Endpoint estimates for homogeneous Littlewood-Paley *g* **-functions with non-doubling measures**

Dachun Yang and Dongyong Yang

(*Communicated by Hans Triebel*)

2000 Mathematics Subject Classification. Primary: 42B25; Secondary: 42B30, 47A30, 43A99.

Keywords and phrases. Non-doubling measure, Littlewood-Paley *g* -function, RBMO (μ) , RBLO (μ) , $H^1(\mu)$.

Abstract. Let μ be a nonnegative Radon measure on \mathbb{R}^d which satisfies the growth condition that there exist constants $C_0 > 0$ and $n \in (0,d]$ such that for all $x \in \mathbb{R}^d$ and $r > 0$, $\mu(B(x, r)) \leq C_0 r^n$, where $B(x, r)$ is the open ball centered at *x* and having radius *r*. In this paper, when \mathbb{R}^d is not an initial cube which implies $\mu(\mathbb{R}^d) = \infty$, the authors prove that the homogeneous Littlewood-Paley g-function of Tolsa is bounded from the Hardy space $H^1(\mu)$ to $L^1(\mu)$, and furthermore, that if $f \in RBMO(\mu)$, then $[\dot{g}(f)]^2$ is either infinite everywhere or finite almost everywhere, and in the latter case, $[\dot{g}(f)]^2$ belongs to RBLO (μ) with norm no more than $C||f||^2_{\text{RBMO }(\mu)}$, where $C > 0$ is independent of f .

1. Introduction

Recall that a *non-doubling measure* μ on \mathbb{R}^d means that μ is a nonnegative Radon measure which only satisfies the following growth condition, namely, there exist constants $C_0 > 0$ and $n \in (0, d]$ such that for all $x \in \mathbb{R}^d$ and $r > 0$,

(1.1)
$$
\mu\Big(B(x,r)\Big) \leq C_0 r^n,
$$

where $B(x, r)$ is the open ball centered at x and having radius r. Such a measure μ is not necessary to be doubling, which is a key assumption in the classical theory of harmonic analysis. In recent years, it was shown that many results on the Calderón-Zygmund theory remain valid for nondoubling measures; see, for example, $[6, 7, 8, 9, 10, 11, 12, 5, 3]$. One of the main motivations for extending the classical theory to the non-doubling context was the solution of several questions related to analytic capacity, like Vitushkin's conjecture or Painlevé's problem; see $[13, 14, 16]$ or survey papers [15, 17, 18] for more details.

In particular, Tolsa [11] developed a Littlewood-Paley theory with nondoubling measures for functions in $L^p(\mu)$ when $p \in (1,\infty)$ and used this Littlewood-Paley decomposition to establish some $T(1)$ theorems. The main purpose of this paper is to investigate the behaviors of the homogeneous Littlewood-Paley q -functions of Tolsa in [11] at the extremal cases, namely, in the cases when $p = 1$ or $p = \infty$. To be precise, in this paper, when \mathbb{R}^d *is not an initial cube which implies* $\mu(\mathbb{R}^d) = \infty$ (see [11]), we prove that the homogeneous Littlewood-Paley g -function $\dot{g}(f)$ of Tolsa is bounded from the Hardy space $H^1(\mu)$ to $L^1(\mu)$, and furthermore, we prove that if $f \in RBMO(\mu)$, then $[g(f)]^2$ is either infinite everywhere or finite almost everywhere, and in the latter case, $[\dot{g}(f)]^2$ is bounded from RBMO (μ) to RBLO (μ) , where RBMO (μ) was introduced by Tolsa in [10] and RBLO (μ) was introduced by Jiang in [3]. Notice that $L^{\infty}(\mu) \subset \text{RBMO}(\mu)$. The last above-mentioned result generalizes the corresponding result of Leckband [4] in replacing $L^{\infty}(\mathbb{R}^d)$ by BMO (\mathbb{R}^d), even when μ is the d-dimensional Lebesgue measure and $\dot{g}(f)$ is the classical homogeneous Littlewood-Paley g-function. When $\mu(\mathbb{R}^d) < \infty$, then \mathbb{R}^d is an initial cube (see [11]) and the homogeneous Littlewood-Paley q -function degenerates into the inhomogeneous Littlewood-Paley q -function $g(f)$. We also obtain similar results for this inhomogeneous Littlewood-Paley g-function, by first establishing a new theory of local atomic Hardy space $h_{\text{atb}}^{1,\infty}(\mu)$, rbmo (μ) and rblo (μ) in the sense of Goldberg [1]. To limit the length of this paper, we will present these results in [2]. An interesting open problem is if $\dot{g}(f)$ and $g(f)$ can characterize the Hardy space $H^1(\mu)$ and $h_{\text{atb}}^{1,\infty}(\mu)$, respectively.

The organization of this paper is as follows. In Section 2, we recall some necessary definitions and notation, including the definitions of atomic Hardy spaces, RBMO (μ) , RBLO (μ) , approximations to the identity and the homogeneous Littlewood-Paley g-function $\dot{g}(f)$. In Section 3, we establish the boundedness of the homogeneous Littlewood-Paley g -function $\dot{g}(f)$ from $H^1(\mu)$ to $L^1(\mu)$, and prove that if f belongs to RBMO(μ), then $[\dot{g}(f)]^2$ is either infinite everywhere or finite almost everywhere, and in the latter case, $[\dot{g}(f)]^2$ belongs to RBLO (μ) with norm no more than $C||f||_{\text{RBMO}(\mu)}^2$, where $C>0$ is independent of f. As a corollary, we also obtain the boundedness of the homogeneous Littlewood-Paley g -function $\dot{g}(f)$ from RBMO (μ) to RBLO (μ) .

Throughout the paper, we always denote by C a *positive constant* which is independent of the main parameters, but it may vary from line to line. *Constant with subscript* such as C_1 , does not change in different occurrences. The *symbol* $Y \leq Z$ means that there exists a constant $C > 0$ such that $Y \le CZ$. *The symbol* $A \sim B$ means that $A \lesssim B \lesssim A$. Moreover, for any $D \subset \mathbb{R}^d$, we denote by χ_D the *characteristic function of* D .

2. Preliminaries

In this section, we recall some necessary notions and notation. By a cube $Q \subset \mathbb{R}^d$, we mean a closed cube whose sides are parallel to the axes and centered at some point of supp (μ) , and we denote its side length by $l(Q)$ and its center by x_Q . If $\mu(\mathbb{R}^d) < \infty$, we also regard \mathbb{R}^d as a cube. Let α , β be two positive constants, $\alpha \in (1,\infty)$ and $\beta \in (\alpha^n,\infty)$. A cube Q is said to be an (α, β) *-doubling cube* if it satisfies $\mu(\alpha Q) \leq \beta \mu(Q)$, where and in what follows, given $\lambda > 0$ and any cube Q , λQ denotes the *cube concentric with* Q and having side length $\lambda l(Q)$. It was pointed out by Tolsa (see [10, pp. 95-96] or [11, Remark 3.1]) that if $\beta > \alpha^n$, then for any $x \in \text{supp}(\mu)$ and any $R > 0$, there exists some (α, β) -doubling cube Q centered at x with $l(Q) \geq R$, and that if $\beta > \alpha^d$, then for μ -almost everywhere $x \in \mathbb{R}^d$, there exists a sequence of (α, β) -doubling cubes $\{Q_k\}_{k\in\mathbb{N}}$ centered at x with $l(Q_k) \to 0$ as $k \to \infty$. In what follows, by a *doubling cube*, we always mean a $(2, 2^{d+1})$ -doubling cube, and for any cube Q, we denote by \ddot{Q} the *smallest doubling cube* which has the form 2^kQ with $k \in \mathbb{N} \cup \{0\}$.

Given two cubes $Q, R \subset \mathbb{R}^d$, let x_Q be the center of Q , and Q_R be the smallest cube concentric with Q containing Q and R . The following coefficients were first introduced by Tolsa in [10]; see also [11, 12].

Definition 2.1. Given two cubes $Q, R \subset \mathbb{R}^d$, we define

$$
\delta(Q,R) = \max \left\{ \int_{Q_R \setminus Q} \frac{1}{|x - x_Q|^n} d\mu(x), \int_{R_Q \setminus R} \frac{1}{|x - x_R|^n} d\mu(x) \right\}.
$$

We may treat points $x \in \mathbb{R}^d$ as if they were cubes (with side length $l(x) = 0$). So, for $x, y \in \mathbb{R}^d$ and some cube Q, the notations $\delta(x, Q)$ and $\delta(x, y)$ make sense; see [11, 12] for some useful properties of $\delta(\cdot, \cdot)$. We now recall the notion of cubes of generations in $[11, 12]$; see $[11, 12]$ for more details.

Definition 2.2. We say that $x \in \mathbb{R}^d$ is a *stopping point* (or *stopping cube*) if $\delta(x, Q) < \infty$ for some cube $Q \ni x$ with $0 < l(Q) < \infty$. We say that \mathbb{R}^d is an *initial cube* if $\delta(Q, \mathbb{R}^d) < \infty$ for some cube Q with $0 < l(Q) < \infty$. The cubes Q such that $0 < l(Q) < \infty$ are called *transit cubes*.

Remark 2.1. In [11, p. 67], it was pointed out that if $\delta(x, Q) < \infty$ for some transit cube Q containing x, then $\delta(x, Q') < \infty$ for any other transit cube Q' containing x. Also, if $\delta(Q, \mathbb{R}^d) < \infty$ for some transit cube Q , then $\delta(Q', \mathbb{R}^d) < \infty$ for any transit cube Q' .

Throughout this paper, we *always assume that* \mathbb{R}^d *is not an initial cube.*

Let A be some big positive constant. In particular, we assume that A is much bigger than the constants ϵ_0 , ϵ_1 and γ_0 , which appear, respectively, in Lemma 3.1, Lemma 3.2 and Lemma 3.3 of [11]. Moreover, the constants A, ϵ_0 , ϵ_1 and γ_0 depend only on C_0 , n and d. In what follows, for $\epsilon > 0$ and $a, b \in \mathbb{R}$, the *notation* $a = b \pm \epsilon$ does not mean any precise equality but the estimate $|a - b| \leq \epsilon$.

Definition 2.3. Assume that \mathbb{R}^d is not an initial cube. We fix some doubling cube $R_0 \subset \mathbb{R}^d$. This will be our *'reference' cube*. For each $j \in N$, let R_{-j} be some doubling cube concentric with R_0 , containing R_0 , and such that $\delta(R_0, R_{-j}) = jA \pm \epsilon_1$ (which exists because of Lemma 3.3 of [11]). If Q is a transit cube, we say that Q is a *cube of generation* $k \in \mathbb{Z}$ if it is a doubling cube, and for some cube R_{-j} containing Q we have $\delta(Q, R_{-j})=(j + k)A \pm \epsilon_1$. If $Q \equiv \{x\}$ is a stopping cube, we say that Q is a *cube of generation* $k \in \mathbb{Z}$ if for some cube R_{-j} containing x we have $\delta(Q, R_{-j}) \leq (j+k)A + \epsilon_1$.

Using Lemma 3.2 in [11], it is easy to verify that for any $x \in \text{supp}(\mu)$ and $k \in \mathbb{Z}$, there exists a doubling cube of generation k; see [11, p. 68]. Moreover, the definition of cubes of generations is proved in $[11, p. 68]$ to be independent of the chosen reference R_{-j} in the sense modulo some small errors. Throughout this paper, for any $x \in \text{supp}(\mu)$ and $k \in \mathbb{Z}$, we denote by Q*x, k* a *fixed doubling cube centered at* x *of generation* k. On cubes of generations $\{Q_{x,k}\}_{k\in\mathbb{Z}}$, we have the following simple observation.

Proposition 2.1. *Suppose that* \mathbb{R}^d *is not an initial cube. Then for any* $x \in \text{supp}(\mu)$, $l(Q_{x,k}) \to \infty$ *as* $k \to -\infty$ *.*

Proof. For any given $x \in \text{supp}(\mu)$, we first assume that $\{x\}$ is not a stopping cube. Then for any $N \in \mathbb{N}$, $Q_{x,0}$ and $Q_{x,-N}$ are transit cubes (see [11, p. 68]) satisfying that $Q_{x,0} \subset Q_{x,-N}$ and $\delta(Q_{x,0}, Q_{x,-N}) = NA \pm 6\epsilon_1$. In fact, by Definition 2.3, there exist $j_1, j_2 \in \mathbb{N}$ such that $Q_{x,0} \subset R_{-j_1}$ with $\delta(Q_{x,0}, R_{-j_1}) = j_1 A \pm \epsilon_1$ and $Q_{x,-N} \subset R_{-j_2}$ with $\delta(Q_{x,-N}, R_{-j_2}) =$ $(j_2 - N)A \pm \epsilon_1$. Choosing $j \ge \max(j_1, j_2)$ and using Lemma 3.1 (d) in [11] imply that $\delta(Q_{x,0}, R_{-j}) = jA \pm 3\epsilon_1$ and $\delta(Q_{x,-N}, R_{-j}) = (j - N)A \pm 3\epsilon_1$. By the fact that $Q_{x,0} \subset Q_{x,-N} \subset R_{-j}$, it follows from Lemma 3.1 (d) in [11] again that

$$
\delta(Q_{x,0}, Q_{x,-N}) = \delta(Q_{x,0}, R_{-j}) - \delta(Q_{x,-N}, R_{-j}) = NA \pm 6\epsilon_1.
$$

Since $\{l(Q_{x,k})\}_{k\in\mathbb{Z}}$ is decreasing, if the conclusion of Proposition 2.1 is not true, then there exists $M > 0$ such that for any $N \in \mathbb{N}$, $l(Q_{x,-N}) \leq$ $Ml(Q_{x,0})$. Lemma 3.1 (c) in [11] shows that there exists a constant C_d depending only on d such that

$$
\delta(Q_{x,0}, Q_{x,-N}) \leq C_d \Big(1 + \log \frac{l(Q_{x,-N})}{l(Q_{x,0})}\Big) \leq C_d (1 + \log M).
$$

On the other hand, since $\epsilon_1 \ll A$, then $NA \pm 6\epsilon_1 > NA/2$. Therefore, if we take $N > 2C_d(1 + \log M)/A$, we then have a contradiction that

$$
C_d(1 + \log M) < \frac{1}{2}NA < NA \pm 6\epsilon_1 = \delta(Q_{x,0}, Q_{x,-N}) \le C_d(1 + \log M),
$$

which implies that the conclusion of Proposition 2.1 is true in the case that ${x}$ is not a stopping cube.

If $\{x\}$ is a stopping cube, recalling that there exists some $k_x \in \mathbb{Z}$ such that all the cubes of generation $k < k_x$ are transit cubes (see [11, p. 68]), we obtain that for $N \in \mathbb{N}$ large enough, $Q_{x, k_x-1} \subset Q_{x, -N}$ and $\delta(Q_{x, k_x-1}, Q_{x, -N}) = (N + k_x - 1)A \pm 6\epsilon_1$ via an argument as above. Furthermore, if there exists $M > 0$ such that for any $N \in \mathbb{N}$, $l(Q_{x,-N}) \leq$ $Ml(Q_{x, k_x-1})$, then by taking $N > 2 \max(k_x-1, C_d(1+\log M)/A)$ together with an argument as above, we also have a contradiction, which implies that $l(Q_{x,k}) \to \infty$ as $k \to -\infty$. This finishes the proof of Proposition 2.1. □

In [11], Tolsa constructed a class of *approximations to the identity* ${S_k}_{k=-\infty}^{\infty}$ related to ${Q_{x,k}}_{x \in \mathbb{R}^d, k \in \mathbb{Z}}$, which are integral operators given by kernels $S_k(x, y)$ on $\mathbb{R}^d \times \mathbb{R}^d$ satisfying the following properties:

(A-1) $S_k(x, y) = S_k(y, x)$ for all $x, y \in \mathbb{R}^d$;

(A-2) For any $k \in \mathbb{Z}$ and any $x \in \text{supp}(\mu)$, if $Q_{x,k}$ is a transit cube, then

$$
\int_{\mathbb{R}^d} S_k(x, y) d\mu(y) = 1;
$$

- (A-3) If $Q_{x,k}$ is a transit cube, then supp $(S_k(x, \cdot)) \subset Q_{x,k-1}$;
- $(A-4)$ If $Q_{x,k}$ and $Q_{y,k}$ are transit cubes, then there exists a constant $C > 0$ such that

(2.1)
$$
0 \leq S_k(x, y) \leq \frac{C}{[l(Q_{x,k}) + l(Q_{y,k}) + |x - y|]^n};
$$

 $(A-5)$ If $Q_{x,k}$, $Q_{x',k}$ and $Q_{y,k}$ are transit cubes, and $x, x' \in Q_{x_0,k}$ for some $x_0 \in \text{supp}(\mu)$, then there exists a constant $C > 0$ such that

$$
(2.2) \quad |S_k(x,y)-S_k(x',y)| \leq C \frac{|x-x'|}{l(Q_{x_0,k})} \frac{1}{[l(Q_{x,k})+l(Q_{y,k})+|x-y|]^n}.
$$

Moreover, Tolsa [11] pointed out that Properties (A-1) through (A-5) also hold if any of $Q_{x,k}$, $Q_{x',k}$ and $Q_{y,k}$ is a stopping cube. In what follows, without loss of generality, for any $x \in \text{supp}(\mu)$, we *always assume that* $Q_{x, k}$ *is not a stopping cube*, since the proofs for stopping cubes are similar.

For any $k \in \mathbb{Z}$, $f \in L^1_{loc}(\mu)$ and $x \in \text{supp}(\mu)$, define

$$
S_k f(x) = \int_{\mathbb{R}^d} S_k(x, y) f(y) d\mu(y).
$$

Let $D_k = S_k - S_{k-1}$ for $k \in \mathbb{Z}$, and we also use D_k to denote the corresponding *integral operator with kernel* D_k . The *homogeneous Littlewood-Paley g-function* $\dot{g}(f)$ is then defined by

$$
\dot{g}(f)(x) = \left[\sum_{k=-\infty}^{\infty} |D_k f(x)|^2\right]^{1/2}.
$$

We next recall the notions of the atomic Hardy space $H_{atb}^{1,p}(\mu)$ for $p \in (1,\infty]$ and the BMO-type space RBMO (μ) in [10] and RBLO (μ) in [3].

Definition 2.4. Let $\eta > 1$ and $1 < p \leq \infty$. A function $b \in L^1_{loc}(\mu)$ is called a p*-atomic block* if

- (1) there exists some cube R such that supp $(b) \subset R$,
- (2) $\int_{\mathbb{R}^d} b(x) d\mu(x) = 0,$

(3) for $j = 1, 2$, there exist functions a_j supported on cubes $Q_j \subset R$ and numbers $\lambda_j \in \mathbb{R}$ such that $b = \lambda_1 a_1 + \lambda_2 a_2$, and

(2.3)
$$
||a_j||_{L^p(\mu)} \leq [\mu(\eta Q_j)]^{1/p-1} [1 + \delta(Q_j, R)]^{-1}.
$$

Then we define $|b|_{H^{1,p}_{\text{atb}}(\mu)} = |\lambda_1| + |\lambda_2|$. We say that $f \in H^{1,p}_{\text{atb}}(\mu)$ if there exist p-atomic blocks ${b_i}_{i \in \mathbb{N}}$ such that $f = \sum_{i=1}^{\infty} b_i$ with $\sum_{i=1}^{\infty} |b_i|_{H^{1,p}_{\text{atb}}(\mu)} < \infty$. The $H^{1,p}_{\text{atb}}(\mu)$ *norm of* f is defined by $||f||_{H^{1,p}_{\text{atb}}(\mu)} =$ $\inf\{\sum_{i=1}^{\infty} |b_i|_{H^{1,p}_{\text{atb}}(\mu)}\}$, where the infimum is taken over all the possible decompositions of f in p -atomic blocks as above.

Remark 2.2. It was proved by Tolsa [10] that the definition of $H_{\text{atb}}^{1,p}(\mu)$ is independent of the chosen constant $\eta > 1$, and for any $1 < p \leq \infty$, all the atomic Hardy spaces $H_{\text{atb}}^{1,p}(\mu)$ coincide with equivalent norms. Moreover, a maximal function characterization of $H^{1,p}_{\text{atb}}(\mu)$ was also established in [12]. Thus, in the rest of this paper, we denote the atomic Hardy space $H^{1,\,p}_{\text{atb}}(\mu)$ simply by $H^1(\mu)$, and when we use the atomic characterization of $H^1(\mu)$, we always assume $\eta = 2$ and $p = \infty$ in Definition 2.4.

Definition 2.5. Let $\eta \in (1,\infty)$. A function $f \in L^1_{loc}(\mu)$ is said to be in the *space* RBMO (μ) if there exists some constant $C_1 \geq 0$ such that for any cube Q centered at some point of $\text{supp}(\mu)$,

$$
\frac{1}{\mu(\eta Q)} \int_Q \left| f(y) - m_{\widetilde{Q}}(f) \right| \, d\mu(y) \le C_1,
$$

and for any two doubling cubes $Q \subset R$,

$$
|m_Q(f) - m_R(f)| \le C_1[1 + \delta(Q, R)],
$$

where $m_Q(f)$ denotes the *mean of* f *over cube* Q, namely, $m_Q(f)$ = $\frac{1}{\mu(Q)} \int_Q f(y) d\mu(y)$. Moreover, we define the RBMO (μ) *norm of* f by the minimal constant C_1 as above and denote it by $||f||_{\text{RBMO}(\mu)}$.

Remark 2.3. It was proved by Tolsa [10] that the definition of RBMO (μ) is independent of the choices of η . As a result, throughout this paper, we always assume $\eta = 2$ in Definition 2.5.

The following space RBLO (μ) was introduced in [3]. It is obvious that

$$
L^{\infty}(\mu) \subset
$$
 RBLO $(\mu) \subset$ RBMO (μ) .

Definition 2.6. We say $f \in L^1_{loc}(\mu)$ belongs to the *space* RBLO (μ) if there exists some constant $C_2 \geq 0$ such that for any doubling cube Q ,

$$
m_Q(f) - \underset{x \in Q}{\text{essinf}} f(x) \le C_2,
$$

and for any two doubling cubes $Q \subset R$,

$$
m_Q(f) - m_R(f) \le C_2[1 + \delta(Q, R)].
$$

The minimal constant C_2 as above is defined to be the *norm of* f in the *space* RBLO (μ) and denoted by $||f||_{\text{RBLO}(\mu)}$.

3. Main results and their proofs

We begin with the boundedness of the homogeneous Littlewood-Paley g function $\dot{g}(f)$ from $H^1(\mu)$ to $L^1(\mu)$. Recall that \mathbb{R}^d is assumed not to be an initial cube.

Theorem 3.1. *There exists a constant* $C > 0$ *such that for all* $f \in$ $H^{1}(\mu)$,

$$
\|\dot{g}(f)\|_{L^1(\mu)} \le C \|f\|_{H^1(\mu)}.
$$

Proof. Let b be any ∞ -atomic block as in Definition 2.4. To be precise, assume that $b = \lambda_1 a_1 + \lambda_2 a_2$. By the Fatou lemma, to prove Theorem 3.1, it is enough to show that $\dot{g}(b)$ is in $L^1(\mu)$ and

$$
\|\dot{g}(b)\|_{L^1(\mu)} \lesssim |\lambda_1| + |\lambda_2|.
$$

Assume that $\text{supp}(b) \subset R$ and $\text{supp}(a_j) \subset Q_j$ for $j = 1, 2$ as in Definition 2.4. Since \dot{g} is sublinear, we write

$$
\int_{\mathbb{R}^d} \dot{g}(b)(x) d\mu(x) \n= \int_{4R} \dot{g}(b)(x) d\mu(x) + \int_{\mathbb{R}^d \backslash 4R} \dot{g}(b)(x) d\mu(x) \n\leq \sum_{j=1}^2 |\lambda_j| \int_{2Q_j} \dot{g}(a_j)(x) d\mu(x) + \sum_{j=1}^2 |\lambda_j| \int_{4R \backslash 2Q_j} \dot{g}(a_j)(x) d\mu(x) \n+ \int_{\mathbb{R}^d \backslash 4R} \dot{g}(b)(x) d\mu(x) \equiv I_1 + I_2 + I_3.
$$

Recalling that \dot{g} is bounded on $L^2(\mu)$ (see Theorem 6.1 in [11]), by the Hölder inequality and (2.3) , we then see that

$$
I_1 \leq \sum_{j=1}^2 |\lambda_j| \left\{ \int_{2Q_j} [\dot{g}(a_j)(x)]^2 d\mu(x) \right\}^{\frac{1}{2}} [\mu (2Q_j)]^{\frac{1}{2}}
$$

$$
\leq \sum_{j=1}^2 |\lambda_j| \left\{ \int_{Q_j} [a_j(x)]^2 d\mu(x) \right\}^{\frac{1}{2}} [\mu (2Q_j)]^{\frac{1}{2}}
$$

$$
\leq \sum_{j=1}^2 |\lambda_j| \|a_j\|_{L^{\infty}(\mu)} \mu (2Q_j) \leq \sum_{j=1}^2 |\lambda_j|,
$$

which is a desired estimate.

For $j = 1, 2$, let x_j be the center of Q_j . Notice that for $x \notin 2Q_j$ and $y \in Q_j$, $|x - y| \sim |x - x_j|$. From this fact, the Hölder inequality, the fact that for any $x \neq y$,

(3.1)
$$
\left[\sum_{k=-\infty}^{\infty} |D_k(x,y)|^2\right]^{1/2} \lesssim \frac{1}{|x-y|^n}
$$

(see $[11, p. 82]$) and (2.3) , it follows that

$$
\dot{g}(a_j)(x) \leq \left[\int_{Q_j} \sum_{k=-\infty}^{\infty} |D_k(x, y)|^2 |a_j(y)|^2 d\mu(y) \right]^{\frac{1}{2}} [\mu(Q_j)]^{\frac{1}{2}}
$$

$$
\lesssim \left[\int_{Q_j} \frac{|a_j(y)|^2}{|x - y|^{2n}} d\mu(y) \right]^{\frac{1}{2}} [\mu(Q_j)]^{\frac{1}{2}}.
$$

$$
\lesssim \frac{||a_j||_{L^{\infty}(\mu)}}{|x - x_j|^n} \mu(Q_j) \lesssim \frac{1}{|x - x_j|^n} \frac{1}{1 + \delta(Q_j, R)}.
$$

By Lemma 3.1 (d) in [11], $\delta(2Q_j, 4R) \lesssim 1 + \delta(Q_j, R)$, which in turn implies that

$$
\mathrm{I}_2 \lesssim \sum_{j=1}^2 \frac{|\lambda_j|}{1+\delta(Q_j,\,R)} \delta(2Q_j,4R) \lesssim \sum_{j=1}^2 |\lambda_j|.
$$

We now estimate I₃. Let $x_0 \in \text{supp}(\mu) \cap R$. By the vanishing moment of b, the Minkowski inequality and the Hölder inequality, for $x \notin 4R$,

$$
\left\{\sum_{k=-\infty}^{\infty} |D_k b(x)|^2 \right\}^{1/2}
$$
\n
$$
= \left\{\sum_{k=-\infty}^{\infty} \left| \int_R [D_k(x, y) - D_k(x, x_0)] b(y) d\mu(y) \right|^2 \right\}^{1/2}
$$
\n
$$
\leq \left\{\sum_{k=-\infty}^{\infty} \left[\sum_{j=1}^2 |\lambda_j| \int_{Q_j} |D_k(x, y) - D_k(x, x_0)||a_j(y)| d\mu(y) \right]^2 \right\}^{1/2}
$$
\n
$$
\lesssim \sum_{j=1}^2 |\lambda_j| \left[\mu(Q_j) \right]^{1/2} \left\{ \int_{Q_j} \left(\sum_{k=-\infty}^{\infty} |D_k(x, y) - D_k(x, x_0)|^2 \right) |a_j(y)|^2 d\mu(y) \right\}^{1/2}.
$$

Therefore, Theorem 3.1 is reduced to showing that

$$
\int_{\mathbb{R}^d \backslash 4R} \left[\int_{Q_j} \left(\sum_{k=-\infty}^{\infty} |D_k(x, y) - D_k(x, x_0)|^2 \right) |a_j(y)|^2 d\mu(y) \right]^{\frac{1}{2}} d\mu(x)
$$

$$
\lesssim [\mu(2Q_j)]^{-1/2}.
$$

For any transit cube R and any $x \in R \cap \text{supp}(\mu)$, let H_R^x be the *largest integer* k such that $R \subset Q_{x,k}$. By Proposition 2.1, we know that H_Q^x exists and is unique. We now claim that for any $y \in Q_j$, any integer $i \geq 3$ and $k \ge H_R^{x_0} - i + 4,$

(3.2)
$$
\sup p(D_k(\cdot, y) - D_k(\cdot, x_0)) \subset Q_{x_0, H_R^{x_0}-i+1}.
$$

In fact, by (A-3) and the fact that ${Q_{x,k}}_k$ is decreasing, supp $(D_k(\cdot, y)$ − $D_k(\cdot, x_0)$ $\subset Q_{y,k-2} \cup Q_{x_0,k-2} \subset Q_{y,H_R^{x_0}-i+2} \cup Q_{x_0,H_{R}^{x_0}-i+2}$. Since $i \geq 3$, then $y \in Q_j$ and the decreasing property of $\{Q_{x_0,k}\}_{k \in \mathbb{N}}$ imply that $y \in Q_{x_0, H_R^{x_0}-i+2}$, which together with Lemma 4.2 (c) in [11] implies that $Q_{y, H_R^{x_0}-i+2} \subset Q_{x_0, H_R^{x_0}-i+1}$. Thus, (3.2) holds.

Observe that for any $y \in Q_j$, we have $y \in Q_{x_0,k}$ for $k \le H_R^{x_0} - i + 3$. Then the symmetry of S_k and (2.2) imply that

(3.3)
$$
|D_k(x,y)-D_k(x,x_0)| \lesssim \frac{|x_0-y|}{l(Q_{x_0,k})} \frac{1}{[l(Q_{x_0,k})+|x-x_0|]^n}.
$$

On the other hand, since $l(Q_{x_0, H_R^{x_0}}) \leq \frac{1}{10} l(Q_{x_0, H_R^{x_0}-1})$ (see [11, p. 69]), we then have $4R \subset Q_{x_0, H_R^{x_0}-1}$ and

$$
\mathbb{R}^d\setminus (4R) = \left(Q_{x_0,H_R^{x_0}-2}\setminus (4R)\right)\bigcup \bigcup_{i=3}^{\infty} \left(Q_{x_0,H_R^{x_0}-i}\setminus Q_{x_0,H_R^{x_0}-i+1}\right).
$$

Suppose that $x \in Q_{x_0, H_R^{x_0}-i} \setminus Q_{x_0, H_R^{x_0}-i+1}$ for $i \geq 3$, then (3.2) and (3.3) along with Lemma 3.4 in [11] yield that for any $y \in Q_j$,

$$
\sum_{k=-\infty}^{\infty} |D_k(x, x_0) - D_k(x, y)|^2 = \sum_{k=-\infty}^{H_R^{x_0} - i + 3} |D_k(x, x_0) - D_k(x, y)|^2
$$

$$
\lesssim \sum_{k=-\infty}^{H_R^{x_0} - i + 3} \frac{|x_0 - y|^2}{[l(Q_{x_0, k})]^2} \frac{1}{[l(Q_{x_0, k}) + |x - x_0|]^{2n}}
$$

$$
\lesssim \sum_{k=-\infty}^{H_R^{x_0} - i + 3} \frac{[l(R)]^2}{[l(Q_{x_0, k})]^2} \frac{1}{|x - x_0|^{2n}}
$$

$$
\lesssim \frac{[l(R)]^2}{|x - x_0|^{2n}} \frac{1}{[l(Q_{x_0, H_R^{x_0} - i + 3})]^2}.
$$

Notice that for any $k \in \mathbb{Z}$ and $x \in \text{supp}(\mu)$,

$$
(3.4) \qquad \delta(Q_{x,k}, Q_{x,k-1}) \lesssim 1.
$$

As a consequence, another application of (2.3) together with $R \subset Q_{x_0, H_R^{x_0}}$ shows that

$$
\sum_{i=-\infty}^{H_R^{x_0}-3} \int_{Q_{x_0,i}\setminus Q_{x_0,i+1}} \left[\int_{Q_j} \left(\sum_{k=-\infty}^{\infty} |D_k(x,y) - D_k(x,x_0)|^2 \right) |a_j(y)|^2 d\mu(y) \right]^{\frac{1}{2}} d\mu(x)
$$

$$
\lesssim \sum_{i=-\infty}^{H_R^{x_0}-3} \int_{Q_{x_0,i}\setminus Q_{x_0,i+1}} \left[\int_{Q_j} \frac{[l(R)]^2}{|x-x_0|^{2n}} \frac{|a_j(y)|^2}{[l(Q_{x_0,i+3})]^2} d\mu(y) \right]^{\frac{1}{2}} d\mu(x)
$$

$$
\lesssim \sum_{i=-\infty}^{H_R^{x_0}-3} \frac{l(R)}{l(Q_{x_0,i+3})} ||a_j||_{L^{\infty}(\mu)} [\mu(Q_j)]^{1/2} \delta(Q_{x_0,i+1}, Q_{x_0,i}) \lesssim [\mu(2Q_j)]^{-1/2}.
$$

On the other hand, since $Q_{x_0, H_R^{x_0}+2} \subset 4R$ (see [11, p. 69]), it follows, from $(2.3), (3.1)$ and the fact that for any $x \notin 4R$ and $y \in R$, $|x-x_0| \sim |x-y|$, that

$$
\int_{Q_{x_0, H_R^{x_0}}(x)} \left[\int_{Q_j} \left(\sum_{k=-\infty}^{\infty} |D_k(x, y) - D_k(x, x_0)|^2 \right) |a_j(y)|^2 d\mu(y) \right]^{\frac{1}{2}} d\mu(x)
$$
\n
$$
\lesssim \int_{Q_{x_0, H_R^{x_0}}(x)} \left[\int_{Q_j} \frac{|a_j(y)|^2}{|x - x_0|^{2n}} d\mu(y) \right]^{\frac{1}{2}} d\mu(x)
$$
\n
$$
\lesssim \sum_{i=H_R^{x_0}}^{H_R^{x_0}} \|a_j\|_{L^{\infty}(\mu)} [\mu(Q_j)]^{1/2} \delta(Q_{x_0, i+1}, Q_{x_0, i}) \lesssim [\mu(2Q_j)]^{-1/2}.
$$

Therefore, $I_3 \lesssim \sum_{j=1}^2 |\lambda_j|$, which completes the proof of Theorem 3.1. \Box

To establish the boundedness of the homogeneous Littlewood-Paley g-function $\dot{g}(f)$ from RBMO (μ) to RBLO (μ), we need the following estimate.

Lemma 3.1. *There exists a constant* $C > 0$ *such that for any two cubes* $Q \subset R$ *and* $f \in RBMO(\mu)$,

$$
\int_{R} \frac{|f(y) - m_{\tilde{Q}}(f)|}{[|y - x_Q| + l(Q)]^n} d\mu(y) \le C[1 + \delta(Q, R)]^2 ||f||_{\text{RBMO}(\mu)}.
$$

Proof. Without loss of generality, we may assume that $||f||_{\text{RBMO}(\mu)} = 1$. For any $Q \subset R$, set

$$
K_{Q,\,R}\equiv 1+\sum_{k=1}^{N_{Q,\,R}}\frac{\mu\left(2^{k}Q\right)}{\left[l\left(2^{k}Q\right)\right]^{n}},
$$

where $N_{Q,R}$ is the smallest integer k such that $l(2^kQ) \ge l(R)$ (see [10]). It is trivial to check that

$$
(3.5) \t K_{Q,R} \sim 1 + \delta(Q,R).
$$

Notice that from (1.1) and Definition 2.5, it follows that

$$
\int_{Q} \frac{|f(y) - m_{\widetilde{Q}}(f)|}{[|y - x_{Q}| + l(Q)]^n} d\mu(y) \le \frac{1}{[l(Q)]^n} \int_{Q} \left| f(y) - m_{\widetilde{Q}}(f) \right| d\mu(y) \lesssim 1.
$$

Therefore, to show Lemma 3.1, it suffices to verify that

(3.6)
$$
\int_{R\setminus Q} \frac{|f(y) - m_{\tilde{Q}}(f)|}{|y - x_Q|^n} d\mu(y) \lesssim [1 + \delta(Q, R)]^2.
$$

By (1.1) and Lemma 2.1 in [10] together with Definition 2.5,

$$
\int_{R\backslash Q} \frac{|f(y) - m_{\tilde{Q}}(f)|}{|y - x_{Q}|^{n}} d\mu(y)
$$
\n
$$
\lesssim \sum_{k=0}^{N_{Q,R}} \frac{1}{[l(2^{k+1}Q)]^{n}} \int_{2^{k+1}Q\backslash 2^{k}Q} \left| f(y) - m_{\tilde{Q}}(f) \right| d\mu(y)
$$
\n
$$
\leq \sum_{k=0}^{N_{Q,R}} \frac{1}{[l(2^{k+1}Q)]^{n}} \int_{2^{k+1}Q\backslash 2^{k}Q} \left| f(y) - m_{\widetilde{2^{k+1}Q}}(f) \right| d\mu(y)
$$
\n
$$
+ \sum_{k=0}^{N_{Q,R}} \frac{\mu(2^{k+1}Q)}{[l(2^{k+1}Q)]^{n}} \left| m_{\widetilde{2^{k+1}Q}}(f) - m_{\tilde{Q}}(f) \right|
$$
\n
$$
\lesssim \sum_{k=1}^{N_{Q,R}+1} \frac{\mu(2^{k}Q)}{[l(2^{k}Q)]^{n}} + \sum_{k=1}^{N_{Q,R}+1} \frac{\mu(2^{k}Q)}{[l(2^{k}Q)]^{n}} \left[1 + \delta(Q, 2^{k}Q) \right]
$$
\n
$$
\lesssim K_{Q,R} + K_{Q,R}[1 + \delta(Q,R)] \lesssim [1 + \delta(Q,R)]^{2},
$$

which completes the proof of Lemma 3.1. \Box

The following conclusion is a slight variant of Lemma 9.3 in [10], which can be proved by a slight modification of the proof of Lemma 9.3 in [10]. We omit the details.

Lemma 3.2. *There exists some constant* P_0 *(big enough) depending on* C_0 *and n such that* if $x \in \mathbb{R}^d$ *is some fixed point and* $\{f_Q\}_{Q\ni x}$ *is a collection of numbers such that* $f_Q - f_R \leq [1 + \delta(Q, R)]C_x$ *for all doubling cubes* $Q \subset R$ *with* $x \in Q$ *such that* $1 + \delta(Q, R) \leq P_0$ *, then*

 $f_Q - f_R \leq C[1 + \delta(Q, R)]C_x$ for all doubling cubes $Q \subset R$ with $x \in Q$,

where C depends on C_0 , n and P_0 .

Theorem 3.2. For any $f \in RBMO(\mu)$, $\dot{g}(f)$ is either infinite *everywhere or finite almost everywhere, and in the latter case,*

(3.7)
$$
\|[\dot{g}(f)]^2\|_{\text{RBLO }(\mu)} \leq C \|f\|_{\text{RBMO }(\mu)}^2,
$$

where $C > 0$ *is independent of f.*

Proof. We first claim that for any $f \in RBMO(\mu)$, if there exists a point $x_0 \in \mathbb{R}^d$ such that $\dot{g}(f)(x_0) < \infty$, then for any doubling cube $Q \ni x_0$,

$$
(3.8) \qquad \frac{1}{\mu(Q)} \int_{Q} \left\{ [\dot{g}(f)(x)]^2 - \inf_{y \in Q} [\dot{g}(f)(y)]^2 \right\} d\mu(x) \lesssim ||f||^2_{\text{RBMO}(\mu)}.
$$

Without loss of generality, we may assume that $||f||_{\text{RBMO}(\mu)} = 1$. For any $x \in \text{supp}(\mu) \cap Q$, set

$$
\left[\dot{g}^{H_Q^x}(f)(x)\right]^2 \equiv \sum_{k=H_Q^x+4}^{\infty} |D_k f(x)|^2 \text{ and } \left[\dot{g}_{H_Q^x}(f)(x)\right]^2 \equiv \sum_{k=-\infty}^{H_Q^x+3} |D_k f(x)|^2.
$$

Notice that $Q_{x,j} \subset \frac{4}{3}Q$ when $j \geq H_Q^x + 2$ (see [11, p. 69]). This fact together with supp $(D_k(x, \cdot)) \subset Q_{x, k-2}$ and $\int_{\mathbb{R}^d} D_k(x, y) d\mu(y) = 0$ implies that when $k \geq H_O^x + 4$,

$$
D_k f(x) = D_k \left[\left(f - m_{\frac{2}{3}Q}(f) \right) \chi_{\frac{4}{3}Q} \right] (x).
$$

It follows from the doubling property of Q along with Remark 2.3, the $L^2(\mu)$ -boundedness of $\dot{g}(f)$ (see [11, Theorem 6.1]) and Corollary 3.5 in [10] that

$$
(3.9) \quad \frac{1}{\mu(Q)} \int_Q \left[\dot{g}^{H_Q^x}(f)(x) \right]^2 d\mu(x)
$$

\n
$$
\leq \frac{1}{\mu(Q)} \int_Q \left\{ \dot{g} \left[\left(f - m_{\frac{2}{3}Q}(f) \right) \chi_{\frac{4}{3}Q} \right](x) \right\}^2 d\mu(x)
$$

\n
$$
\lesssim \frac{1}{\mu(Q)} \int_{\frac{4}{3}Q} \left| f(x) - m_{\frac{2}{3}Q}(f) \right|^2 d\mu(x) \lesssim 1.
$$

Now observe that for any $x, y \in Q$,

$$
\left[\dot{g}_{H_Q^x}(f)(x)\right]^2 - [\dot{g}(f)(y)]^2 \le \left[\dot{g}_{H_Q^x}(f)(x)\right]^2 - \left[\dot{g}_{H_Q^x}(f)(y)\right]^2.
$$

Thus taking (3.9) into account, to show (3.8), we only need to verify that for μ -a.e. $y \in Q$,

(3.10)
$$
\left[\dot{g}_{H_Q^x}(f)(x)\right]^2 - \left[\dot{g}_{H_Q^x}(f)(y)\right]^2 \lesssim 1.
$$

We assert that for each $k \in \mathbb{Z}$ and $z \in \mathbb{R}^d$,

$$
(3.11)\t\t\t |D_kf(z)| \lesssim 1.
$$

Indeed, (2.1) implies that

(3.12)
$$
|D_k(z,y)| \lesssim \frac{1}{[l(Q_{z,k}) + l(Q_{y,k}) + |z-y|]^n}.
$$

Then since $\text{supp}(D_k(z, \cdot)) \subset Q_{z, k-2}$, by the vanishing moment of D_k , Lemma 3.1 and (3.12) , we have

$$
|D_k f(z)| \leq \int_{Q_{z,k-2}} |D_k(z,y)||f(y) - m_{Q_{z,k}}(f)| d\mu(y)
$$

$$
\leq \int_{Q_{z,k-2}} \frac{|f(y) - m_{Q_{z,k}}(f)|}{[|z - y| + l(Q_{z,k})]^n} d\mu(z) \lesssim 1.
$$

Thus, (3.11) holds. From this assertion we see that for $x, y \in Q$,

$$
\begin{aligned} &\left[\dot{g}_{H_Q^x}(f)(x)\right]^2 - \left[\dot{g}_{H_Q^x}(f)(y)\right]^2 \\ &\le \sum_{k=-\infty}^{H_Q^x - 3} |D_k f(x) - D_k f(y)||D_k f(x) + D_k f(y)| + \sum_{k=H_Q^x - 2}^{H_Q^x + 3} |D_k f(x)|^2 \\ &\le \sum_{k=-\infty}^{H_Q^x - 3} |D_k f(x) - D_k f(y)| + 1. \end{aligned}
$$

By the symmetry of D_k and (3.2), we see that for any fixed integer $i \geq 3$ and $k \ge H_Q^x - i + 4$, and all $z \in Q_{x, H_Q^x - i} \setminus Q_{x, H_Q^x - i + 1}$,

$$
D_k(x, z) - D_k(y, z) = 0.
$$

Therefore, from the vanishing moment of D_k , we see that

$$
\sum_{k=-\infty}^{H_Q^x-3} |D_k f(x) - D_k f(y)|
$$
\n
$$
\leq \int_{\mathbb{R}^d} \left(\sum_{k=-\infty}^{H_Q^x-3} |D_k(x, z) - D_k(y, z)| \right) \left| f(z) - m_{Q_{x, H_Q^x}}(f) \right| d\mu(z)
$$
\n
$$
\leq \sum_{i=3}^{\infty} \int_{Q_{x, H_Q^x-1} \setminus Q_{x, H_Q^x-i+1}} \left(\sum_{k=-\infty}^{H_Q^x-1+3} |D_k(x, z) - D_k(y, z)| \right)
$$
\n
$$
\times \left| f(z) - m_{Q_{x, H_Q^x}}(f) \right| d\mu(z)
$$
\n
$$
+ \int_{Q_{x, H_Q^x-2}} \left(\sum_{k=-\infty}^{H_Q^x-3} |D_k(x, z) - D_k(y, z)| \right) \left| f(z) - m_{Q_{x, H_Q^x}}(f) \right| d\mu(z)
$$
\n
$$
\equiv J_1 + J_2.
$$

Since $x, y \in Q$ implies that $x, y \in Q_{x,k}$ for $k \leq H_Q^x$, by (2.2) and Lemma 3.4 in [11], we further obtain

$$
\sum_{k=-\infty}^{H_Q^x - i + 3} |D_k(x, z) - D_k(y, z)| \leq \sum_{k=-\infty}^{H_Q^x - i + 3} \frac{|x - y|}{l(Q_{x,k})[l(Q_{x,k}) + |x - z|]^n}
$$

$$
\leq \frac{l(Q)}{l(Q_{x,H_Q^x - i + 3})} \frac{1}{|x - z|^n}.
$$

Moreover, by (3.6), we have

$$
\int_{Q_{x,\,H_Q^x-i}\setminus Q_{x,\,H_Q^x-i+1}} \frac{|f(z)-m_{Q_{x,\,H_Q^x-i+1}}(f)|}{|x-z|^n} d\mu(z)
$$

$$
\lesssim \left[1+\delta\Big(Q_{x,\,H_Q^x-i+1},Q_{x,\,H_Q^x-i}\Big)\right]^2 \lesssim 1.
$$

Therefore, these facts, together with Definition 2.5, (3.4) and [11, Lemma 3.4] imply that

$$
J_{1} \lesssim
$$
\n
$$
\lesssim \sum_{i=3}^{\infty} \frac{l(Q)}{l(Q_{x,H_{Q}^{x-i+3})} \int_{Q_{x,H_{Q}^{x-i}} \setminus Q_{x,H_{Q}^{x-i+1}} \frac{|f(z) - m_{Q_{x,H_{Q}^{x}}}(f)|}{|x - z|^{n}} d\mu(z)
$$
\n
$$
\leq \sum_{i=3}^{\infty} \frac{l(Q)}{l(Q_{x,H_{Q}^{x-i+3})} \int_{Q_{x,H_{Q}^{x-i}} \setminus Q_{x,H_{Q}^{x-i+1}} \frac{|f(z) - m_{Q_{x,H_{Q}^{x-i+1}}}(f)|}{|x - z|^{n}} d\mu(z)
$$
\n
$$
+ \sum_{i=3}^{\infty} \frac{l(Q)}{l(Q_{x,H_{Q}^{x-i+3})} \int_{Q_{x,H_{Q}^{x-i}} \setminus Q_{x,H_{Q}^{x-i+1}} \frac{|m_{Q_{x,H_{Q}^{x-i+1}}}(f) - m_{Q_{x,H_{Q}^{x}}}(f)|}{|x - z|^{n}} d\mu(z)
$$
\n
$$
\lesssim \sum_{i=3}^{\infty} \frac{l(Q)}{l(Q_{x,H_{Q}^{x-i+3})} + \sum_{i=3}^{\infty} \frac{l(Q)}{l(Q_{x,H_{Q}^{x-i+3})} [1 + \delta(Q_{x,H_{Q}^{x}}, Q_{x,H_{Q}^{x-i+1}})]^{2}
$$
\n
$$
\lesssim \sum_{i=3}^{\infty} \frac{l(Q)}{l(Q_{x,H_{Q}^{x-i+3})} (1 + i)^{2} \lesssim 1.
$$

Now we turn our attention to J_2 . The estimate (3.12) , Lemma 3.4 in [11], (1.1), Definition 2.5 and (3.4) yield

$$
\int_{Q_{x,\;H_Q^x-2}} \sum_{k=-\infty}^{H_Q^x-3} |D_k(x,z)| \left| f(z) - m_{Q_{x,\;H_Q^x}}(f) \right| d\mu(z)
$$

$$
\leq \int_{Q_{x,H_{Q}^{x}-2}} \sum_{k=-\infty}^{H_{Q}^{x}-3} \frac{|f(z)-m_{Q_{x,H_{Q}^{x}}}(f)|}{[|x-z|+l(Q_{x,k})]^{n}} d\mu(z)
$$

\n
$$
\lesssim \int_{Q_{x,H_{Q}^{x}-2}} \frac{|f(z)-m_{Q_{x,H_{Q}^{x}}}(f)|}{[l(Q_{x,H_{Q}^{x}-2})]^{n}} d\mu(z)
$$

\n
$$
\lesssim \int_{Q_{x,H_{Q}^{x}-2}} \frac{|f(z)-m_{Q_{x,H_{Q}^{x}-2}}(f)|}{[l(Q_{x,H_{Q}^{x}-2})]^{n}} d\mu(z) + \left|m_{Q_{x,H_{Q}^{x}-2}}(f)-m_{Q_{x,H_{Q}^{x}}}(f)\right|
$$

\n
$$
\lesssim 1.
$$

On the other hand, notice that by Lemma 3.4 in [11], for $z \in Q_y$, $H^x_Q - 3$,

$$
\sum_{k=-\infty}^{H_Q^x-3} \frac{1}{[|y-z|+l(Q_{y,k})]^n} \lesssim \frac{1}{[l(Q_{y,H_Q^x-3})]^n}.
$$

Since $y \in Q \subset Q_{x,H_Q^x}$, we have that $Q_{x,H_Q^x-2} \subset Q_{y,H_Q^x-3}$ as a result of Lemma 4.2 (c) in [11]. Then it follows from these observations and (3.12) together with Definition 2.5 that

$$
\int_{Q_{x,\,H_{Q}^{x}-2}} \sum_{k=-\infty}^{H_{Q}^{x}-3} |D_{k}(y,z)| |f(z)-m_{Q_{x,\,H_{Q}^{x}}}(f)| d\mu(z)
$$
\n
$$
\lesssim \int_{Q_{x,\,H_{Q}^{x}-2}} \sum_{k=-\infty}^{H_{Q}^{x}-3} \frac{|f(z)-m_{Q_{x,\,H_{Q}^{x}}}(f)|}{[|y-z|+l(Q_{y,\,k})]^{n}} d\mu(z)
$$
\n
$$
\lesssim \int_{Q_{x,\,H_{Q}^{x}-2}} \frac{|f(z)-m_{Q_{x,\,H_{Q}^{x}}}(f)|}{[l(Q_{y,\,H_{Q}^{x}-3})]^{n}} d\mu(z)
$$
\n
$$
\lesssim \int_{Q_{x,\,H_{Q}^{x}-2}} \frac{|f(z)-m_{Q_{x,\,H_{Q}^{x}}}(f)|}{[l(Q_{x,\,H_{Q}^{x}-2})]^{n}} d\mu(z) \lesssim 1.
$$

Combining these estimates above implies

$$
J_2 \leq \int_{Q_{x,\,H_Q^x-2}} \left\{ \sum_{k=-\infty}^{H_Q^x-3} [|D_k(x,z)| + |D_k(y,z)|] \right\} \left| f(z) - m_{Q_{x,\,H_Q^x}}(f) \right| \, d\mu(z) \lesssim 1.
$$

Thus (3.10) holds.

To finish the proof of Theorem 3.2, by Lemma 3.2, it suffices to show that for any doubling cubes $Q \subset R,$

(3.13)
$$
[g(f)^{2}]_{Q} - [g(f)^{2}]_{R} \lesssim [1 + \delta(Q, R)]^{4}.
$$

For any $x \in \text{supp}(\mu) \cap Q$, we first consider the case that $H_Q^x \ge H_R^x + 10$ by writing

$$
\begin{split} \left[\dot{g}(f)^2\right]_Q & -\left[\dot{g}(f)^2\right]_R\\ &\leq \frac{1}{\mu(Q)} \int_Q \left[\dot{g}^{H^x_Q} f(x)\right]^2 \, d\mu(x) + \frac{1}{\mu(Q)} \int_Q \sum_{k=H^x_R+4}^{H^x_Q+3} |D_k f(x)|^2 \, d\mu(x) \\ & + \frac{1}{\mu(Q)} \frac{1}{\mu(R)} \int_Q \int_R \left(\left[\dot{g}_{H^x_R} f(x)\right]^2 - \left[\dot{g}_{H^x_R} f(y)\right]^2\right) \, d\mu(y) \, d\mu(x). \end{split}
$$

By (3.10) with Q replaced by R , we see that

$$
\frac{1}{\mu(Q)}\frac{1}{\mu(R)}\int_Q \int_R \left(\left[\dot{g}_{H_R^x}f(x)\right]^2 - \left[\dot{g}_{H_R^x}f(y)\right]^2\right) d\mu(y) d\mu(x) \lesssim 1.
$$

Therefore by (3.9) and (3.11), the estimate (3.13) is reduced to proving that

$$
(3.14) \qquad \frac{1}{\mu(Q)} \int_{Q} \sum_{k=H_{R}^{x}+4}^{H_{Q}^{x}-1} |D_{k}f(x)|^{2} d\mu(x) \lesssim [1+\delta(Q,R)]^{4}.
$$

By splitting

$$
Q_{x,k-2} = (Q_{x,k-2} \setminus Q_{x,k-1}) \cup (Q_{x,k-1} \setminus Q_{x,k}) \cup Q_{x,k},
$$

it follows from the vanishing moment of D_k , supp $(D_k(x, \cdot)) \subset Q_{x, k-2}$ and (3.12) that

$$
\sum_{k=H_{R}^{x}+4}^{H_{Q}^{x}-1} |D_{k}f(x)| \leq \sum_{k=H_{R}^{x}+4}^{H_{Q}^{x}-1} \int_{Q_{x,k-2}} \frac{|f(z)-m_{Q_{x,H_{Q}^{x}-1}}(f)|}{[|x-z|+l(Q_{x,k})]^{n}} d\mu(z)
$$
\n
$$
\leq 2 \int_{Q_{x,H_{R}^{x}+2} \setminus Q_{x,H_{Q}^{x}-1}} \frac{|f(z)-m_{Q_{x,H_{Q}^{x}-1}}(f)|}{|x-z|^{n}} d\mu(z)
$$
\n
$$
+ \sum_{k=H_{R}^{x}+4}^{H_{Q}^{x}-1} \int_{Q_{x,k}} \frac{|f(z)-m_{Q_{x,H_{Q}^{x}-1}}(f)|}{[|x-z|+l(Q_{x,k})]^{n}} d\mu(z) \equiv L_{1} + L_{2}.
$$

By $Q ⊂ Q_{x, H_Q^x-1}$, $Q_{x, H_R^x+2} ⊂ 2R$ and Lemma 3.1 in [11],

(3.15)
$$
\delta\left(Q_{x,H_{Q}^{x}-1},Q_{x,H_{R}^{x}+2}\right)\lesssim 1+\delta(Q,R).
$$

Thus, by (3.15) , (3.6) and Definition 2.5, we have

$$
L_1 \lesssim \left[1+\delta\left(Q_{x,\,H_Q^x-1},Q_{x,\,H_R^x+2}\right)\right]^2 \lesssim [1+\delta(Q,R)]^2.
$$

To estimate L_2 , by Lemma 3.4 in [11], we first see that for any integer

$$
k \in [H_R^x + 4, H_Q^x - 1],
$$

there exists a unique integer $j_k \in [0, N_{Q_x, H_{Q}^x-1}, Q_x, H_{R}^x+4]$ such that $2^{j_k}Q_{x, H_Q^x-1}$ ⊂ $Q_{x, k}$ ⊂ $2^{j_k+1}Q_{x, H_Q^x-1}$, and for different k, j_k is different. It then follows from Definition 2.5, the decreasing property of $Q_{x, k}$, (3.15) and (3.5) that

$$
L_2 \leq \sum_{k=H_R^x+4}^{H_Q^x-1} \int_{Q_{x,k}} \frac{|f(z) - m_{Q_{x,k}}(f)|}{[l(Q_{x,k})]^n} d\mu(z)
$$

+
$$
\sum_{k=H_R^x+4}^{H_Q^x-1} \frac{\mu(Q_{x,k})}{[l(Q_{x,k})]^n} \Big| m_{Q_{x,k}}(f) - m_{Q_{x,H_Q^x-1}}(f) \Big|
$$

$$
\lesssim \sum_{k=H_R^x+4}^{H_Q^x-1} \frac{\mu(Q_{x,k})}{[l(Q_{x,k})]^n} + \sum_{k=H_R^x+4}^{H_Q^x-1} \frac{\mu(Q_{x,k})}{[l(Q_{x,k})]^n} [1 + \delta(Q,R)]
$$

$$
\lesssim \sum_{k=H_R^x+4}^{H_Q^x-1} \frac{\mu\left(2^{j_k+1}Q_{x,H_Q^x-1}\right)}{[l\left(2^{j_k}Q_{x,H_Q^x-1}\right)]^n} [1 + \delta(Q,R)]
$$

$$
\lesssim K_{Q,2R} [1 + \delta(Q,R)] \lesssim [1 + \delta(Q,R)]^2.
$$

Consequently, (3.14) follows by combining the estimates for L_1 and L_2 .

If $H_R^x \leq H_Q^x \leq H_R^x + 9$, then by the estimates (3.9) through (3.11), we also see that (3.13) holds, which completes the proof of Theorem 3.2. \Box

From Theorem 3.2, we can easily deduce the following result.

Corollary 3.1. For any $f \in RBMO(\mu)$, $\dot{g}(f)$ is either infinite *everywhere or finite almost everywhere, and in the latter case,*

$$
\|\dot{g}(f)\|_{\text{RBLO}(\mu)} \leq C \|f\|_{\text{RBMO}(\mu)},
$$

where $C > 0$ *is independent of f.*

Proof. First, with the aid of (3.8) and the inequality that for any $a, b \geq 0$,

(3.16)
$$
a - b \le |a^2 - b^2|^{1/2},
$$

it is easy to see that if $\operatorname*{ess\,inf}_{y\in Q}\,\dot{g}(f)(y)<\infty$,

$$
\frac{1}{\mu(Q)} \int_Q \left[\dot{g}(f)(x) - \underset{y \in Q}{\text{essinf}} \ \dot{g}(f)(y) \right] \ d\mu(x) \lesssim \|f\|_{\text{RBMO}(\mu)}.
$$

Moreover, in the argument of (3.13), we see that for any doubling cubes $Q \subset R$, $x \in Q$, and $y \in R$,

$$
\left| \left[\dot{g}(f)(x) \right]^2 - \left[\dot{g}(f)(y) \right]^2 \right| \leq \left[\dot{g}^{H_Q^x} f(x) \right]^2 + \left[\dot{g}^{H_R^x} f(y) \right]^2 + \sum_{k=H_R^x + 4}^{H_Q^x + 3} |D_k f(x)|^2 + \left| \left[\dot{g}_{H_R^x} f(x) \right]^2 - \left[\dot{g}_{H_R^x} f(y) \right]^2 \right|.
$$

From this fact with (3.9) through (3.11) , (3.14) and (3.16) , we obtain that for any doubling cubes $Q \subset R$,

$$
m_Q[g(f)] - m_R[g(f)] \lesssim [1 + \delta(Q, R)]^2 ||f||_{\text{RBMO}(\mu)}.
$$

An application of Lemma 3.2 leads to the conclusion of Corollary 3.1. \Box

Acknowledgements. Dachun Yang is supported by National Science Foundation for Distinguished Young Scholars (No. 10425106) and NCET (No. 04-0142) of Ministry of Education of China.

References

- [1] D. Goldberg, *A local version of real Hardy spaces*, Duke Math. J., 46 (1979), 27–42.
- [2] G. Hu, Da. Yang and Do. Yang, h^1 , bmo, blo *and Littlewood-Paley* q *functions with non-doubling measures*, Rev. Mat. Iberoam., to appear.
- [3] Y. Jiang, *Spaces of type* BLO *for non-doubling measures*, Proc. Amer. Math. Soc., 133 (2005), 2101–2107.
- [4] M. Leckband, *A note on exponential integrability and pointwise estimates of Littlewood-Paley functions*, Proc. Amer. Math. Soc., 109 (1990), 185–194.
- [5] J. Mateu, P. Mattila, A. Nicolau and J. Orobitg, BMO *for nondoubling measures*, Duke Math. J., 102 (2000), 533–565.
- [6] F. Nazarov, S. Treil and A. Volberg, *Cauchy integral and Calderon*-*Zygmund operators on nonhomogeneous spaces*, Internat. Math. Res. Notices, 15 (1997), 703–726.
- [7] F. Nazarov, S. Treil and A. Volberg, *Weak type estimates and Cotlar inequalities for Calder´on-Zygmund operators on nonhomogeneous spaces*, Internat. Math. Res. Notices, 9 (1998), 463–487.
- [8] F. Nazarov, S. Treil and A. Volberg, *Accretive system Tb-theorems on nonhomogeneous spaces*, Duke Math. J., 113 (2002), 259–312.
- [9] F. Nazarov, S. Treil and A. Volberg, *The Tb-theorem on nonhomogeneous spaces*, Acta Math., 190 (2003), 151–239.
- $[10]$ X. Tolsa, *BMO*, H^1 *and Calderon-Zygmund operators for non doubling measures*, Math. Ann., 319 (2001), 89–149.
- [11] X. Tolsa, *Littlewood-Paley theory and the* $T(1)$ *theorem with nondoubling measures*, Adv. Math., 164 (2001), 57–116.
- [12] X. Tolsa, *The space* H^1 *for nondoubling measures in terms of a grand maximal operator*, Trans. Amer. Math. Soc., 355 (2003), 315–348.
- [13] X. Tolsa, *Painlev´e's problem and the semiadditivity of analytic capacity*, Acta Math., 190 (2003), 105–149.
- [14] X. Tolsa, *The semiadditivity of continuous analytic capacity and the inner boundary conjecture*, Amer. J. Math., 126 (2004), 523–567.
- [15] X. Tolsa, *Analytic capacity and Calder´on-Zygmund theory with non doubling measures, Seminar of Mathematical Analysis*, 239-271, Colecc. Abierta, 71, Univ. Sevilla Secr. Publ., Seville, 2004.
- [16] X. Tolsa, *Bilipschitz maps, analytic capacity, and the Cauchy integral*, Ann. of Math. (2), 162 (2005), 1243–1304.
- [17] X. Tolsa, *Painlevé's problem and analytic capacity*, Collect. Math., (Extra) (2006), 89–125.
- [18] J. Verdera, *The fall of the doubling condition in Calder´on-Zygmund theory*, Publ. Mat., (Extra) (2002), 275–292.

School of Mathematical Sciences, Beijing Normal University Laboratory of Mathematics and Complex Systems Ministry of Education, Beijing 100875 People's Republic of China (*E-mail : dcyang@bnu.edu.cn*) (*E-mail : dyyang623@126.com*)

(*Received : April 2008*)

http://www.hindawi.com Volume 2014 Operations Research Advances in

http://www.hindawi.com Volume 2014

http://www.hindawi.com Volume 2014

http://www.hindawi.com Volume 2014

Algebra

Journal of
Probability and Statistics http://www.hindawi.com Volume 2014

Differential Equations International Journal of

^{Journal of}
Complex Analysis

Submit your manuscripts at http://www.hindawi.com

Hindawi

 \bigcirc

http://www.hindawi.com Volume 2014 Mathematical Problems in Engineering

Abstract and Applied Analysis http://www.hindawi.com Volume 2014

Discrete Dynamics in Nature and Society

International Journal of Mathematics and **Mathematical Sciences**

http://www.hindawi.com Volume 2014 - 2014 - 2014 - 2014 - 2014 - 2014 - 2014 - 2014 - 2014 - 2014 - 2014 - 2014

Journal of http://www.hindawi.com Volume 2014 Function Spaces Volume 2014 Hindawi Publishing Corporation New York (2015) 2016 The Corporation New York (2015) 2016 The Corporation

http://www.hindawi.com Volume 2014 Stochastic Analysis International Journal of

Optimization