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Abstract. Let p be a nonnegative Radon measure on R? which satisfies the
growth condition that there exist constants Co > 0 and n € (0,d| such that
for all z € R? and 7 > 0, u(B(z,r)) < Cor™, where B(z,7) is the open ball
centered at = and having radius r. In this paper, when R? is not an initial cube
which implies p(R?) = oo, the authors prove that the homogeneous Littlewood-
Paley g-function of Tolsa is bounded from the Hardy space H'(u) to L'(u), and
furthermore, that if f € RBMO (u), then [§(f)]? is either infinite everywhere
or finite almost everywhere, and in the latter case, [§(f)]* belongs to RBLO (u)
with norm no more than C||f||&zmo (u)» where C'> 0 is independent of f.

1. Introduction

Recall that a non-doubling measure p on R? means that pu is a
nonnegative Radon measure which only satisfies the following growth
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condition, namely, there exist constants Cy > 0 and n € (0,d] such that
for all 2 € R? and 7 > 0,

(1.1) u(Bn) < Cor,

where B(z,r) is the open ball centered at z and having radius r. Such
a measure p is not necessary to be doubling, which is a key assumption
in the classical theory of harmonic analysis. In recent years, it was shown
that many results on the Calderén-Zygmund theory remain valid for non-
doubling measures; see, for example, [6, 7, 8, 9, 10, 11, 12, 5, 3]. One of
the main motivations for extending the classical theory to the non-doubling
context was the solution of several questions related to analytic capacity,
like Vitushkin’s conjecture or Painlevé’s problem; see [13, 14, 16] or survey
papers [15, 17, 18] for more details.

In particular, Tolsa [11] developed a Littlewood-Paley theory with non-
doubling measures for functions in LP(u) when p € (1,00) and used
this Littlewood-Paley decomposition to establish some T'(1) theorems.
The main purpose of this paper is to investigate the behaviors of the
homogeneous Littlewood-Paley g-functions of Tolsa in [11] at the extremal
cases, namely, in the cases when p = 1 or p = oco. To be precise, in
this paper, when R is not an initial cube which implies p(RY) = oo
(see [11]), we prove that the homogeneous Littlewood-Paley g-function
g(f) of Tolsa is bounded from the Hardy space H'(u) to L'(u), and
furthermore, we prove that if f € RBMO (i), then [§(f)]? is either infinite
everywhere or finite almost everywhere, and in the latter case, [¢(f)]? is
bounded from RBMO (i) to RBLO (1), where RBMO (u) was introduced
by Tolsa in [10] and RBLO (u) was introduced by Jiang in [3]. Notice
that L°(u) € RBMO (p). The last above-mentioned result generalizes the
corresponding result of Leckband [4] in replacing L>°(R¢) by BMO (R9),
even when g is the d-dimensional Lebesgue measure and ¢(f) is the
classical homogeneous Littlewood-Paley g-function. When u(R?) < oo,
then R? is an initial cube (see [11]) and the homogeneous Littlewood-Paley
g-function degenerates into the inhomogeneous Littlewood-Paley g-function
g(f). We also obtain similar results for this inhomogeneous Littlewood-
Paley g-function, by first establishing a new theory of local atomic Hardy
space hi;?(,u), rbmo (p) and rblo (1) in the sense of Goldberg [1]. To limit
the length of this paper, we will present these results in [2]. An interesting
open problem is if §(f) and g(f) can characterize the Hardy space H*(u)
and hl>°(u), respectively.

The organization of this paper is as follows. In Section 2, we recall
some necessary definitions and notation, including the definitions of atomic
Hardy spaces, RBMO (1), RBLO (u), approximations to the identity and
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the homogeneous Littlewood-Paley g-function ¢(f). In Section 3, we
establish the boundedness of the homogeneous Littlewood-Paley g-function
g(f) from H'(u) to L'(p), and prove that if f belongs to RBMO (u),
then [g(f)]? is either infinite everywhere or finite almost everywhere, and
in the latter case, [¢(f)]?> belongs to RBLO (1) with norm no more than
Cllfl&smo (u)» Where C' > 0 is independent of f. As a corollary, we also
obtain the boundedness of the homogeneous Littlewood-Paley g-function
g(f) from RBMO (p) to RBLO (p).

Throughout the paper, we always denote by C' a positive constant which
is independent of the main parameters, but it may vary from line to
line. Constant with subscript such as C7, does not change in different
occurrences. The symbol Y < Z means that there exists a constant C' > 0
such that Y < CZ. The symbol A ~ B means that A < B < A. Moreover,
for any D C R%, we denote by x,, the characteristic function of D.

2. Preliminaries

In this section, we recall some necessary notions and notation. By a cube
Q C R%, we mean a closed cube whose sides are parallel to the axes and
centered at some point of supp (i), and we denote its side length by 1(Q)
and its center by zq. If w(R?) < oo, we also regard R? as a cube. Let a, 3
be two positive constants, a € (1,00) and 8 € (™, 00). A cube @Q is said
to be an («, B)-doubling cube if it satisfies u(aQ) < Bu(Q), where and in
what follows, given A > 0 and any cube @, AQ denotes the cube concentric
with @ and having side length N\ (Q). It was pointed out by Tolsa (see [10,
pp. 95-96] or [11, Remark 3.1]) that if 5 > o™, then for any = € supp (u)
and any R > 0, there exists some («, §)-doubling cube @ centered at x
with 1(Q) > R, and that if 8 > a?, then for p-almost everywhere z € R?,
there exists a sequence of («, §)-doubling cubes {Q}ren centered at x
with {(Qr) — 0 as k — oco. In what follows, by a doubling cube, we always
mean a (2,29"1)-doubling cube, and for any cube @, we denote by @ the
smallest doubling cube which has the form 2FQ with k € NU {0}.

Given two cubes Q, R C R, let zg be the center of Q, and Qr be
the smallest cube concentric with @ containing ) and R. The following
coefficients were first introduced by Tolsa in [10]; see also [11, 12].

Definition 2.1. Given two cubes @, R C R?, we define

1 1
§(Q, R) = max {/QR\Q T —zo" dp(z), /RQ\R T zal du(ﬂf)} :
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We may treat points x € R? as if they were cubes (with side length
I(z) =0). So, for , y € R? and some cube @, the notations 6(z, Q) and
d(z,y) make sense; see [11, 12] for some useful properties of §(-,-). We now
recall the notion of cubes of generations in [11, 12]; see [11, 12] for more
details.

Definition 2.2. We say that » € R? is a stopping point (or stopping
cube) if 6(z, Q) < oo for some cube @ 3 x with 0 < [(Q) < co. We say that
R? is an initial cube if §(Q,RY) < oo for some cube Q with 0 < [(Q) < co.
The cubes @ such that 0 < I(Q) < oo are called transit cubes.

Remark 2.1. In [11, p.67], it was pointed out that if §(z,Q) < oo for
some transit cube @ containing z, then §(x, Q') < oo for any other transit
cube @' containing z. Also, if §(Q,R?) < oo for some transit cube Q,
then §(Q',R?) < oo for any transit cube Q’.

Throughout this paper, we always assume that R? is not an initial cube.

Let A be some big positive constant. In particular, we assume that A is
much bigger than the constants €y, €; and 7y, which appear, respectively,
in Lemma 3.1, Lemma 3.2 and Lemma 3.3 of [11]. Moreover, the constants
A, €y, €1 and g depend only on Cy, n and d. In what follows, for € > 0
and a,b € R, the notation a = b £ € does not mean any precise equality
but the estimate |a — b| <e.

Definition 2.3. Assume that R? is not an initial cube. We fix some
doubling cube Ry € R?. This will be our ‘reference’ cube. For each j € N,
let R_; be some doubling cube concentric with Ry, containing Rg, and
such that 6(Ro, R—j) = jA £ ;1 (which exists because of Lemma 3.3 of
[11]). If @ is a transit cube, we say that @ is a cube of generation k € Z
if it is a doubling cube, and for some cube R_; containing @) we have
Q,R_;) = +k)Ate. If Q= {z} is a stopping cube, we say that @
is a cube of generation k € Z if for some cube R_; containing x we have
BQRj) < (j+Hk)A+er.

Using Lemma 3.2 in [11], it is easy to verify that for any = € supp (u)
and k € Z, there exists a doubling cube of generation k; see [11, p.68].
Moreover, the definition of cubes of generations is proved in [11, p. 68] to be
independent of the chosen reference R_; in the sense modulo some small
errors. Throughout this paper, for any = € supp (@) and k € Z, we denote
by Qz,r a fized doubling cube centered at = of generation k. On cubes of
generations {Qz, «}rez, we have the following simple observation.

Proposition 2.1. Suppose that R¢ is not an initial cube. Then for any
x € supp (1), (Qgz k) — 00 as k — —oc0.
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Proof. For any given x € supp (u), we first assume that {z} is not a
stopping cube. Then for any N € N, Q. o and @, _n are transit cubes (see
[11, p. 68]) satisfying that Q0 C Qu, —~n and §(Qy,0, @z, —n) = NAL6e;.
In fact, by Definition 2.3, there exist ji, jo € N such that @, 0 C R_j
with 6(Q$,O;R—j1) = lezl:fl and Qx,—N C R_j2 with (S(Qm7_N,R_J’2) =
(ja— N)A =+ €. Choosing j > max(j1,j2) and using Lemma 3.1 (d) in [11]
imply that 6(Qz, 0, R—;) = jA£3e1 and 6(Qz, —~, R—j) = (j —N)A+£3e;.
By the fact that Q0 C Qu, -~ C R_;, it follows from Lemma 3.1 (d) in
[11] again that

5(@2:,0; Qm,—N) = 5(Qm707R—j) — (5(Qm7_N,R_j) = NA =+ 6¢;.

Since {l(Qz, &) }rez is decreasing, if the conclusion of Proposition 2.1 is not
true, then there exists M > 0 such that for any N € N, (Q;, —n) <

MI(Qgy,0). Lemma 3.1 (c) in [11] shows that there exists a constant Cy
depending only on d such that

Qg —
5(Qx,0; Qac —N) S Cd (1 + log M) S Cd(l + 10gM)
Z(Qx,o)
On the other hand, since ¢; < A, then NA + 6e; > NA/2. Therefore, if
we take N > 2C;(1+log M)/A, we then have a contradiction that

1
C’d(l—l—logM) < §NA < NA+6e = 5(Qx,0,Qm7—N) < Cd(1+10gM),

which implies that the conclusion of Proposition 2.1 is true in the case that
{z} is not a stopping cube.

If {x} is a stopping cube, recalling that there exists some k, € Z
such that all the cubes of generation k < k, are transit cubes (see [11,
p.68]), we obtain that for N € N large enough, Qg k,-1 C Qu —n and
Qs kp—1,Qz,-N) = (N + ky — 1)A + 6¢; via an argument as above.
Furthermore, if there exists M > 0 such that for any N € N, [(Q,, —n) <
MU(Qz, k,—1), then by taking N > 2max(k, —1, Cyq(1+log M)/A) together
with an argument as above, we also have a contradiction, which implies that
I(Qg, k) — 00 as k — —oo. This finishes the proof of Proposition 2.1. O

In [11], Tolsa constructed a class of approxzimations to the identity
{Sk}p2_ o related to {Qq, k}uera, kez, Which are integral operators given
by kernels Si(z,y) on R x R? satisfying the following properties:

(A_]') Sk(xvy) = Sk(yvm) for all T,y € Rd;
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(A-2) For any k € Z and any x € supp (u), if Qg & is a transit cube,
then

/ Su(z,y) du(y) = 1;
Rd

(A-3) If Q,, 1 is a transit cube, then supp (Sk(z,-)) C Qu, k—1;
(A-4) If Qu 1, and @y, ; are transit cubes, then there exists a constant
C > 0 such that
C .
[[(Qa, k) + UQy,k) + |z — yl]’

(A-5) If Qu.k, Qu,kx and @y x are transit cubes, and x, 2’ € Qg for
some xo € supp (u), then there exists a constant C' > 0 such that

(2.1) 0 < Sk(x,y) <

| — ' 1

(Quo. ) [UQa k) + UQy, ) + & — yl]™

Moreover, Tolsa [11] pointed out that Properties (A-1) through (A-5) also

hold if any of Qg 1, @z, and @ 1 is a stopping cube. In what follows,

without loss of generality, for any = € supp (u), we always assume that

Q.1 15 not a stopping cube, since the proofs for stopping cubes are similar.
Forany k€ Z, f € L} (n) and o € supp (1), define

loc

(22)  1Su(e,) - Sula',y)] < C;

Sif(@) = [ i) ) dnty).

Let D = Sy — Skg_1 for Kk € Z, and we also use Dj to denote
the corresponding integral operator with kernel Dy. The homogeneous
Littlewood-Paley g-function ¢(f) is then defined by

1/2

g(f)(x) = [ > Def(x)

k=—o0

We next recall the notions of the atomic Hardy space Halt’é’ (n) for
p € (1,00] and the BMO-type space RBMO (u) in [10] and RBLO (p)
in [3].

Definition 2.4. Let n > 1 and 1 < p < oo. A function b € Li__(u) is

loc
called a p-atomic block if

(1) there exists some cube R such that supp (b) C R,
(2) Jpab(z)dp(z) =0,
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(3) for j = 1,2, there exist functions a; supported on cubes Q; C R
and numbers A; € R such that b = Aja; + Azaz, and

(2.3) lajll Lo < IumQ)IMP 14 6(Q;, R) ™

Then we define |b|H1’f(u) = M| 4 [A2]. We say that f € HLP(n)
if there exist p-atomic blocks {b;};ey such that f = > .2 b, with
p e |bi|H;;f(u) < o0o. The HLFP(1) norm of f is defined by vaHH;t’f(p,) =
inf{> 5, |bi|H1’gj(u)}a where the infimum is taken over all the possible
decompositions of f in p-atomic blocks as above.

Remark 2.2. It was proved by Tolsa [10] that the definition of H;t’g(u)
is independent of the chosen constant 1 > 1, and for any 1 < p < oo, all the
atomic Hardy spaces H ;t’é’ (1) coincide with equivalent norms. Moreover, a
maximal function characterization of H ;,;é’ (1) was also established in [12].
Thus, in the rest of this paper, we denote the atomic Hardy space H;t’g(u)
simply by H*'(u), and when we use the atomic characterization of H'(u),

we always assume 1 = 2 and p = co in Definition 2.4.

Definition 2.5. Let n € (1,00). A function f € L} _(u) is said to be

loc

in the space RBMO (p) if there exists some constant C7 > 0 such that for
any cube @ centered at some point of supp (u),

1 /
— —mg d <y,
) L [f0) = ma(n)] dutv) < €&
and for any two doubling cubes Q C R,

Imq(f) = mr(f)| < C1[1 +6(Q, R)],

where mq(f) denotes the mean of f over cube @, namely, mq(f) =
m fQ f(y) du(y). Moreover, we define the RBMO () norm of f by the
minimal constant C; as above and denote it by || f|rBmo (u)-

Remark 2.3. It was proved by Tolsa [10] that the definition of
RBMO (1) is independent of the choices of 1. As a result, throughout
this paper, we always assume 7 = 2 in Definition 2.5.

The following space RBLO (p) was introduced in [3]. It is obvious that

L™ (1) C RBLO (1) € RBMO (p).
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Definition 2.6. We say f € L} _(u) belongs to the space RBLO (p) if

loc
there exists some constant Cy > 0 such that for any doubling cube @,

mq(f) — essinf f(z) < Cq,

z€EQ
and for any two doubling cubes @ C R,
mq(f) —mr(f) < o[l +4(Q, R)).
The minimal constant C5 as above is defined to be the norm of f in the

space RBLO (1) and denoted by || f[|rBLO (1) -

3. Main results and their proofs

We begin with the boundedness of the homogeneous Littlewood-Paley g-
function g(f) from H'(u) to L'(u). Recall that R? is assumed not to be
an initial cube.

Theorem 3.1. There exists a constant C' > 0 such that for all f €
H'(p),

1921y = ClF -

Proof. Let b be any oo-atomic block as in Definition 2.4. To be precise,
assume that b = Aja; + A2ao. By the Fatou lemma, to prove Theorem 3.1,
it is enough to show that ¢(b) is in L!(u) and

19O L1y S (M| + [Aa.

Assume that supp (b) C R and supp(a;) C @, for j = 1,2 as in
Definition 2.4. Since ¢ is sublinear, we write

[, i@ dutz)
- / §(0)(@) du(z) + / §(0) (&) du(z)
4R RI\AR
< g Al / @)@ d(a) + g | / g, 1@ )

b [ i@ du) =1+ 1 T
RI\AR
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Recalling that ¢ is bounded on L?(u) (see Theorem 6.1 in [11]), by the
Holder inequality and (2.3), we then see that

1
2

ZI/\ I{/ 9 a;)(x)qu(ﬂﬂ)} (10 (2Q;)]

[N

I

IN

1

Zm{/ (@)]? du(z )} 1(2Q,)]
S Z|/\j||\aj||Loo 1 (2Q;) SZ

which is a desired estimate.

For j =1, 2, let z; be the center of Q;. Notice that for « ¢ 2Q); and
y € Qj, |t —y| ~ | — x;|. From this fact, the Hélder inequality, the fact
that for any = # vy,

oo 1/2
(3.1) l 3 |Dk<m,y>|2] S |x_1

k=—o0

=

A

y|"

(see [11, p.82]) and (2.3), it follows that

1(a;)(x) < Dy(z a;(y)*d 2 j B
i) < [/M_ZOJ e, y) Pl (y) 2 d ()1 (@)
O N L
S [/Qjmdu(y)] [1(Q5)]>-
lla;| oo () ‘ 1 1
S |a:—xj|” N(QJ) SJ |x—ﬂ?j|" 1+5(Qj7 R)'

By Lemma 3.1 (d) in [11], 6(2Q;,4R) < 1+ §(Q;,R), which in turn
implies that

A 2
IZNZH& @), R 2(2Q;.4R) 2 ZMJ'

We now estimate I3. Let x¢ € supp (1) N R. By the vanishing moment
of b, the Minkowski inequality and the Holder inequality, for x ¢ 4R,
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. 1/2
{ > IDkb(x)F}

k=—o0

{s

k=—o0

/R Dy (2, ) — Di(z, 70)lb(y) du(y)

2}1/2
> X /Q Du(w. )~ Dyl wo)llas (o) duty)

k=—o00

9y 1/2

IN

2

0o 1/2
sme(QmW{ /Q | ( > D@, y) - Dila, xo)|2> |aj<y>|2du<y>} .

j=1 k=—o0

Therefore, Theorem 3.1 is reduced to showing that

\/]Rd\4R |:/Q7 <k_z:oo |Dk($; y) - Dk(i[,’, x0)|2> |a‘j(y)|2 d//z(y)‘| d/},(x)
< (020,72

For any transit cube R and any « € RN supp (i), let HE be the largest
integer k such that R C Q. By Proposition 2.1, we know that H¢, exists
and is unique. We now claim that for any y € Q;, any integer ¢ > 3 and
k>Hp —i+4,

=

(3.2) supp (Di(+,y) — Di(+,%0)) C Quy, rmo —is1-

In fact, by (A-3) and the fact that {Q4 «}x is decreasing, supp (Dg(-,y)—
Dy(-,z9)) C Qy’kfz U Qg k-2 C Qy’H;ofiJrQ U QwO’H;ofiJrQ. Since
i > 3, then y € (); and the decreasing property of {Qz,, &}t imply that
y € QIO!H? _iyo, which together with Lemma 4.2 (c) in [11] implies that
Qy, 520 —it2 C Qqy, =0 i1 Thus, (3.2) holds.

Observe that for any y € Q;, we have y € Q.1 for k < H® —i+ 3.
Then the symmetry of S and (2.2) imply that

lzo — ¥ 1

(3.3) |Dy(x,y) — Di(z,20)| < UQuo. k) [1(Quo. ) + |2 — o]




Da. Yang and Do. Yang 197

On the other hand, since I(Q,, pz0) < %ol(Qmo,Hf%o—l) (see [11, p.69)]),
we then have 4R C @, I -1 and

R \ (4R) = (on, Hp0—2 \ (4R)) U D (Qmo, H0—i \ on, HPO —i+1) :
i=3

Suppose that © € Q, p=o_; \ Qg goo_;41 for i > 3, then (3.2) and
(3.3) along with Lemma 3.4 in [11] yield that for any y € @Q;,

Hp?—i+3

S IDi(e w0) — Dele )P = S Dl w0) — Dila, y)P
k=—o00 k=—o00
TR gy — g |
o —
S 2 Qe @) + o wal
HpP —i+3
S ouwp 1
S DR o) A
_ R |

~ |z — ol [I(Qmo,Hf%O—i+3)]2.
Notice that for any k € Z and x € supp (u),
(3.4) §(Qu, ks Qu,k-1) S 1.

As a consequence, another application of (2.3) together with R C Q. HEO
shows that

Hp?—3 o0 z
Dy(z,y) — Dy(z, z0)|? a; 2d du(x
py) /Q\Q l/@ (k_zoo| () — Dyl xo)| >| (v)| u(y)] e
HZ0_3 3
\ LR e ’
& z‘:z_:oo /Qmo,i\Qmo,H—l [/C?7 |z — 20" [(Qa, i+3)]? du(y)‘| i)

H?0 -3
2 (R _
S Z m|aj|L&(u)[N(Qj)]l/Q(s(on,i—l-h Quo.i) S [1(2Q5)) 2.

1=—00

On the other hand, since Q,, pzo 5 C 4R (see [11, p. 69)]), it follows, from
(2.3), (3.1) and the fact that for any = ¢ 4R and y € R, |z —zo| ~ |z —y|,
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that
/Q o [ / (_ZOO Dy, y) - Dk(x,xon?) Iaj(y)IZdu(y)] dju(z)
0, )2 :
< —77 d
~ /QmoyHEO_Q\AlR [‘/CQJ |fE —1’0|2n M( )‘| M(x)
HZ0+1
SO Mgl olr(@)Y25(Quy, i41, Qup.i) S [1(2Q5)] 2.
z’:ngo )

Therefore, I3 < 2321 |A;], which completes the proof of Theorem 3.1. O

To establish the boundedness of the homogeneous Littlewood-Paley
g-function ¢(f) from RBMO (u) to RBLO (), we need the following
estimate.

Lemma 3.1. There exists a constant C > 0 such that for any two cubes
Q C R and f € RBMO (u),

|f(y) —mg(f) )
/R Ty — zo] + LQ)” du(y) < C1+6(Q, R)| fllrBMmo (1)-

Proof. Without loss of generality, we may assume that || f|lgemo () = 1-
For any QQ C R, set

No.r 9+Q
Kor=1+ Z (ng)])

where N, g is the smallest integer k such that [ (2°Q) > I(R) (see [10]).
It is trivial to check that

(3.5) KQ7RN 1+5(Q,R).

Notice that from (1.1) and Definition 2.5, it follows that

() = mg(F)]
/ Ty = sal = ] ) / ) - dp(y) S 1.

Therefore, to show Lemma 3.1, it suffices to verify that

(3.5) [0y < v ot mi
me |y -0l
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By (1.1) and Lemma 2.1 in [10] together with Definition 2.5,

/ Mdu(y)
R\Q Y — 2q]
Ng, r .
. kZ:O W,/Qk+lQ\2kQ ‘f(y) _m@(f)‘ du(y)
Ng, r
1
é k=0 WAk+lQ\2kQ ’f(y) _m2k+1Q(f)‘ d/},(y)
2k+1Q
+ Z 2k+1Q) mzm(f)—m@(f)’
NQ,R+1 (25Q) No.nt1 o
. kz L ((2’%2 * Z 0 ng [1+6(Q,2°Q)]
=1

S KQ,R+KQ,R[1+6(Qa )] ~ [1+5(Q7 )]Qa

which completes the proof of Lemma 3.1. d

The following conclusion is a slight variant of Lemma 9.3 in [10], which
can be proved by a slight modification of the proof of Lemma 9.3 in [10].
We omit the details.

Lemma 3.2. There exists some constant Py (big enough) depending
on Co and n such that if x € R is some fized point and {fo}oss is
a collection of numbers such that fo— fr < [1+(Q, R)|Cy for all doubling
cubes Q C R with x € Q such that 14 6(Q, R) < Py, then

fo—frR<C[1+6Q,R)|Cy for all doubling cubes Q C R with z € Q,

where C' depends on Cy, n and Py.

Theorem 3.2. For any f € RBMO (u), ¢(f) is either infinite
everywhere or finite almost everywhere, and in the latter case,

(3.7) 1g(IrBLo () < Cllf Mo (1)

where C' > 0 is independent of f.

Proof. We first claim that for any f € RBMO (i), if there exists a point
xo € R? such that §(f)(x¢) < 0o, then for any doubling cube Q > zo,

1 . 2 2 2
58— /Q {[g(f)(x)] ) }dmmsnfnRBMow-

yeR
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Without loss of generality, we may assume that || f||remo (u) = 1. For any
x € supp (1) N Q, set

, o ) HE+3
G N@] = Y D@ and g (N@)] = Y D)
k=H%+4 k=—oc0

Notice that @, ; C %Q when j > H§ + 2 (see [11, p.69]). This fact
together with supp (Dy(x,-)) C Qu, k-2 and [z Di(2,y) du(y) = 0 implies
that when k > Hcs + 4,

Def(@) = Di | (£ = myp()) Xs0] (@)

It follows from the doubling property of @ along with Remark 2.3, the
L?(p)-boundedness of §(f) (see [11, Theorem 6.1]) and Corollary 3.5 in
[10] that

1

69 5

"8 (5 (@) dulz)
LI ]

< f?) (7 =m0 xse] @} dute)
S 1) Jy ol - gl ) 51

Now observe that for any x,y € @,

2

a5 (@] = OO < [ (N@)] = [ (D]

Thus taking (3.9) into account, to show (3.8), we only need to verify that
for p-a.e. y€Q,

2

2
(3.10) (91 (@) = [a (Dw)] 51
We assert that for each k € Z and z € R?,
(3.11) [Dif(2) S 1.

Indeed, (2.1) implies that

1
Q= k) + UQy. k) + 1z —yll™

(3.12) [Di(2,9)] <
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Then since supp (Dy(z,7)) C Q. k—2, by the vanishing moment of Dy,
Lemma 3.1 and (3.12), we have

[Drf(2)] < /Q [Di(2,9)[1f(y) —ma. () du(y)

lf(y) —mq..,.(f)l
S /Qz,kZ Hz_y|+l(Qz,k)]n d/’L(Z)S 1.

Thus, (3.11) holds. From this assertion we see that for =, y € @,

[, (N@)]  [o (D))

H5-3 HE+3
< > IDef(x) = DefW)l|Def () + Def W)+ Y |Def(x)]?
k=—o00 k=H%—2
HE—3
S Y IDkf(x) — Drf(y)| + 1.
k=—o

By the symmetry of Dy and (3.2), we see that for any fixed integer ¢ > 3
and k > Hg —i+4+4,and all z € Qx,H%—i\Qx,Hé—i-{-l;

Dy(x, z) — Di(y, z) = 0.

Therefore, from the vanishing moment of Dy, we see that

HE—3
> IDef(x) = Dif ()l
k=—0c0
HZ‘273
< /Rd (k;w | D (, 2) —Dk(y,Z)|> ’f(z) ~MQ, ()| du(z)
o HE—i+3
= Z/ Z |Di(2, 2) — Di(y, 2)|

i=3 Qm,Hg)—i\Qm,Hé—«H—l k=—o00

X |£(2) = ma, ey ()] du(2)

HE -3

’ /@H ( 2 'D’“(x’z)_D’“(y’Z)O [£(2) = ma,. e ()] du2)

k=—o0

= Ji+Jo.
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Since z,y € Q implies that z,y € Q,x for k < HE, by (2.2) and
Lemma 3.4 in [11], we further obtain

HG—i+3 HE—i+3 | |
_ < r—y
k:z_:oo |Di(, 2) — Di(y,2)| < k;w 1Qu ) Qu ) |z — 2"
< Z(Q) 1

UQu, mg—i43) |z — 2"
Moreover, by (3.6), we have

|f(Z) - QO,Ha_i+1(f)|
/ du(2)
Qm.Héﬂ'\Qm,H

& —it1

2
< [1 +5(QI,H54+1,Q$,H571‘)} SL

Therefore, these facts, together with Definition 2.5, (3.4) and [11, Lemma
3.4] imply that

J1 <

@ 17() = MGy s (1)
— UQu, 5 —i+3) Qu, - \Q 13— i1 |z — 2|

Q) 1F(2) = Mm@, 1y ir (£
UQu. 117 —i13) d

i=3 )

N

IN

_|_

— Q) MQu 1y i1 (F) = 1, sy (F)]
Z l( ~/QTHT —i\Qqz, HT —it1 |J3 - Z|n

i—3 Qm,Hé—i-{-B) 3 g
Q) SU(°)
2 i@ ) T 2@y 1)

0Q)
Z(Qa:, H87i+3)

A

[1+0(Qu, g s Qu, 1 —it1)]?

-
Il

(1+d)? <1,

A
NE

(2

Il
w

Now we turn our attention to Jo. The estimate (3.12), Lemma 3.4 in
[11], (1.1), Definition 2.5 and (3.4) yield

HE—3

L3 Dkl —ma g ()] i)

@ HE ~2 k=—00
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T 1(2) = ma. (1)
/, 2 G )

@ HE =2 fp=

1£(2) = ma. e (F)
/ : 8" u(z)
Q

s [l Qm,Hé—Q)]n
1)~ e, g 20
o UQa g —2)]"

d/’L(Z) + mqQ,, Hé—Q(f) —mq,, "y (f)

On the other hand, notice that by Lemma 3.4 in [11], for z € Q,, HE -3,
HE—3
i 1 - 1
[y — 21+ 1Qy. )] ™ [U(Qy, g —3)]™

k=—o0

Since y € Q C QLHE}’ we have that QI,HZ?,Q - Qy,Hé,g as a result of
Lemma 4.2 (c¢) in [11]. Then it follows from these observations and (3.12)
together with Definition 2.5 that

HE -3

L3 Il - mas g ()] due)

x, Hé*Z k=—o0

" £(2) - ma. e (1)
S Lo X T TG

@, H%*Z k=—o0

/(2) =maq, 4 (/)]
S/QL wr o 1(Qy,Hg—3)]" ()

e
(

[ £(2) = ma, s (£)]

0y s

1(Qq, 1z, —2)]" du(z) S 1.

Combining these estimates above implies

H8—3

nef { )» [|Dk<x,z>|+|Dk<y,z>u}]f(z)—m%%(f) dn(z) S 1.

k=—o0

Thus (3.10) holds.
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To finish the proof of Theorem 3.2, by Lemma 3.2, it suffices to show that
for any doubling cubes @ C R,

(3.13) 905 — [9(5)?] S 0L+ 5(Q.R).

For any = € supp (1) N Q, we first consider the case that H > Hg + 10
by writing

605 — 500

HE+3
s j1a f(x i T L 212 dulz
< @ L) d+ oo | 2 Pl

11 . , )
*mm/q)/R ([g215 £ @) = 32235 @)])*) dialy) dp().

By (3.10) with @ replaced by R, we see that

w0 @F = [ 0]°) dnw) dnte) 1

Therefore by (3.9) and (3.11), the estimate (3.13) is reduced to proving that

HE—1

1 2 4
Bl /Q S D@ dule) S [1+6(Q, )]

k=HZ+4
By splitting
Qm, k—2 — (Qac k—2 \ Qx,k—l) U (Qac k—1 \ Qx,k) U Qac ks

it follows from the vanishing moment of Dy, supp (Dg(z, -)) C Qqz, k-2 and
(3.12) that

e ot 1£(2) = ma, e, (F)]

D *Q d

k—;ﬁ:+4| AL k=H+4 /Qw,kz [z — 2| + U(Quz,x)]" uz)

|f(z) =mq, e, (f)]
d
: 2/Q:c,H3’%+2\Qm,Hé—1 |{E - Z|n M(Z)
ot £ (2) =M@, s ()]
- Z / [z — 2| + l(Qi,k)]” dplz) = Lo+ La.

k=H% 447 Qo b
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By Q C Qm,Hg—h Qz, 1y +2 C 2R and Lemma 3.1 in [11],

(3.15) § (Qm,Hg_l, Qm,H§+2) <1+46(Q,R).

Thus, by (3.15), (3.6) and Definition 2.5, we have

2
L1 S (146 (Quoig1,Qumgrz)| S [1+0(Q R,
To estimate Lo, by Lemma 3.4 in [11], we first see that for any integer
ke [Hf+4,HE —1],

there exists a unique integer jr € [07NQm,H(3—17Qm,Hg+4] such that

2ijm,Ha—1 C Qqur C 2jk+1Qm,H5_1, and for different k, ji is different.
It then follows from Definition 2.5, the decreasing property of Qs 1, (3.15)
and (3.5) that

i) —mq.,(f)
Ly < @Ol oy
2 k ;+4‘/ Qac k)]
H5—-1
S Qac k B
+k ;4-4 Qw k)" Qlk(f) QO,Hg)—l(f)
S Hil (Q + Hil Q@k 1+5(Q R)]
k=Hp+4 [Z(QI ) k=H%+4 Qw, )]
Hy—1 (2jk+1Qx7Hé_1)
: w[1+6(Q,R)]

k=HZ% +4 [l (2ijm,Hafl):|
S Koar[1+6(Q.R]IS[1+6(Q,R).

Consequently, (3.14) follows by combining the estimates for L; and Ls.
If Hi < HE < Hi; + 9, then by the estimates (3.9) through (3.11), we
also see that (3.13) holds, which completes the proof of Theorem 3.2. O

From Theorem 3.2, we can easily deduce the following result.

Corollary 3.1. For any f € RBMO (u), g(f) is either infinite
everywhere or finite almost everywhere, and in the latter case,

l9(H)llrBro () < CllfllrRBMO (1)
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where C' > 0 is independent of f.

Proof. First, with the aid of (3.8) and the inequality that for any a, b > 0,

(3.16) a—b< |a—p2"?

it is easy to see that if essiélf 9(f)(y) < oo,
ye

@/@ [Q(f)(x) - egseicr?lf g(f)(y)] du(z) < |1 flrBMO (1)-

Moreover, in the argument of (3.13), we see that for any doubling cubes
QCR,zeQ,and y€e R,

HE+3

<[oes@] + oW + X 1D

k=H+4

+ ‘ {Q'H;f(x)} = (g3 f(y)]

o] - 5w

2

From this fact with (3.9) through (3.11), (3.14) and (3.16), we obtain that
for any doubling cubes @ C R,

malg(H)] = mrlg(f)] < [1+6(Q, R)P|| fllremo (-

An application of Lemma 3.2 leads to the conclusion of Corollary 3.1. [
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