)⟩)𝑡 , 𝑘 ∈ ℕ,

where 𝑡 satisfies (4). From Theorem 32 of [15] we see that (𝑓𝑘)𝑘∈ℕ is a

bounded sequence in 𝐴𝑝
𝛼 . Moreover, it is easy to see that 𝑓𝑘 converges to
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zero uniformly on compact subsects of 𝐵 . In view of Lemma 3 it follows

that

lim sup
𝑘→∞

∥𝑇𝑔,𝜑𝑓𝑘∥ℬ𝜇 = 0.(9)

In addition, we have

(10) ∥𝑇𝑔,𝜑𝑓𝑘∥ℬ𝜇 = sup
𝑧∈𝐵

𝜇(∣𝑧∣)∣ℜ(𝑇𝑔,𝜑𝑓𝑘)(𝑧)∣ ≥ 𝜇(∣𝑧𝑘∣)∣ℜ𝑔(𝑧𝑘)∣
(1 − ∣𝜑(𝑧𝑘)∣2)

𝑛+1+𝛼
𝑝

.

Combining (9) with (10) we get the desired result. The proof is completed.

□

Theorem 3. Assume that 𝑝 > 0 , 𝛼 is a real number such that

𝑛 + 𝛼 + 1 > 0 , 𝑔 ∈ 𝐻(𝐵) , 𝜑 is a holomorphic self-map of 𝐵 and 𝜇

is a normal function on [0, 1) . Then 𝑇𝑔,𝜑 : 𝐴𝑝
𝛼 → ℬ𝜇,0 is bounded if and

only if 𝑇𝑔,𝜑 : 𝐴𝑝
𝛼 → ℬ𝜇 is bounded and 𝑔 ∈ ℬ𝜇,0 .

Proof. Suppose that 𝑇𝑔,𝜑 : 𝐴𝑝
𝛼 → ℬ𝜇,0 is bounded. Then it is clear

that 𝑇𝑔,𝜑 : 𝐴𝑝
𝛼 → ℬ𝜇 is bounded. Taking 𝑓(𝑧) = 1 and employing the

boundedness of 𝑇𝑔,𝜑 : 𝐴𝑝
𝛼 → ℬ𝜇,0 , we see that 𝑔 ∈ ℬ𝜇,0 .

Conversely, suppose that 𝑇𝑔,𝜑 : 𝐴𝑝
𝛼 → ℬ𝜇 is bounded and 𝑔 ∈ ℬ𝜇,0 .

Suppose that 𝑓 ∈ 𝐴𝑝
𝛼 with ∥𝑓∥𝐴𝑝

𝛼
≤ 𝐿 , using polynomial approximations

we obtain (see, e.g., [15])

lim
∣𝑧∣→1

(1− ∣𝑧∣2)𝑛+1+𝛼
𝑝 ∣𝑓(𝑧)∣ = 0.

From the above equality and 𝑔 ∈ ℬ𝜇,0 , for every 𝜀 > 0, there exists a

𝛿 ∈ (0, 1) such that when 𝛿 < ∣𝑧∣ < 1,

(1− ∣𝑧∣2)𝑛+1+𝛼
𝑝 ∣𝑓(𝑧)∣ < 𝜀/𝑀(11)

and

𝜇(∣𝑧∣)∣ℜ𝑔(𝑧)∣ < 𝜀(1− 𝛿2)
𝑛+1+𝛼

𝑝

𝐿
,(12)

where 𝑀 is defined in (2). Therefore if 𝛿 < ∣𝑧∣ < 1 and 𝛿 < ∣𝜑(𝑧)∣ < 1,

from (2) and (11) we have

𝜇(∣𝑧∣)∣ℜ(𝑇𝑔,𝜑𝑓)(𝑧)∣ =
𝜇(∣𝑧∣)∣ℜ𝑔(𝑧)∣

(1− ∣𝜑(𝑧)∣2)𝑛+1+𝛼
𝑝

(1− ∣𝜑(𝑧)∣2)𝑛+1+𝛼
𝑝 ∣𝑓(𝜑(𝑧))∣

≤ 𝑀(1− ∣𝜑(𝑧)∣2)𝑛+1+𝛼
𝑝 ∣𝑓(𝜑(𝑧))∣ < 𝜀.(13)



232 Volterra composition operators

If 𝛿 < ∣𝑧∣ < 1 and ∣𝜑(𝑧)∣ ≤ 𝛿 , using Lemma 1 and (12) we have

𝜇(∣𝑧∣)∣ℜ(𝑇𝑔,𝜑𝑓)(𝑧)∣ =
𝜇(∣𝑧∣)∣ℜ𝑔(𝑧)∣

(1− ∣𝜑(𝑧)∣2)𝑛+1+𝛼
𝑝

(1− ∣𝜑(𝑧)∣2)𝑛+1+𝛼
𝑝 ∣𝑓(𝜑(𝑧))∣

≤ 𝐶∥𝑓∥𝐴𝑝
𝛼

𝜇(∣𝑧∣)∣ℜ𝑔(𝑧)∣
(1− ∣𝜑(𝑧)∣2)𝑛+1+𝛼

𝑝

≤ 𝐶∥𝑓∥𝐴𝑝
𝛼

(1− 𝛿2)𝑛+1+𝛼
𝑝

𝜇(∣𝑧∣)∣ℜ𝑔(𝑧)∣ < 𝐶𝜀.(14)

Combining (13) with (14) we get that 𝑇𝑔,𝜑𝑓 ∈ ℬ𝜇,0 . Since 𝑓 is arbitrary

we see that 𝑇𝑔,𝜑(𝐴
𝑝
𝛼) ⊂ ℬ𝜇,0 , which together with the boundedness of

𝑇𝑔,𝜑 : 𝐴𝑝
𝛼 → ℬ𝜇 , we get the desired result. This completes the proof of the

theorem. □

Theorem 4. Assume that 𝑝 > 0 , 𝛼 is a real number such that

𝑛 + 𝛼 + 1 > 0 , 𝑔 ∈ 𝐻(𝐵) , 𝜑 is a holomorphic self-map of 𝐵 and 𝜇

is a normal function on [0, 1) . Then 𝑇𝑔,𝜑 : 𝐴𝑝
𝛼 → ℬ𝜇,0 is compact if and

only if

lim
∣𝑧∣→1

𝜇(∣𝑧∣)∣ℜ𝑔(𝑧)∣
(1 − ∣𝜑(𝑧)∣2)𝑛+1+𝛼

𝑝

= 0.(15)

Proof. Suppose that 𝑇𝑔,𝜑 : 𝐴𝑝
𝛼 → ℬ𝜇,0 is compact. Then 𝑇𝑔,𝜑 : 𝐴𝑝

𝛼 →
ℬ𝜇,0 is bounded and 𝑇𝑔,𝜑 : 𝐴𝑝

𝛼 → ℬ𝜇 is compact. By Theorems 2 and 3 we

obtain

lim
∣𝜑(𝑧)∣→1

𝜇(∣𝑧∣)∣ℜ𝑔(𝑧)∣
(1− ∣𝜑(𝑧)∣2)𝑛+1+𝛼

𝑝

= 0.(16)

and

lim
∣𝑧∣→1

𝜇(∣𝑧∣)∣ℜ𝑔(𝑧)∣ = 0,(17)

By (16), for every 𝜀 > 0, there exists a 𝛿 ∈ (0, 1),

𝜇(∣𝑧∣)∣ℜ𝑔(𝑧)∣
(1− ∣𝜑(𝑧)∣2)𝑛+1+𝛼

𝑝

< 𝜀

when 𝛿 < ∣𝜑(𝑧)∣ < 1. By (17), for the above 𝜀 , there exists 𝑟 ∈ (0, 1),

𝜇(∣𝑧∣)∣ℜ𝑔(𝑧)∣ ≤ 𝜀(1− ∣𝛿∣2)𝑛+1+𝛼
𝑝

when 𝑟 < ∣𝑧∣ < 1.
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Therefore, when 𝑟 < ∣𝑧∣ < 1 and 𝛿 < ∣𝜑(𝑧)∣ < 1, we have that

𝜇(∣𝑧∣)∣ℜ𝑔(𝑧)∣
(1− ∣𝜑(𝑧)∣2)𝑛+1+𝛼

𝑝

< 𝜀.(18)

If ∣𝜑(𝑧)∣ ≤ 𝛿 and 𝑟 < ∣𝑧∣ < 1, we obtain

𝜇(∣𝑧∣)∣ℜ𝑔(𝑧)∣
(1 − ∣𝜑(𝑧)∣2)𝑛+1+𝛼

𝑝

≤ 1

(1− ∣𝛿∣2)𝑛+1+𝛼
𝑝

𝜇(∣𝑧∣)∣ℜ𝑔(𝑧)∣ < 𝜀.(19)

Combing (18) with (19) we get (15) as desired.

Conversely, suppose that (15) holds. It follows from Lemma 2 that

𝑇𝑔,𝜑 : 𝐴𝑝
𝛼 → ℬ𝜇,0 is compact if and only if

lim
∣𝑧∣→1

sup
∥𝑓∥

𝐴
𝑝
𝛼
≤1

𝜇(∣𝑧∣)∣ℜ(𝑇𝑔,𝜑𝑓)(𝑧)∣ = 0.(20)

For any 𝑓 ∈ 𝐴𝑝
𝛼 with ∥𝑓∥𝐴𝑝

𝛼
≤ 1, by (3) we have

𝜇(∣𝑧∣)∣ℜ(𝑇𝑔,𝜑𝑓)(𝑧)∣ ≤ 𝐶∥𝑓∥𝐴𝑝
𝛼

𝜇(∣𝑧∣)∣ℜ𝑔(𝑧)∣
(1− ∣𝜑(𝑧)∣2)𝑛+1+𝛼

𝑝

.

Using (15) we get

lim
∣𝑧∣→1

sup
∥𝑓∥𝐴

𝑝
𝛼
≤1

𝜇(∣𝑧∣)∣ℜ(𝑇𝑔,𝜑𝑓)(𝑧)∣ ≤ 𝐶 lim
∣𝑧∣→1

𝜇(∣𝑧∣)∣ℜ𝑔(𝑧)∣
(1 − ∣𝜑(𝑧)∣2)𝑛+1+𝛼

𝑝

= 0,

as desired. This completes the proof of the theorem. □
Let 𝜑(𝑧) = 𝑧 , 𝜇(𝑟) = (1−𝑟2)𝛽 . From Theorems 1-4 we have the following

result (see [8, 9] for the case of 𝛼 > −1).

Corollary 1. Assume that 𝑝 > 0 , 𝛼 is a real number such that

𝑛 + 𝛼 + 1 > 0 , 𝑛+1+𝛼
𝑝 ≤ 𝛽 < ∞ and 𝑔 ∈ 𝐻(𝐵) . Then the following

statements hold.

(i) 𝑇𝑔 : 𝐴𝑝
𝛼 → ℬ𝛽 is bounded if and only if 𝑇𝑔 : 𝐴𝑝

𝛼 → ℬ𝛽
0 is bounded if

and only if

sup
𝑧∈𝐵

(1− ∣𝑧∣2)𝛽−𝑛+1+𝛼
𝑝 ∣ℜ𝑔(𝑧)∣ < ∞;

(ii) 𝑇𝑔 : 𝐴𝑝
𝛼 → ℬ𝛽 is compact if and only if 𝑇𝑔 : 𝐴𝑝

𝛼 → ℬ𝛽
0 is compact

if and only if

lim
∣𝑧∣→1

(1− ∣𝑧∣2)𝛽−𝑛+1+𝛼
𝑝 ∣ℜ𝑔(𝑧)∣ = 0.
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2.2 Case 𝑛+ 1 + 𝛼 = 0 . First, we consider the case 𝑝 > 1.

Theorem 5. Assume that 𝑝 > 1 , 1/𝑝 + 1/𝑞 = 1 and 𝑛 + 1 + 𝛼 = 0 ,

𝑔 ∈ 𝐻(𝐵) , 𝜑 is a holomorphic self-map of 𝐵 and 𝜇 is a normal function

on [0, 1) . Then 𝑇𝑔,𝜑 : 𝐴𝑝
𝛼 → ℬ𝜇 is bounded if and only if

𝑀3 := sup
𝑧∈𝐵

𝜇(∣𝑧∣)∣ℜ𝑔(𝑧)∣
(
ln

2

1− ∣𝜑(𝑧)∣2
)1/𝑞

< ∞.(21)

Proof. Suppose that (21) holds. Then for arbitrary 𝑧 ∈ 𝐵 and 𝑓 ∈ 𝐴𝑝
𝛼 ,

by Lemma 1 we have

𝜇(∣𝑧∣)∣ℜ(𝑇𝑔,𝜑𝑓)(𝑧)∣ = 𝜇(∣𝑧∣)∣𝑓(𝜑(𝑧))∣∣ℜ𝑔(𝑧)∣
≤ 𝐶∥𝑓∥𝐴𝑝

𝛼
𝜇(∣𝑧∣)∣ℜ𝑔(𝑧)∣

(
ln

2

1− ∣𝜑(𝑧)∣2
)1/𝑞

,(22)

from which we see that 𝑇𝑔,𝜑 : 𝐴𝑝
𝛼 → ℬ𝜇 is bounded.

Conversely, suppose that 𝑇𝑔,𝜑 : 𝐴𝑝
𝛼 → ℬ𝜇 is bounded. For 𝑎 ∈ 𝐵 , set

𝑓𝑎(𝑧) =
(
ln

2

1− ∣𝑎∣2
)−1/𝑝(

ln
2

1− ⟨𝑧, 𝑎⟩
)
.(23)

Using Theorem 1.12 of [16], it is easy to check that 𝑓𝑎 ∈ 𝐴𝑝
−(𝑛+1) . Therefore

𝐶∥𝑇𝑔,𝜑∥𝐴𝑝
𝛼→ℬ𝜇

≥ ∥𝑇𝑔,𝜑𝑓𝜑(𝑏)∥ℬ𝜇 ≥ sup
𝑧∈𝐵

𝜇(∣𝑧∣)∣ℜ(𝑇𝑔,𝜑𝑓𝜑(𝑏))(𝑧)∣

≥ 𝜇(∣𝑏∣)∣ℜ𝑔(𝑏)∣
(
ln

2

1− ∣𝜑(𝑏)∣2
)1/𝑞

.(24)

From the last inequality we get the desired result. □

Theorem 6. Assume that 𝑝 > 1 , 1/𝑝 + 1/𝑞 = 1 and 𝑛 + 1 + 𝛼 = 0 ,

𝑔 ∈ 𝐻(𝐵) , 𝜑 is a holomorphic self-map of 𝐵 and 𝜇 is a normal function

on [0, 1) . Then 𝑇𝑔,𝜑 : 𝐴𝑝
𝛼 → ℬ𝜇 is compact if and only if 𝑔 ∈ ℬ𝜇 and

lim
∣𝜑(𝑧)∣→1

𝜇(∣𝑧∣)∣ℜ𝑔(𝑧)∣
(
ln

2

1− ∣𝜑(𝑧)∣2
)1/𝑞

= 0.(25)

Proof. Suppose that (25) holds. In this case, the proof of Theorem 2 still

works with minor changes and therefore the details are omitted.

Conversely, suppose that 𝑇𝑔,𝜑 : 𝐴𝑝
𝛼 → ℬ𝜇 is compact, then it is clear that

𝑇𝑔,𝜑 : 𝐴𝑝
𝛼 → ℬ𝜇 is bounded. It follows from the proof of Theorem 5 that

𝑔 ∈ ℬ𝜇 . Let (𝑧𝑘)𝑘∈ℕ be a sequence in 𝐵 such that ∣𝜑(𝑧𝑘)∣ → 1 as 𝑘 → ∞ .
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Set

𝑓𝑘(𝑧) =
(
ln

2

1− ∣𝜑(𝑧𝑘)∣2
)−1/𝑝(

ln
2

1− ⟨𝑧, 𝜑(𝑧𝑘)⟩
)
, 𝑘 ∈ ℕ.(26)

Using Theorem 1.12 of [16], we see that (𝑓𝑘)𝑘∈ℕ is a bounded sequence in

𝐴𝑝
𝛼 . Moreover, 𝑓𝑘 → 0 uniformly on compact subsects of 𝐵 . It follows

from Lemma 3 that ∥𝑇𝑔,𝜑𝑓𝑘∥ℬ𝜇 → 0 as 𝑘 → ∞. Since

∥𝑇𝑔,𝜑𝑓𝑘∥ℬ𝜇 = sup
𝑧∈𝐵

𝜇(∣𝑧∣)∣ℜ(𝑇𝑔,𝜑𝑓𝑘)(𝑧)∣

≥ 𝜇(∣𝑧𝑘∣)∣ℜ𝑔(𝑧𝑘)∣
(
ln

2

1− ∣𝜑(𝑧𝑘)∣2
)1/𝑞

,(27)

we obtain

lim
𝑘→∞

𝜇(∣𝑧𝑘∣)∣ℜ𝑔(𝑧𝑘)∣
(
ln

2

1− ∣𝜑(𝑧𝑘)∣2
)1/𝑞

= 0,

from which we get the desired result. □

Theorem 7. Assume that 𝑝 > 1 , 1/𝑝 + 1/𝑞 = 1 and 𝑛 + 1 + 𝛼 = 0 ,

𝑔 ∈ 𝐻(𝐵) , 𝜑 is a holomorphic self-map of 𝐵 and 𝜇 is a normal function

on [0, 1) . Then 𝑇𝑔,𝜑 : 𝐴𝑝
𝛼 → ℬ𝜇,0 is bounded if and only if 𝑇𝑔,𝜑 : 𝐴𝑝

𝛼 → ℬ𝜇

is bounded and 𝑔 ∈ ℬ𝜇,0 .

Proof. Suppose that 𝑇𝑔,𝜑 : 𝐴𝑝
𝛼 → ℬ𝜇,0 is bounded, then 𝑇𝑔,𝜑 : 𝐴𝑝

𝛼 → ℬ𝜇

is bounded. Taking 𝑓(𝑧) = 1, then employing the boundedness of 𝑇𝑔,𝜑 :

𝐴𝑝
𝛼 → ℬ𝜇,0 , we get 𝑔 ∈ ℬ𝜇,0 , as desired.

Conversely, suppose that 𝑇𝑔,𝜑 : 𝐴𝑝
𝛼 → ℬ𝜇 is bounded and 𝑔 ∈ ℬ𝜇,0 . For

each polynomial 𝑝(𝑧),

(28) 𝜇(∣𝑧∣)∣ℜ(𝑇𝑔,𝜑𝑝)(𝑧)∣ = 𝜇(∣𝑧∣)∣𝑝(𝜑(𝑧))∣∣ℜ𝑔(𝑧)∣ ≤ ∥𝑝∥∞𝜇(∣𝑧∣)∣ℜ𝑔(𝑧)∣.

From the above inequality, it follows that for each polynomial 𝑝, 𝑇𝑔,𝜑(𝑝) ∈
ℬ𝜇,0. Since the set of all polynomials is dense in 𝐴𝑝

𝛼, for every 𝑓 ∈ 𝐴𝑝
𝛼 there

is a sequence of polynomials (𝑝𝑘)𝑘∈ℕ such that ∥𝑝𝑘−𝑓∥𝐴𝑝
𝛼
→ 0 as 𝑘 → ∞ .

From the boundedness of 𝑇𝑔,𝜑 : 𝐴𝑝
𝛼 → ℬ𝜇 , we have that

∥𝑇𝑔,𝜑𝑝𝑘 − 𝑇𝑔,𝜑𝑓∥ℬ𝜇 ≤ ∥𝑇𝑔,𝜑∥ ∥𝑝𝑘 − 𝑓∥𝐴𝑝
𝛼
→ 0, as 𝑘 → ∞.(29)

From this and since ℬ𝜇,0 is a closed subset of ℬ𝜇 , we obtain

𝑇𝑔,𝜑𝑓 = lim
𝑘→∞

𝑇𝑔,𝜑𝑝𝑘 ∈ ℬ𝜇,0.(30)

Therefore 𝑇𝑔,𝜑 : 𝐴𝑝
𝛼 → ℬ𝜇,0 is bounded. The proof is completed. □
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Using Theorems 6 and 7, similarly to the proof of Theorem 4, we obtain

the following result. We omit the proof.

Theorem 8. Assume that 𝑝 > 1 , 1/𝑝 + 1/𝑞 = 1 and 𝑛 + 1 + 𝛼 = 0 ,

𝑔 ∈ 𝐻(𝐵) , 𝜑 is a holomorphic self-map of 𝐵 and 𝜇 is a normal function

on [0, 1) . Then 𝑇𝑔,𝜑 : 𝐴𝑝
𝛼 → ℬ𝜇,0 is compact if and only if

lim
∣𝑧∣→1

𝜇(∣𝑧∣)∣ℜ𝑔(𝑧)∣
(
ln

2

1− ∣𝜑(𝑧)∣2
)1/𝑞

= 0.(31)

From Theorems 5-8, we have the following corollary.

Corollary 2. Suppose 𝑝 > 1 , 1/𝑝 + 1/𝑞 = 1 and 𝑛 + 1 + 𝛼 = 0 . Let

𝑔 ∈ 𝐻(𝐵) and 0 < 𝛽 < ∞ . Then the following statements hold.

(i) 𝑇𝑔 : 𝐴𝑝
𝛼 → ℬ𝛽 is bounded if and only if 𝑇𝑔 : 𝐴𝑝

𝛼 → ℬ𝛽
0 is bounded if

and only if

sup
𝑧∈𝐵

(1 − ∣𝑧∣2)𝛽 ∣ℜ𝑔(𝑧)∣
(
ln

2

1− ∣𝑧∣2
)1/𝑞

< ∞;

(ii) 𝑇𝑔 : 𝐴𝑝
𝛼 → ℬ𝛽 is compact if and only if 𝑇𝑔 : 𝐴𝑝

𝛼 → ℬ𝛽
0 is compact if

and only if

lim
∣𝑧∣→1

(1− ∣𝑧∣2)𝛽 ∣ℜ𝑔(𝑧)∣
(
ln

2

1− ∣𝑧∣2
)1/𝑞

= 0.

Next we consider the case of 0 < 𝑝 ≤ 1.

Theorem 9. Assume that 𝑛+ 1 + 𝛼 = 0 and 0 < 𝑝 ≤ 1 , 𝑔 ∈ 𝐻(𝐵) , 𝜑

is a holomorphic self-map of 𝐵 and 𝜇 is a normal function on [0, 1) . Then

𝑇𝑔,𝜑 : 𝐴𝑝
𝛼 → ℬ𝜇 is bounded if and only if 𝑔 ∈ ℬ𝜇 .

Proof. Suppose that 𝑔 ∈ ℬ𝜇 . For an 𝑓 ∈ 𝐴𝑝
𝛼 , by Lemma 1 we have

sup
𝑧∈𝐵

𝜇(∣𝑧∣)∣ℜ(𝑇𝑔,𝜑𝑓)(𝑧)∣ = sup
𝑧∈𝐵

𝜇(∣𝑧∣)∣𝑓(𝜑(𝑧))∣∣ℜ𝑔(𝑧)∣
≤ 𝐶∥𝑓∥𝐴𝑝

𝛼
sup
𝑧∈𝐵

𝜇(∣𝑧∣)∣ℜ𝑔(𝑧)∣.

From the above inequality we see that 𝑇𝑔,𝜑 : 𝐴𝑝
𝛼 → ℬ𝜇 is bounded.

Conversely, suppose that 𝑇𝑔,𝜑 : 𝐴𝑝
𝛼 → ℬ𝜇 is bounded. Taking 𝑓(𝑧) = 1,

then using the boundedness of 𝑇𝑔,𝜑 : 𝐴𝑝
𝛼 → ℬ𝜇 , we get the desired result.

□

Theorem 10. Assume that 𝑛+1+𝛼 = 0 and 0 < 𝑝 ≤ 1 , 𝑔 ∈ 𝐻(𝐵) , 𝜑

is a holomorphic self-map of 𝐵 and 𝜇 is a normal function on [0, 1) . Then
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𝑇𝑔,𝜑 : 𝐴𝑝
𝛼 → ℬ𝜇 is compact if and only if 𝑔 ∈ ℬ𝜇 and

lim
∣𝜑(𝑧)∣→1

𝜇(∣𝑧∣)∣ℜ𝑔(𝑧)∣ = 0.(32)

Proof. Suppose that 𝑔 ∈ ℬ𝜇 and that (32) holds. In this case, the proof

is similar to the proof of Theorem 2 and hence we omit it.

Conversely, suppose that 𝑇𝑔,𝜑 : 𝐴𝑝
𝛼 → ℬ𝜇 is compact. Then it is clear

that 𝑇𝑔,𝜑 : 𝐴𝑝
𝛼 → ℬ𝜇 is bounded. It follows from Theorem 9 that 𝑔 ∈ ℬ𝜇 .

Let (𝑧𝑘)𝑘∈ℕ be a sequence in 𝐵 such that ∣𝜑(𝑧𝑘)∣ → 1 as 𝑘 → ∞ . Set

𝑓𝑘(𝑧) =
1− ∣𝜑(𝑧𝑘)∣2
1− ⟨𝑧, 𝜑(𝑧𝑘)⟩ , 𝑘 ∈ ℕ.

From Theorem 6.6 of [16] we see that (𝑓𝑘)𝑘∈ℕ is a bounded sequence in

𝐴𝑝
𝛼 . Moreover, 𝑓𝑘 converges to zero uniformly on compact subsects of 𝐵 .

In view of Lemma 3 it follows that

lim sup
𝑘→∞

∥𝑇𝑔,𝜑𝑓𝑘∥ℬ𝜇 = 0.(33)

On the other hand, we have

∥𝑇𝑔,𝜑𝑓𝑘∥ℬ𝜇 = sup
𝑧∈𝐵

𝜇(∣𝑧∣)∣ℜ(𝑇𝑔,𝜑𝑓𝑘)(𝑧)∣ ≥ 𝜇(∣𝑧𝑘∣)∣ℜ𝑔(𝑧𝑘)∣.(34)

Combining (33) with (34) we see that (32) holds. The proof is completed.

□

Theorem 11. Assume that 𝑛+1+𝛼 = 0 and 0 < 𝑝 ≤ 1 , 𝑔 ∈ 𝐻(𝐵) , 𝜑

is a holomorphic self-map of 𝐵 and 𝜇 is a normal function on [0, 1) . Then

the following statements are equivalent.

(i) 𝑇𝑔,𝜑 : 𝐴𝑝
𝛼 → ℬ𝜇,0 is bounded;

(ii) 𝑇𝑔,𝜑 : 𝐴𝑝
𝛼 → ℬ𝜇,0 is compact;

(iii) 𝑔 ∈ ℬ𝜇,0 .

Proof. (ii) ⇒ (i). This implication is obvious.

(i) ⇒ (iii). Taking 𝑓(𝑧) = 1 and employing the boundedness of

𝑇𝑔,𝜑 : 𝐴𝑝
𝛼 → ℬ𝜇,0 we get that 𝑔 ∈ ℬ𝜇,0 .

(𝑖𝑖𝑖) ⇒ (𝑖𝑖). Suppose that 𝑔 ∈ ℬ𝜇,0 . For any 𝑓 ∈ 𝐴𝑝
𝛼 with ∥𝑓∥𝐴𝑝

𝛼
≤ 1,

we have

𝜇(∣𝑧∣)∣ℜ(𝑇𝑔,𝜑𝑓)(𝑧)∣ ≤ 𝐶∥𝑓∥𝐴𝑝
𝛼
𝜇(∣𝑧∣)∣ℜ𝑔(𝑧)∣ ≤ 𝐶𝜇(∣𝑧∣)∣ℜ𝑔(𝑧)∣,
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from which we obtain

lim
∣𝑧∣→1

sup
∥𝑓∥𝐴

𝑝
𝛼
≤1

𝜇(∣𝑧∣)∣ℜ(𝑇𝑔,𝜑𝑓)(𝑧)∣ ≤ 𝐶 lim
∣𝑧∣→1

𝜇(∣𝑧∣)∣ℜ𝑔(𝑧)∣ = 0.

Using Lemma 2 we see that 𝑇𝑔,𝜑 : 𝐴𝑝
𝛼 → ℬ𝜇,0 is compact and the assertion

follows. □

From Theorems 9-11, we obtain the following corollary.

Corollary 3. Suppose 0 < 𝑝 ≤ 1 and 𝑛+1+𝛼 = 0 . Let 𝑔 ∈ 𝐻(𝐵) and

0 < 𝛽 < ∞ . Then the following statements hold.

(i) 𝑇𝑔 : 𝐴𝑝
𝛼 → ℬ𝛽 is bounded if and only if 𝑔 ∈ ℬ𝛽 ;

(ii) 𝑇𝑔 : 𝐴𝑝
𝛼 → ℬ𝛽 is compact if and only if 𝑇𝑔 : 𝐴𝑝

𝛼 → ℬ𝛽
0 is bounded

if and only if 𝑇𝑔 : 𝐴𝑝
𝛼 → ℬ𝛽

0 is compact if and only if 𝑔 ∈ ℬ𝛽
0 .

2.3. Case 𝑛+ 1 + 𝛼 < 0 .

Theorem 12. Assume that 𝑝 > 0 and 𝑛+ 1 + 𝛼 < 0 , 𝑔 ∈ 𝐻(𝐵) , 𝜑 is

a holomorphic self-map of 𝐵 and 𝜇 is a normal function on [0, 1) . Then

the following statements are equivalent.

(i) 𝑇𝑔,𝜑 : 𝐴𝑝
𝛼 → ℬ𝜇 is bounded;

(ii) 𝑇𝑔,𝜑 : 𝐴𝑝
𝛼 → ℬ𝜇 is compact;

(iii) 𝑔 ∈ ℬ𝜇 .

Proof. (ii) ⇒ (i). It is obvious.

(i) ⇒ (iii). Taking 𝑓(𝑧) = 1, then using the boundedness of 𝑇𝑔,𝜑 : 𝐴𝑝
𝛼 →

ℬ𝜇 we get the desired result.

(iii) ⇒ (ii). Suppose that 𝑔 ∈ ℬ𝜇 . For an 𝑓 ∈ 𝐴𝑝
𝛼 , by Lemma 1 we

see that 𝑓 is continuous on the closed unit ball and so is bounded in 𝐵 .

Therefore

(35) 𝜇(∣𝑧∣)∣ℜ(𝑇𝑔,𝜑𝑓)(𝑧)∣ = 𝜇(∣𝑧∣)∣𝑓(𝜑(𝑧))∣∣ℜ𝑔(𝑧)∣ ≤ 𝐶∥𝑓∥𝐴𝑝
𝛼
𝜇(∣𝑧∣)∣ℜ𝑔(𝑧)∣.

From the above inequality we see that 𝑇𝑔,𝜑 : 𝐴𝑝
𝛼 → ℬ𝜇 is bounded. Let

(𝑓𝑘)𝑘∈ℕ be any bounded sequence in 𝐴𝑝
𝛼 and 𝑓𝑘 → 0 uniformly on 𝐵 as

𝑘 → ∞ . We have

∥𝑇𝑔,𝜑𝑓𝑘∥ℬ𝜇 = sup
𝑧∈𝐵

𝜇(∣𝑧∣)∣𝑓𝑘(𝜑(𝑧))ℜ𝑔(𝑧)∣ ≤ ∥𝑔∥ℬ𝜇 sup
𝑧∈𝐵

∣𝑓𝑘(𝜑(𝑧))∣ → 0,

as 𝑘 → ∞ . Employing Lemma 4, the implication follows. □

Theorem 13. Assume that 𝑝 > 0 and 𝑛+ 1 + 𝛼 < 0 , 𝑔 ∈ 𝐻(𝐵) , 𝜑 is

a holomorphic self-map of 𝐵 and 𝜇 is a normal function on [0, 1) . Then

the following statements are equivalent.
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(i) 𝑇𝑔,𝜑 : 𝐴𝑝
𝛼 → ℬ𝜇,0 is bounded;

(ii) 𝑇𝑔,𝜑 : 𝐴𝑝
𝛼 → ℬ𝜇,0 is compact;

(iii) 𝑔 ∈ ℬ𝜇,0 .

Proof. The proof is similar to the proof of Theorem 11 and therefore we

omit the details. □

From Theorems 12 and 13, we get the following corollary.

Corollary 4. Suppose 𝑝 > 0 and 𝑛 + 1 + 𝛼 < 0 . Let 𝑔 ∈ 𝐻(𝐵) and

0 < 𝛽 < ∞ . Then the following statements hold.

(i) 𝑇𝑔 : 𝐴𝑝
𝛼 → ℬ𝛽 is bounded if and only if 𝑇𝑔 : 𝐴𝑝

𝛼 → ℬ𝛽 is compact

if and only if 𝑔 ∈ ℬ𝛽 ;

(ii) 𝑇𝑔 : 𝐴𝑝
𝛼 → ℬ𝛽

0 is bounded if and only if 𝑇𝑔 : 𝐴𝑝
𝛼 → ℬ𝛽

0 is compact

if and only if 𝑔 ∈ ℬ𝛽
0 .
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