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Abstract. Recently V. Kokilashvili, N. Samko, and S. Samko have proved a

sufficient condition for the boundedness of the Cauchy singular integral operator

on variable Lebesgue spaces with radial oscillating weights over Carleson curves.

This condition is formulated in terms of Matuszewska-Orlicz indices of weights.

We prove a partial converse of their result.

1. Introduction and main result

Let Γ be a rectifiable curve in the complex plane. We equip Γ with

Lebesgue length measure ∣𝑑𝜏 ∣ . We say that a curve Γ is simple if it does

not have self-intersections. In other words, Γ is said to be simple if it

is homeomorphic either to a line segment or to to a circle. In the latter
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situation we will say that Γ is a Jordan curve. The Cauchy singular integral

of 𝑓 ∈ 𝐿1(Γ) is defined by

(𝑆𝑓)(𝑡) :=
1

𝜋𝑖

∫
Γ

𝑓(𝜏)

𝜏 − 𝑡
𝑑𝜏 (𝑡 ∈ Γ).

This integral is understood in the principal value sense, that is,∫
Γ

𝑓(𝜏)

𝜏 − 𝑡
𝑑𝜏 := lim

𝑅→0

∫
Γ∖Γ(𝑡,𝑅)

𝑓(𝜏)

𝜏 − 𝑡
𝑑𝜏,

where Γ(𝑡, 𝑅) := {𝜏 ∈ Γ : ∣𝜏 − 𝑡∣ < 𝑅} for 𝑅 > 0. David [4] (see also

[3, Theorem 4.17]) proved that the Cauchy singular integral generates the

bounded operator 𝑆 on the Lebesgue space 𝐿𝑝(Γ), 1 < 𝑝 < ∞ , if and only

if Γ is a Carleson (Ahlfors-David regular) curve, that is,

sup
𝑡∈Γ

sup
𝑅>0

∣Γ(𝑡, 𝑅)∣
𝑅

< ∞,

where for any measurable set Ω ⊂ Γ the symbol ∣Ω∣ denotes its measure. To

have a better idea about Carleson curves, consider the following example.

Let 𝛼 > 0 and

Γ := {0} ∪ {𝜏 ∈ ℂ : 𝜏 = 𝑥 + 𝑖𝑥𝛼 sin(1/𝑥), 0 < 𝑥 ≤ 1
}
.

One can show (see [3, Example 1.3]) that Γ is not rectifiable for 0 < 𝛼 ≤ 1,

Γ is rectifiable but not Carleson for 1 < 𝛼 < 2, and Γ is a Carleson curve

for 𝛼 ≥ 2.

A measurable function 𝑤 : Γ → [0,∞] is referred to as a weight function

or simply a weight if 0 < 𝑤(𝜏) < ∞ for almost all 𝜏 ∈ Γ. Suppose

𝑝 : Γ → [1,∞] is a measurable a.e. finite function. Denote by 𝐿𝑝(⋅)(Γ, 𝑤)

the set of all measurable complex-valued functions 𝑓 on Γ such that∫
Γ

∣𝑓(𝜏)𝑤(𝜏)/𝜆∣𝑝(𝜏) ∣𝑑𝜏 ∣ < ∞

for some 𝜆 = 𝜆(𝑓) > 0. This set becomes a Banach space when equipped

with the Luxemburg-Nakano norm

∥𝑓∥𝑝(⋅),𝑤 := inf

{
𝜆 > 0 :

∫
Γ

∣𝑓(𝜏)𝑤(𝜏)/𝜆∣𝑝(𝜏)∣𝑑𝜏 ∣ ≤ 1

}
.

If 𝑝 is constant, then 𝐿𝑝(⋅)(Γ, 𝑤) is nothing else but the weighted Lebesgue

space. Therefore, it is natural to refer to 𝐿𝑝(⋅)(Γ, 𝑤) as a weighted

generalized Lebesgue space with variable exponent or simply as a weighted
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variable Lebesgue space. This is a special case of Musielak-Orlicz spaces [19]

(see also [13]). Nakano [20] considered these spaces (without weights) as

examples of so-called modular spaces, and sometimes the spaces 𝐿𝑝(⋅)(Γ, 𝑤)

are referred to as weighted Nakano spaces.

Following [12, Section 2.3], denote by 𝑊 the class of all continuous

functions 𝜚 : [0, ∣Γ∣] → [0,∞) such that 𝜚(0) = 0, 𝜚(𝑥) > 0 if 0 < 𝑥 ≤ ∣Γ∣ ,
and 𝜚 is almost increasing, that is, there is a universal constant 𝐶 > 0

such that 𝜚(𝑥) ≤ 𝐶𝜚(𝑦) whenever 𝑥 ≤ 𝑦 . Further, let 𝕎 be the set of all

functions 𝜚 : [0, ∣Γ∣] → [0,∞] such that 𝑥𝛼𝜚(𝑥) ∈ 𝑊 and 𝑥𝛽/𝜚(𝑥) ∈ 𝑊

for some 𝛼, 𝛽 ∈ ℝ . Clearly, the functions 𝜚(𝑥) = 𝑥𝛾 belong to 𝕎 for all

𝛾 ∈ ℝ . For 𝜚 ∈ 𝕎 , put

Φ0
𝜚(𝑥) := lim sup

𝑦→0

𝜚(𝑥𝑦)

𝜚(𝑦)
, 𝑥 ∈ (0,∞).

Since 𝜚 ∈ 𝕎 , one can show that the limits

𝑚(𝜚) := lim
𝑥→0

log Φ0
𝜚(𝑥)

log 𝑥
, 𝑀(𝜚) := lim

𝑥→∞
log Φ0

𝜚(𝑥)

log 𝑥

exist and −∞ < 𝑚(𝜚) ≤ 𝑀(𝜚) < +∞ . These numbers were defined by

Matuszewska and Orlicz [17, 18] (see also [15] and [16, Chapter 11]). We

refer to 𝑚(𝜚) (resp. 𝑀(𝜚)) as the lower (resp. upper) Matuszewska-Orlicz

index of 𝜚 . For 𝜚(𝑥) = 𝑥𝛾 one has 𝑚(𝜚) = 𝑀(𝜚) = 𝛾 . Examples of

functions 𝜚 ∈ 𝕎 with 𝑚(𝜚) < 𝑀(𝜚) can be found, for instance, in [1], [16,

p. 93], [21, Section 2].

Fix pairwise distinct points 𝑡1, . . . , 𝑡𝑛 ∈ Γ and functions 𝑤1, . . . , 𝑤𝑛 ∈ 𝕎 .

Consider the following weight

(1.1) 𝑤(𝑡) :=

𝑛∏
𝑘=1

𝑤𝑘(∣𝑡− 𝑡𝑘∣), 𝑡 ∈ Γ.

Each function 𝑤𝑘(∣𝑡− 𝑡𝑘∣) is a radial oscillating weight. The weight (1.1) is

a continuous function on Γ∖{𝑡1, . . . , 𝑡𝑛} . This is a natural generalization of

so-called Khvedelidze weights 𝑤(𝑡) =
∏𝑛

𝑘=1 ∣𝑡 − 𝑡𝑘∣𝜆𝑘 , where 𝜆𝑘 ∈ ℝ (see,

e.g., [3, Section 2.2], [9], [10]). Recently V. Kokilashvili, N. Samko, and S.

Samko have proved the following (see [12, Theorem 4.3] and also [11] for

similar results for maximal functions).

Theorem 1.1 ([12, Theorem 4.3]). Suppose Γ is a simple Carleson curve

and 𝑝 : Γ → (1,∞) is a continuous function satisfying

(1.2) ∣𝑝(𝜏) − 𝑝(𝑡)∣ ≤ −𝐴Γ/ log ∣𝜏 − 𝑡∣ whenever ∣𝜏 − 𝑡∣ ≤ 1/2,
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where 𝐴Γ is a positive constant depending only on Γ . Let 𝑤1, . . . , 𝑤𝑛 ∈ 𝕎

and the weight 𝑤 be given by (1.1). If

(1.3)

0 < 1/𝑝(𝑡𝑘) + 𝑚(𝑤𝑘), 1/𝑝(𝑡𝑘) + 𝑀(𝑤𝑘) < 1 for all 𝑘 ∈ {1, . . . , 𝑛},

then the Cauchy singular integral operator 𝑆 is bounded on 𝐿𝑝(⋅)(Γ, 𝑤) .

For the weight 𝑤(𝑡) =
∏𝑛

𝑘=1 ∣𝑡−𝑡𝑘∣𝜆𝑘 , (1.3) reads as 0 < 1/𝑝(𝑡𝑘)+𝜆𝑘 < 1

for all 𝑘 ∈ {1, . . . , 𝑛} . This condition is also necessary for the boundedness

of 𝑆 on the variable Lebesgue space 𝐿𝑝(⋅)(Γ, 𝑤) with the Khvedelidze weight

𝑤 (see [10]).

The author have proved in [8] that for Jordan curves condition (1.3) is

necessary for the boundedness of the operator 𝑆 .

Theorem 1.2 ([8, Corollary 4.3]). Suppose Γ is a rectifiable Jordan

curve and 𝑝 : Γ → (1,∞) is a continuous function satisfying (1.2). Let

𝑤1, . . . , 𝑤𝑛 ∈ 𝕎 and the weight 𝑤 be given by (1.1). If the Cauchy singular

integral operator 𝑆 is bounded on 𝐿𝑝(⋅)(Γ, 𝑤) , then Γ is a Carleson curve

and (1.3) is fulfilled.

The proof of this result given in [8] essentially uses that Γ is closed. In

this paper we embark on the situation of non-closed curves. Our main result

is a partial converse of Theorem 1.1. It follows from our results [6, 8] based

on further development of ideas from [3, Chap. 1–3].

Theorem 1.3 (Main result). Let Γ be a rectifiable curve homeomorphic

to a line segment and 𝑝 : Γ → (1,∞) be a continuous function satisfying

(1.2). Suppose 𝑤1, . . . , 𝑤𝑛 ∈ 𝕎 and the weight 𝑤 is given by (1.1). If the

Cauchy singular integral operator 𝑆 is bounded on 𝐿𝑝(⋅)(Γ, 𝑤) , then Γ is a

Carleson curve and

0 ≤ 1/𝑝(𝑡𝑘) + 𝑚(𝑤𝑘), 1/𝑝(𝑡𝑘) + 𝑀(𝑤𝑘) ≤ 1 for all 𝑘 ∈ {1, . . . , 𝑛}.

Moreover, if there exists an 𝜀0 > 0 such that the Cauchy singular integral

operator 𝑆 is bounded on 𝐿𝑝(⋅)(Γ, 𝑤1+𝜀) for all 𝜀 ∈ (−𝜀0, 𝜀0) , then

0 < 1/𝑝(𝑡𝑘) + 𝑚(𝑤𝑘), 1/𝑝(𝑡𝑘) + 𝑀(𝑤𝑘) < 1 for all 𝑘 ∈ {1, . . . , 𝑛}.

For standard Lebesgue spaces, the boundedness of the operator 𝑆 on

𝐿𝑝(Γ, 𝑤), 1 < 𝑝 < ∞ , implies that 𝑆 is also bounded on 𝐿𝑝(Γ, 𝑤1+𝜀) for

all 𝜀 in a sufficiently small neighborhood of zero (see [3, Theorems 2.31 and

4.15]). Hence if 1 < 𝑝 < ∞ , Γ is a simple Carleson curve, 𝑤1, . . . , 𝑤𝑛 ∈ 𝕎 ,

and the weight 𝑤 is given by (1.1), then 𝑆 is bounded on the standard

Lebesgue space 𝐿𝑝(Γ, 𝑤), 1 < 𝑝 < ∞ , if and only if

0 < 1/𝑝 + 𝑚(𝑤𝑘), 1/𝑝 + 𝑀(𝑤𝑘) < 1 for all 𝑘 ∈ {1, . . . , 𝑛}.
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We believe that all weighted variable Lebesgue spaces have this stability

property.

Conjecture 1.4. Let Γ be a simple rectifiable curve, 𝑝 : Γ → [1,∞] be

a measurable a.e. finite function, and 𝑤 : Γ → [0,∞] be a weight such that

the Cauchy singular integral operator 𝑆 is bounded on 𝐿𝑝(⋅)(Γ, 𝑤) . Then

there is a number 𝜀0 > 0 such that 𝑆 is bounded on 𝐿𝑝(⋅)(Γ, 𝑤1+𝜀) for all

𝜀 ∈ (−𝜀0, 𝜀0) .

If this conjecture would be true, we were able to prove the complete

converse of Theorem 1.1 for non-closed curves, too.

2. Proof

In this section we formulate several results from [3, 6, 8] and show that

Theorem 1.3 easily follows from them.

2.1 Muckenhoupt type condition. Suppose Γ is a simple rectifiable

curve and 𝑝 : Γ → (1,∞) is a continuous function. Since Γ is compact, one

has

1 < min
𝜏∈Γ

𝑝(𝜏), max
𝜏∈Γ

𝑝(𝜏) < ∞
and the conjugate exponent

𝑞(𝜏) := 𝑝(𝜏)/(𝑝(𝜏) − 1) (𝜏 ∈ Γ)

is well defined and also bounded and bounded away from zero. We say that

a weight 𝑤 : Γ → [0,∞] belongs to 𝐴𝑝(⋅)(Γ) if

sup
𝑡∈Γ

sup
𝑅>0

1

𝑅
∥𝑤𝜒Γ(𝑡,𝑅)∥𝑝(⋅)∥𝑤−1𝜒Γ(𝑡,𝑅)∥𝑞(⋅) < ∞.

If 𝑝 = 𝑐𝑜𝑛𝑠𝑡 ∈ (1,∞), then this class coincides with the well known

Muckenhoupt class. From the Hölder inequality for 𝐿𝑝(⋅)(Γ) (see e.g.

[19, Theorems 13.12 and 13.13] for Muslielak-Orlicz spaces over arbitrary

measure spaces and also [13, Theorem 2.1] for variable Lebesgue spaces over

domains in ℝ𝑛 ) it follows that if 𝑤 ∈ 𝐴𝑝(⋅)(Γ), then Γ is a Carleson curve.

Since 𝐿𝑝(⋅)(Γ, 𝑤) is a Banach function space in the sense of [2,

Definition 1.1], the next result follows from [6, Theorem 6.1] (stated in [6] for

Jordan curves, however its proof remains the same for curves homeomorphic

to line segments, see also [7, Theorem 3.2]).

Theorem 2.1. Let Γ be a simple rectifiable curve and let 𝑝 : Γ → (1,∞)

be a continuous function. If 𝑤 : Γ → [0,∞] is an arbitrary weight such that

the operator 𝑆 is bounded on 𝐿𝑝(⋅)(Γ, 𝑤) , then 𝑤 ∈ 𝐴𝑝(⋅)(Γ) .
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If 𝑝 = 𝑐𝑜𝑛𝑠𝑡 ∈ (1,∞), then 𝑤 ∈ 𝐴𝑝(Γ) is also sufficient for the

boundedness of 𝑆 on the weighted Lebesgue space 𝐿𝑝(Γ, 𝑤) (see e.g. [3,

Theorem 4.15]).

2.2 Submultiplicative functions. Following [3, Section 1.4], we say

a function Φ : (0,∞) → (0,∞] is regular if it is bounded in an open

neighborhood of 1. A function Φ : (0,∞) → (0,∞] is said to be

submultiplicative if

Φ(𝑥𝑦) ≤ Φ(𝑥)Φ(𝑦) for all 𝑥, 𝑦 ∈ (0,∞).

It is easy to show that if Φ is regular and submultiplicative, then Φ is

bounded away from zero in some open neighborhood of 1. Moreover, in this

case Φ(𝑥) is finite for all 𝑥 ∈ (0,∞). Given a regular and submultiplicative

function Φ : (0,∞) → (0,∞), one defines

𝛼(Φ) := sup
𝑥∈(0,1)

log Φ(𝑥)

log 𝑥
, 𝛽(Φ) := inf

𝑥∈(1,∞)

log Φ(𝑥)

log 𝑥
.

Clearly, −∞ < 𝛼(Φ) and 𝛽(Φ) < ∞ .

Theorem 2.2 (see [3, Theorem 1.13] or [14, Chap. 2, Theorem 1.3]). If

a function Φ : (0,∞) → (0,∞) is regular and submultiplicative, then

𝛼(Φ) = lim
𝑥→0

log Φ(𝑥)

log 𝑥
, 𝛽(Φ) = lim

𝑥→∞
log Φ(𝑥)

log 𝑥

and −∞ < 𝛼(Φ) ≤ 𝛽(Φ) < +∞ .

The quantities 𝛼(Φ) and 𝛽(Φ) are called the lower and upper indices of

the regular and submultiplicative function Φ, respectively.

2.3 Indices of powerlikeness. Fix 𝑡 ∈ Γ and put 𝑑𝑡 := max
𝜏∈Γ

∣𝜏 − 𝑡∣ .
Suppose 𝑤 : Γ → [0,∞] is a weight such that log𝑤 ∈ 𝐿1(Γ(𝑡, 𝑅)) for every

𝑅 ∈ (0, 𝑑𝑡] . Put

𝐻𝑤,𝑡(𝑅1, 𝑅2) :=

exp

(
1

∣Γ(𝑡, 𝑅1)∣
∫
Γ(𝑡,𝑅1)

log𝑤(𝜏)∣𝑑𝜏 ∣
)

exp

(
1

∣Γ(𝑡, 𝑅2)∣
∫
Γ(𝑡,𝑅2)

log𝑤(𝜏)∣𝑑𝜏 ∣
) , 𝑅1, 𝑅2 ∈ (0, 𝑑𝑡].

Consider the function

(𝑉 0
𝑡 𝑤)(𝑥) := lim sup

𝑅→0
𝐻𝑤,𝑡(𝑥𝑅,𝑅), 𝑥 ∈ (0,∞).
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Combining Lemmas 4.8–4.9 and Theorem 5.9 of [6] with Theorem 3.4,

Lemma 3.5 of [3], we arrive at the following.

Theorem 2.3. Let Γ be a simple rectifiable curve, 𝑝 : Γ → (1,∞) be a

continuous function satisfying (1.2), and 𝑤 : Γ → [0,∞] be a weight such

that 𝑤 ∈ 𝐴𝑝(⋅)(Γ) . Then, for every 𝑡 ∈ Γ , the function 𝑉 0
𝑡 𝑤 is regular and

submultiplicative and

0 ≤ 1/𝑝(𝑡) + 𝛼(𝑉 0
𝑡 𝑤), 1/𝑝(𝑡) + 𝛽(𝑉 0

𝑡 𝑤) ≤ 1.

The numbers 𝛼(𝑉 0
𝑡 𝑤) and 𝛽(𝑉 0

𝑡 𝑤) are called the lower and upper indices

of powerlikeness of 𝑤 at 𝑡 ∈ Γ, respectively (see [3, Chap. 3]). This

terminology can be explained by the simple fact that for the power weight

𝑤(𝜏) := ∣𝜏 − 𝑡∣𝜆 its indices of powerlikeness coincide and are equal to 𝜆 .

2.4 Matuszewska-Orlicz indices as indices of powerlikeness. If

𝜚 ∈ 𝕎 , then Φ0
𝜚 is a regular and submultiplicative function and its indices

are nothing else but the Matuszewska-Orlicz indices 𝑚(𝜚) and 𝑀(𝜚). The

next result shows that for radial oscillating weights indices of powerlikeness

and Matuszewska-Orlicz indices coincide.

Theorem 2.4 (see [8, Theorem 2.8]). Suppose Γ is a simple Carleson

curve. If 𝑤1, . . . , 𝑤𝑛 ∈ 𝕎 and 𝑤(𝜏) =
∏𝑛

𝑘=1 𝑤𝑘(∣𝜏 − 𝑡𝑘∣) , then for every

𝑡 ∈ Γ the function 𝑉 0
𝑡 𝑤 is regular and submultiplicative and

𝛼(𝑉 0
𝑡𝑘
𝑤) = 𝑚(𝑤𝑘), 𝛽(𝑉 0

𝑡𝑘
𝑤) = 𝑀(𝑤𝑘) for 𝑘 ∈ {1, . . . , 𝑛},

𝛼(𝑉 0
𝑡 𝑤) = 0, 𝛽(𝑉 0

𝑡 𝑤) = 0 for 𝑡 ∈ Γ ∖ {𝑡1, . . . , 𝑡𝑛}.

Note that in [8], Theorem 2.4 is proved for Jordan curves. But the proof

does not use the assumption that Γ is closed. It works also for non-closed

curves considered in this paper.

2.5 Proof of Theorem 1.3. Suppose 𝑆 is bounded on 𝐿𝑝(⋅)(Γ, 𝑤).

From Theorem 2.1 it follows that 𝑤 ∈ 𝐴𝑝(⋅)(Γ). By Hölder’s inequality this

implies that Γ is a Carleson curve. Fix an arbitrary 𝑡 ∈ Γ. Then, in view

of Theorems 2.2 and 2.3 the function 𝑉 0
𝑡 𝑤 is regular and submultiplicative,

so its indices are well defined and satisfy 0 ≤ 1/𝑝(𝑡) + 𝛼(𝑉 0
𝑡 𝑤) and

1/𝑝(𝑡) + 𝛽(𝑉𝑡𝑤) ≤ 1. From these inequalities and Theorem 2.4 it follows

that

(2.1) 0 ≤ 1/𝑝(𝑡𝑘) + 𝑚(𝑤𝑘), 1/𝑝(𝑡𝑘) + 𝑀(𝑤𝑘) ≤ 1

for all 𝑘 ∈ {1, . . . , 𝑛} .



308 Boundedness of the Cauchy Singular Integral Operator

If 𝑆 is bounded on all spaces 𝐿𝑝(⋅)(Γ, 𝑤1+𝜀) for all 𝜀 in a neighborhood

of zero, then as before

0 ≤ 1/𝑝(𝑡𝑘) + 𝑚(𝑤1+𝜀
𝑘 ), 1/𝑝(𝑡𝑘) + 𝑀(𝑤1+𝜀

𝑘 ) ≤ 1

for every 𝑘 ∈ {1, . . . , 𝑛} . It is easy to see that 𝑚(𝑤1+𝜀
𝑘 ) = (1 + 𝜀)𝑚(𝑤𝑘)

and 𝑀(𝑤1+𝜀
𝑘 ) = (1 + 𝜀)𝑀(𝑤𝑘). Therefore

0 ≤ 1/𝑝(𝑡𝑘) + (1 + 𝜀)𝑚(𝑤𝑘), 1/𝑝(𝑡𝑘) + (1 + 𝜀)𝑀(𝑤𝑘) ≤ 1

for all 𝜀 in a neighborhood of zero and for all 𝑘 ∈ {1, . . . , 𝑛} . These

inequalities immediately imply that 0 < 1/𝑝(𝑡𝑘) + 𝑚(𝑤𝑘) and 1/𝑝(𝑡𝑘) +

𝑀(𝑤𝑘) < 1 for all 𝑘 . □

Remark 2.5. The presented proof involves the notion of indices of

powerlikeness, which were invented to treat general Muckenhoupt weights

(see [3]). Weights considered in the present paper are continuous except for

a finite number of points. So, it would be rather interesting to find a direct

proof of the fact that 𝑤 ∈ 𝐴𝑝(⋅)(Γ) implies (2.1), which does not involve the

indices of powerlikeness 𝛼(𝑉 0
𝑡 𝑤) and 𝛽(𝑉 0

𝑡 𝑤).

2.6 Final remarks. In connection with Conjecture 1.4, we would like

to note that for standard Lebesgue spaces 𝐿𝑝(Γ, 𝑤) there are two different

proofs of the stability of the boundedness of 𝑆 on 𝐿𝑝(Γ, 𝑤1+𝜀) for small 𝜀 .

Simonenko’s proof [22] is based on the stability of the Fredholm property

of some singular integral operators related to the Riemann boundary

value problem. Another proof is based on the self-improving property of

Muckenhoupt weights (see e.g. [3, Theorem 2.31]). One may ask whether

does 𝑤 ∈ 𝐴𝑝(⋅)(Γ) imply 𝑤1+𝜀 ∈ 𝐴𝑝(⋅)(Γ) for all 𝜀 ∈ (−𝜀0, 𝜀0) with some

fixed 𝜀 > 0? The positive answer would give a proof of the complete

converse of (1.3). The author does not know any stability result for the

boundedness of 𝑆 or a self-improving property for 𝑤 ∈ 𝐴𝑝(⋅)(Γ).

After this paper had been submitted, P. Hästö and L. Diening [5] have

found a necessary and sufficient condition for the boundedness of the

classical Hardy-Littlewood maximal function on weighted variable Lebesgue

spaces in the setting of ℝ𝑛 . Note that they write a weight as a measure

(outside of ∣ ⋅ ∣𝑝(𝜏) ). Their condition is another generalization of the classical

Muckenhoupt condition. In the setting of Carleson curves (and the weight

written inside of ∣ ⋅ ∣𝑝(𝜏) ), the Hästö-Diening condition takes the form

(2.2)

sup
𝑡∈Γ

sup
𝑅>0

(
1

𝑅𝑝Γ(𝑡,𝑅)

∫
Γ(𝑡,𝑅)

𝑤(𝜏)𝑝(𝜏)∣𝑑𝜏 ∣
)
∥𝑤(⋅)−𝑝(⋅)𝜒Γ(𝑡,𝑅)(⋅)∥𝑞(⋅)/𝑝(⋅) < ∞,
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where

𝑝Γ(𝑡,𝑅) :=

(
1

∣Γ(𝑡, 𝑅)∣
∫
Γ(𝑡,𝑅)

1

𝑝(𝜏)
∣𝑑𝜏 ∣

)−1

.

Let 𝐻𝐷𝑝(⋅)(Γ) denote the class of weights 𝑤 : Γ → [0,∞] satisfying (2.2).

Following the arguments contained in [5, Remark 3.10], one can show that

𝐴𝐿𝑝(⋅)(Γ) ⊃ 𝐻𝐷𝑝(⋅)(Γ)

whenever 𝑝 : Γ → (1,∞) satisfies the Dini-Lipschitz condition (1.2). We

conjecture that the Hästö-Diening characterization remains true also for the

operator 𝑆 in the setting of Carleson curves.

Conjecture 2.6. Let Γ be a simple Carleson curve, 𝑤 : Γ → [0,∞] be

a weight, and 𝑝 : Γ → (1,∞) be a continuous function satisfying the Dini-

Lipschitz condition (1.2). The operator 𝑆 is bounded on 𝐿𝑝(⋅)(Γ, 𝑤) if and

only if 𝑤 ∈ 𝐻𝐷𝑝(⋅)(Γ) .

Acknowledgement. The author would like to thank the anonymous referee
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