JOURNAL OF © 2009, Scientific Horizon
FUNCTION SPACES AND APPLICATIONS http://www.jfsa.net
Volume 7, Number 3 (2009), 241-250

The boundedness of commutator of Riesz transform
associated with Schrodinger operators
on a Hardy space

Cangin Tang! and Chuanmei Bi

(Communicated by Viadimir Maz’ya)

2000 Mathematics Subject Classification. Primary: 42B20, 42B30.

Keywords and phrases. Commutator, BMO, Riesz transform, Schrédinger
operators, Hardy space.

Abstract. In this paper, we study the boundedness of commutator [b,T]
of Riesz transform associated with Schrédinger operator and b is BMO type
function, note that the kernel of T has no smoothness, and the boundedness from
Hy (R™) — L*(R™) is obtained.

1. Introduction

It is well know that the Calderén-Zygmmund singular operator is an
important operator in Harmonic Analysis. The properties of the C-Z
singular operator and its commutator are studied by many scholars. Such
as in [1] [2] [3]. Among this, C. Perez [3] states the H}(R") — L'(R")
boundedness of the commutator [b,T], where T is a C-Z singular operator
and b € BMO(R").

Schrédinger differential operator is another interesting topic in Harmonic
Analysis. Let A = —A + V(x) be the Schrodinger differential operator
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on R",n > 3. Throughout the paper we will assume that V(z) is a
non-zero, nonnegative potential, and belongs to B, for some ¢ > n/2.
Let T = V(-A +V(x)), [b,T]f = bTf —Tbf. The LP boundedness
of T and the commutator [b,T] is widely studied in [4] [5] when V(z)
satisfies some conditions. The basic idea in [4] is to find a pointwise
estimate of the kernel and the comparison to the kernel of classical Riesz
transform. But in [6], Z. Guo, P. Li and L. Peng adopt a different idea to get
the LP boundedness of some commutators of Riesz transforms associated
to Schrdédinger operator since the kernel no longer satisfied the regular
condition of Calderén-Zygmmund kernel. Note that the kernels have some
other kind of smoothness H(m). Inspired by their work, we will consider
H}(R"™) — L*(R") boundedness of commutator [b,7] in this case, where
be BMO.

2. Some preliminaries and notations

In this section, we first recall some definitions and lemmas we need in this
paper.

Q@ will always denote a cube with sides parallel to the axes. AQ(A > 0)
denotes the cube has the same center as @ and dilated by A. Also
B = B(xp, r) will denote a ball centered at zp with radius r and
corresponding notation applies for AB . We adopt the idea of Strémberg.
Recall that the sharp function of Fefferman-Stein is defined by

M f(2) = sup |7§| /B F@) — foldy,

zEB

simultaneity, recall that BMO 1is defined by

BMO(R") = {f € Lipe(R") : || fllzaro = [IMF floe < 00}

where fp = f(y)dy, and the supremum is taken on all balls B with

7.
1Bl /s
x € B. Two basic facts about BMO will be used in this paper,

|forg — fB] < C(k+1)|| fllBMO, k>0

and the one due to John-Nirenberg

1 1/p
~ S _ — P
Ilssio ~ s (g7 [ 1560 = solPay) o> 1.
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In this paper we will assume that V' belongs to B, for some ¢ > 5, that

(o] Vq(x)dxy” <o [ vien:).

for every ball B C IR". Define auxiliary function

p(x,V):p(a:)zm(x 7 zsup{r>0:rn%/3( )V(y)dygl}.

Definition 2.1. ([3]) A function « is a b - atom if there is a cube @ for
which

()suppa € @, @~ < —, (3) / ay)dy = 0, (4) / a(y)b(y)dy = 0.
Q Q

Q|
The space Hj(R™) consists of the subspace of L'(R") functions f which
can be written as f = Zj Aja; where a; are b - atom and )\; are

complex numbers with }>; | A; |< oo and define its space norm as
[ £l = inf(32; | Aj [). Like the definition in [6], in our problem, we
need the following smoothness of kernel.

Definition 2.2. K(z,y) is said to satisfy H(m) for some m > 1, if there
exist a constant C' such that, for any | > 0, y, xp € R" with |y —zp| <,
then

00 1/m
Skt ([ K (z,y) — K(w,ap)"dz ) <C,
b—5 2k<|z—xp|<2kt1]
where 1/m’ =1—1/m.

It is easy to prove that if K(z,y) is the usual Calderén-Zygmund kernel,
it satisfies H(m) for any m > 1.

Lemma A. ([4]) Suppose V € By, qo > 1. Assume that —Au+ (V(z) +
iT)u =0 in B(zo,2R) for some 9 € R™, R > 0. Then
(a) for x € B(zo, R),

V(y) c
V| <C swp ful- [ Syt s [ fulw)ld,
B(z0,2R) B(wo,2R) [T —y[" ! R B (o .2R)

(b) if (n/2) < qo <n, (1/t) = (1/q0) — (1/n), ko > logy Co + 1, then
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1/t
/ |Vul'dx < CRM/=211 4 Rm(zo, V)}*™ sup |ul.
B(zo,R) B(z0,2R)

Lemma B. ([6]) Suppose V € B, for some ¢ > n/2. Let N >
logy Co + 1, where Cy is the constant in doubling measure inequality

V(y)dy < Co/ V(y)dy . Then for any xo € R",R >0,

B(z,2r) B(z,r)

V(§)d¢ < CR"2.

TR
{1+ m(zo, VIR JB(a0,R)

Let I'(z,y,7) denote the fundamental solution for the Schrddinger
operator —A + (V(z) + 7). A pointwise estimate of I'(x,y,7) given in
[4] is a key result to our calculus.

Theorem A. ([4]) Suppose V € B,, /5. Then, for any z, y € R", T € R,
and integer k > 0,
< Ch 1
T AL T2 =y {1+ m(z, V)| - yl}E o —ylh?

[(x,y,7)

3. Main results and proofs

Let T = V(—A+V)~1/2 we'll study the boundedness of commutator of
T in Hardy space.

Theorem 3.1. Let V € B, and n/2 < qg<mn, b€ BMO. Then [b, T)
is a bounded operator from H}(R™) to L*(R™).

To prove Theorem 3.1, we need the following lemmas.

Lemma 3.1. Let T = V(—=A+V)~Y2 K(z,y) be kernel of T. Suppose
V € B, for some n/2 < ¢ < n. Then there exist § > 0 and for any integer
k>0, 0<h<|z—y|/16,
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< Ch ' 1
“{l+my, V)lz —yl}F |-yt

V(&) 1
d
" </B(y,|my|) |z —¢*t <+ |z — y|>

| < Ci : Al
“{l1+my,V)|lz —yl}r |z —ynt+e

V(&) 1
d .
" </B(y,wy) |z — ¢t o |2 —y|>

Proof. By partial integral, we know that

1) [K(z,y)

(2)  |K(z,y+h)— K(z,y)

1

> R(—iT)—l/var(x,y,T)dT.

K({E,y):—

lz -yl

Fix z, y € R*, R =
0 < h < R/2, we have

, 1/t =1/g—1/n, § = 2 —n/q > 0,

1
K@y +h) = K(eg)| < 5= [ 71 V.0 oy + o) = Vol oy, ldr
R

It follows from the imbedding theorem of Morrey and Lemma A(b) that

|vm1—‘(xvy + ha T) - Vwr(xa y77)|

1/t
C|h|1in/t <L( R) |VyVm1"(x,z,T)|tdz>

C’|h|1_"/tR”/q_2{1—|—Rm(y,V)}R° sup |V, I'(z,z,7)|.
2€B(y,2R)

IA

IN

Since I'(x,z,7) = I'(z,z,—7), we have V,I'(z,z,7) = V,I'(z,2 — 7). It
follows from Lemma A(a) that,

sup  |VoI'(z,2,7)| < sup |V, I[(z,z,—7)]

2€B(y,2R) z2€B(y,2R)
V(¢
< sup sup IF(n,y,—T)I/ L. Bﬂdf
ZEB(Z],QR) T]EB(Z,lZ—Z'l/4) B(z,\z—m\/Q) |Z - £|

C
_ —7)dE » .
+ |z — x|t ~/B(z,z—x/2) F&e =) 5}
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Also from Theorem A, [4, Lemma 1.4(b)], using the fact that |n — x| ~
ool | — 2l ~ |2 — 2, |2 — 2| ~ |z — ], |z — ] ~ |z — €] and choosing k;
sufficiently large, we obtain

sup |V, I'(z,2,7)]
2€B(y,2R)

Ck
< sup !
sen(er) {1+ |T1V2n — 2} {1+ m(n, V)|n — 2|}k

1 / V()
S — TS e
In—2[""2 Jp(z|2al/2) |2 — &I" 71

n Ch, / Ch,

2 =™ B amaljz) {1+ IT121E = 2P {1 4+ m(&, V)|§ — [}
w1t

€ —z["=2

Cr,
sup
seB(yer) 11+ T2z =y {1l +m(y,V)|z — y[}*

1 \%
x n—2 / (531716%
|:L' - y| B(y,|lz—y|) |:L' - £|
Cr, Ch,

[z —y[n=T {1+ [7[V2]z — g} {1+ m(y, V)|z — y[}F

IN

+

Computing as in the proof of Lemma 4 in [6], the assertion is proved. O

Lemma 3.2. Let T = V(-A +V)~Y2 V € B, for some n/2 < ¢ < n.
K(z,y) be a kernel of T. Then K(z,y) satisfies H(m), where 1/m =
1/q—1/n.

Proof.  For any | > 0,y,xp € R" with |y — x| < [, choosing N
sufficiently large, by Lemma B, (3.1) and V € By, we have

1/m
( / K () K(x,xBn%)
2ki<|z—xp|<2ktll
<
2ki<|z—xp|<2ktl]

1/m
ly —z|° / V() 1 m
(ot PREEENTL
|z — xp[n—1to ( B(a,|Jo—y|) [T — &1 : |z — »TB|)

Cn
{1+m(zp,V)|lz — 2}V
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IN

Cn

1% 1 H/ V()X B(xp,24+31)
d§
|

2k0)n=10 " {1+ m(zp, V)2 z — €1
lé
(2kl)n/m’+6

& 1 e
. ad,
On (2kl)"—1+5 {1 +m(a:B,V)2kl}N <~/B(ac3,2’“+3l) Vig) 5)

16
(2kl)n/m’+6

19 1 k —n//
ON @Ry [T mlen, V)N (/B(,@Bwsl) V<5)d5> (@

lé
16
lé

m
L @

+

IN

+

IN

+
16
(2k1)n/m'+6

IN

CN (2kl)n/q72 +

< C(le)n/mur&'

Here we have used the fact that B(x,|r —y|) € B(zg,2F31). In fact, for
all § € B(z, |z —yl), [€ —ap| < | — [+ ]z —2p| <[z —y[+ ]z —2p| <
|z — 25|+ |y — 5| + |z — v5| < 283, Therefore,

%) 1/m oo
, Ck
k(2k1)n/m™ / K(z,y) — K(z,z5)|"dz < <
> kM) <2kl§|x_m<w| (2.9) — K(z,2p)| ) D @y

k=5

and we are done. O

Proof of Theorem 3.1. Let b€ BMO. By the atomic decomposition
of Hardy space, we only need to prove that there exists a constant C' such
that for each b — atom a

/ b, Tla()ldy < Clblarollall s ey

Suppose suppa C B(xpg,l) for some ball B. Then

| b Ty L dy= [ 1 That) [y [ Tlalw) | dy = 4L

R"\2B
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The estimate of I follows by the boundedness of [b, T| on L?(R") (see
[5]) and the size condition of atom a, i.e.,

1 1
I < C|B|(—/ b, Tla(y)|*dy)"/? ScllbllBMolBl-(—/ la(y)|?dy)"/?
12B| /o5 |B| Jg
Cllbllsaol| Bl - |lallee < C|lbl|Brro-

IN

To estimate II, we split [b, T] as [b, T]a = (b—bp)Ta—T((b—bg)a).
Then

II< / |(b(x) — bp)Ta(x)|dx + / |T((b—bg)a)(z)|de =TT+ 1IV.
Rn\2B R™\2B

By Lemma 3.2 and cancelation condition, [, a(y)dy =0, so that

m = /R gy 00) BT

< [ [0 =05 [ a0 0) — K
S [ o @) b)) — K )y
o O B )~ Ky
- /Bg(gkl)n/pk </m<HB|<2k+u K (2, ) —K(x,xB”qu)”q

< T ( o o )~ bB|pdx> " i
< cowg [ iy ( / klgm_m@ww@_b3|pdx>l/p
<

E>1

1
Csup . [ law)ldy
B
1 1/p
L b() — by byrsr g — bp|Pd
- <(2k+1l)n /13(m5,2k+1l)| ()= o b = bl x)
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IN

k>1

1/p
’ { (W /B(ac 2k+17) |b($) - b2k+1B|pd$> ! |b2k+1B : bB|}

1
Csup i [ law)ldy- (+ D)blzsro
k>1 B

Cllbllsao,

1
Csup - [ fay)ldy
B
1

IN

IN

where 1/p+1/qg=1.
By the definition of a, we have

/B (b(y) — bp)aly)dy = /B a(y)b(y)dy — b / aly) = 0,

B

For IV, by Lemma 3.2 and Hélder inequality, we have

IV = /RW\QB IT((b— bp)a)(z)|dz

/R"\QB ‘ /B K(z,y)(b(y) — bp)aly)dy|dz

< [ | [0~ K25 0) ~bs)atwa i

< [ b —vlia)l [ 1K)~ Ks)dedy

< [ pw-osleGI [ K = K
<

oo 1/p
1000 = ballan 3 ( Lo K0 K(x,xBﬂpda:)

1/q
X / dr dy
2kI<|z—zp|<2kt1]
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(o]
< [ 1w - bullat)] Y k0
B k=1
1/p 1
</ K(e.y) - Kz zp)Pde | - ~dy
2k I<|z—zp|<2kt1] k
1 1
< Cswy o [ ) - baldy < Clpllavo.
k>1k Bl /g
This is the proof of Theorem 3.3. U
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