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Abstract. Let g be a holomorphic of the unit ball B in the n-dimensional
complex space, and denote by T, the extended Cesdro operator with symbol g.
Let 0 < p < 400, n—1< qg< 400, ¢ > —1 and a > 0, starting with a
brief introduction to well known results about Cesdro operator, we investigate
the boundedness and compactness of Ty between generalized Besov space B(p,q)
and «- Bloch space B in the unit ball, and also present some necessary and
sufficient conditions.

1. Introduction

For any z = (21, -, 2n), w= (w1, - ,wy,) € C™, the inner product is

defined by (z,w) = > z,wy. Let B be the unit ball of C™, the class of all
k=1

holomorphic functions on B is defined by H(B). For f € H(B), we write

Vi) = (gE e o)
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and

Ri2) = (V)5 =) 5 )
j=1

For @ > 0, f issaid to be in the Bloch space B provided that f € H(B)
and

| flla = sup(1 — 2]V f(2)] < +o0.
z€EB

As we all know, B* is a Banach space when « > 1 under the norm || f||g« =

|£(0)] +1/flla- The spaces B! and B*(0 < o < 1) are just the Bloch space

and the Lipschitz spaces Li_, respectively. From [26] we know that a

holomorphic function f € B* if and only if sup,5(1—|2[*)*|Rf(2)| < +oc.
Furthermore, by the Norm Equivalent Theorem we have

I fllge = [£(0)] + sup(L — |2[*)*|Rf ()],
zeB

where M =~ N means that the two quantities M and N are comparable,
that is, there exist two positive constants C; and C3 such that C1M <
N < (Cy;M.

Let dv be the Lebesegue measure on the unit ball B of C™ normalized
so that v(B) = 1. For a € B, let g(z,a) = log|p.(z)|~! be the Green’s
function on B with logarithmic singularity at a, where ¢, is the M dbius
transformation of B with ¢,(0) = a, p.(a) = 0,9, = ¢, *.

Let 0 < p,s < 4+00,—n—1 < g < +00 and ¢+ s > —1. We say
f € F(p,q,s) provided that f € H(B) and

1l 7.9 = 1FO)] + {Sup/ V()P = |Z|2)q95(27a)dv(3)}p < 400
a€B.JB

The space F(p,q,s) was first defined in [31] (see also [27]).
Let 0 <p < 400, —n—1 < g < 400 and ¢ > —1. We say that f € B(p, q)
if f € H(B) and

1Al .0y = {/B IVf(2)[P(1 = |z|2)qdv(z)}; < 4o00.

It is obvious that B(p,q) is a classical Besov space if we take special
parameters p,q. It is not hard to show that B(p,q) is a Banach space
under the norm || f|g(p.q) = [f(0)] + [|fll(p,q), We refer the reader to see
Zhu’s book [35]. From Exercises 2.2 in [35], we know that a holomorphic
function f € B(p,q) if and only if [ |Rf(2)[P(1 — |2|*)? < +oo.
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Let f(z) be a holomorphic function on the unit disc D with Taylor
15,54 .
expansion f(z) = > a;27, the classical Cesdro operator acting on f is

7=0
defined by

clfiz) =3 <j% Zak> ),

=0 k=0

Despite the simplicity of the definition of C[f](z), several problems
are encountered when characterizing the boundedness and compactness of
Cesdro operator between spaces of holomorphic functions. These problems
require profound and interesting analytical machinery. Moreover, the
study of Cesdaro operator has arguably become a major driving force in
the development of modern complex analysis. The papers listed in the
bibliography are excellent sources for the recent developments in the theory
of Cesdro operators. It is well known that the operator C is bounded on the
usual Hardy spaces HP(D) for 0 < p < oo, Bergman spaces and Dirichlet
spaces. See [3, 7, 19, 20, 17, 25].

But the operator C is not always bounded, in [22], Shi and Ren gave
a necessary and sufficient condition for the operator C to be bounded on
mixed norm spaces in the unit disc. It is natural to ask what are the
conditions for higher dimensional case.

A little calculation shows C[f](z) = £ [ f(t)(log 125)'dt. From this point
of view, if ¢ € H(B), it is natural to consider the extended Cesdro operator
(also called Volterra-type operator or Riemann-Stieltjes type operator) T,
on H(B) defined by

T,(f)(2) = / f(t2)Ry(t2) .

It is easy to show that T, take H(B) into itself. In general, there is no
easy way to determine when an extended Cesdaro operator is bounded or
compact.

The boundedness and compactness of this operator on weighted Bergman,
mixed norm , Bloch, and Dirichlet spaces in the unit ball have been studided
by Xiao [25], Hu and Zhang [9, 10, 11, 30], Li and Stevi¢ [12, 13, 15]. More
recently, Li and Stevié [14] discuss the compactness of the operator between
F(p,q,s) and a-Bloch spaces in the ball, where s must be positive.

In this paper, we will continue this line of research and characterize those
g for which T, is bounded (or compact) between generalized Besov space
B(p,q) and «- Bloch space B® in the unit ball, and also present some
necessary and sufficient conditions. For the proof, we need different method
and some complex calculation skills.
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For p > 0,z € B, denote the function

The main results of the paper are the following:

Theorem 1. For 0 < p < 400, —-n—1< g < 400, ¢ > —1,a >0,
g € H(B), T, is bounded from B(p,q) to B if and only if

sup(1 — |2/2)*G ni144 (2)|Rg(2)| < o0.
z€EB P

Theorem 2. For 0 < p < 400, n—1<qg< 400, ¢ > —1,aa >0,
g € H(B), T, is compact from B(p,q) to B* if and only if g € B
for 0 < %}"’q < 1, and lim, ;- (1 — [2[*)*G nt14 (2)|Rg(2)| = 0 for
nilig s q ’

e

2. Some Lemmas

In the following, we will use the symbol ¢ or C to denote a finite positive
number which does not depend on variable z and may depend on some
norms and parameters p,q,n,«,x, f etc, not necessarily the same at each
occurrence. We first give some lemmas.

Lemma 1. If 0 < p < 400, —n—1 < g < 400, ¢ > —1, then
ntltg

B(p,q) C B~ 7 and there exists ¢ > 0, such that for all f € B(p,q),

IFIl joties < ellfllBp.a)-

Proof. Suppose f € B(p,q). Fix ¢ with 0 < rg < 1. Since
(Rf)opq € H(B), |(Rf) o al? is subharmonic in B. That is

RI@F = (R P < 2 [ (RS0 gulw)Pdofe)
1 (1= Ja)"+
ol N |(Rf(z))|p|1_ 70> @D dv(z).

From (5) in [37], we have

1—7“0
1+

1+7g

(1-laf?) < (1 |2f*) < 122

%)

1=z
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as z € pq(roB). Thus

(1 _ |a|2)n+1 4n+1 (1 + TO)‘q‘
1— < z,a>[2"t2(1—|2]2)2 = (1 —|a2)rt1ta 1 —pry”
Consequently, we have
1 (1 _ |a|2)n+1
R L R p d
R < g [ RO L
1 / 2 (1 —|al*)"+?
= = [Rf(2)[P(1 = [2]%)7 dv(z)
T(Q) @a(roB) |1_ <za> |2n+2(1 - |Z|2)q
n+1,.—2n
SR i R T
(1 — |af2)r+1i+a 1 — g B(p,q)
This shows that f € B7 and HfHBn+;+q <cllfllBw.g)- O

Lemma 2. Let p > 0. Then there exits a constant ¢ > 0 such that for
all f € BP and z € B, the estimate

[f ()] < cGp(2)[| e,

holds, where G,(z) is the function defined in the introduction.

Proof. This Lemma can be easily obtained by some integral estimates.
See Lemma 2.2 in [27] for details. O

Lemma 3. ([30]) Let 0 < p < 1, {f;} be any bounded sequence in BP
and f;(z) = 0 on any compact subset of B. Then

lim sup|f;(2)| =0.

)7+ 2eB

Lemma 4. There exists a constant ¢ > 0 such that for all t > —1 and
z€ B,
2 1— 2\t
[ Jue (1~ fwf?)
B 1-<z,w>1 (1— < z,w >)nt1+t

dv(w) < C(log %W)Q

Proof. This Lemma can be proved by Stirling formula and some complex
integral estimates. For the convenience of the readers, we will provide the
proof here.
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Denote the left term as I; and let 2\ =t + n + 1. By Taylor expansion

+oo
1 < z,w >U<w,z >Y
1 2 _ ) )
|Og1—<z,w>| Z uv
u,v=1
and
+oo
1 _ TA+EITAN+1) & .
T—<zw> > g::o N
Therefore
+oo +4o0
T, — +u +v 1— 2\t
: / 3 Z uvk'l'F < 2w S w2 S (1 Jwl?) du(w)

u,v=1k,l=
ut+k—1

= T+ BT+ 1) oa oy
kZ:O > u(u(+k_)l)](€]llr /|<Z w > PO (L — fw]?) dv(w)

=0

>

u=1

o0

Without any loss of generality, we may assume that z = |z|e1, so that
/B | < z,w > PR (1 — |w|?)tdo(w)
- /B(|Z|w1)2(u+k)(1 = [w]?) dv(w)

o /o1 /aB PP PR ol [POHE (1 — ) dpd (€)

_ 2n|z|2(u+k)/ p 2(utk+n— 1)+1( )dp/ |£1|2(u+k)d5(£)
0

sty Lt k£ mD(E 1) (0= D)+ )

Nu+k+n+t+1) (u+k+n—1)

U(t+ 1) (u+ &+ 1)n! !
T2\ +u + k)

= nlz

3

which gives
.o ffi COLWEA+D) D+ DDt kot Dnl o
k et = uu+ k= DRIT(N)? TRA+u+k)

u+k—1
_ ZZn'Ft—i—l PO+ )+ k+ 1) +Z PA+D | ot
uk!IT(A)2T (2N + u + k) (u+ k=D

=0
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ut+k—1 F()\ + l) S
2. wr kol

ukICOV)20(2A + u + k)

i"f Dt + 1T\ + k)D(u+ k4 1)
=1k= =0
+o0o

Al (t + 1T (u + 1) A+z .
+uz::1 ul' (VT2 + ) Z ||

= L+ I
By Stirling formula, there exists an absolute constant C; such that for
all LLu,k>1
F(A+1) v LTlutk+1) 1-2x
<yl — < k
TR Vo e s e
Plu+k+1) < Chyl-2A I'(A+k) < 01
LA +u) — ' ’ ko=t
so that
L<C3 Ji"io T+ 1R+ k) ST A |2 [20+k)
b= (A2 (u+k—1)
u=1k=1 1=1
and

1

—+oo _ u—
n!D(t + 1)ul=2A A=
I < 2 2u
2 > Cl E:l UF(A) ;:1 |Z|

Note that

M-1 l()\fl)

M -1
=1

~ M 2log M

for any M > 2. Consequently, there exists a constant C', such that

I

tootoo A—-1 1-2A
nFt—!—lk u+k _ u
C E E ( ) (u+ k) 2 log(u + k)|z|>+F)

IN

2
u=1k=1 )u
B C*f*fn!r(tﬂ) P log(u+k) 1 R
e T (utk) utk uk
< C§§i| 2640 = O (log — 132
- == uk 1— |22

and
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Iy

IN

= nlD(t A+ Dul =2
CZ—n' (t+ Du u 2 log u|z|*"
u=1

T(Nu

—+oo
nll'(t+1) 1 logu, o
= C v
1; r)  uwMl o 12

Clearly, I can be controlled by (log ﬁ)z and the assertion is proved.
O

Lemma 5. Let g be a holomorphic self-map of B, K is an arbitrary
compact subset of B. Then T, : B(p,q) — B* is compact if and only if for
any uniformly bounded sequence {f;}(j € N) in B(p,q) which converges to
zero uniformly for z on K when j — oo, ||Tyf;|lse — 0 holds.

Proof. Assume that T, is compact and suppose {f;} is a sequence in
B(p,q) with sup;cy || fillBpg) < oo and f; — 0 uniformly on compact
subsets of B. By the compactness of T, we have that {T,f;} has a
subsequence {T,f;.} which converges in B, say, to h. By Lemma 2,
it follows that for any compact set K C B, there is a positive constant
Ck independent of f such that |Tj f;(2) — h(2)| < Ck||Tyf; — k| g~ for all
z € K. This implies that T, f;(z) — h(z) — 0 uniformly on compact sets of
B. Since K is a compact subset of B, by the hypothesis and the definition
of Ty, T,f;(z) converges to zero uniformly on K. Since K is arbitrary, it
follows that the limit function h is equal to 0. Since it is true for arbitrary
subsequence of {f;}, we see that T, f; — 0 in B“.

Conversely, let {f;} € K, = Bp(p,q)(0,7), where Bp(, ¢)(0,7) is a ball in
B(p,q). Then by Lemma 2, {f;} is uniformly bounded in arbitrary compact
subset M of B. By Montel’s Lemma, {f;} is a normal family , therefore
there is a subsequence {f;,,} which converges uniformly to f € H(B) on
compact subsets of B. It follows that Vf; — Vf uniformly on compact
subsets of B.

Denote By, = B(0,1 — ) C C™, then

/ IV FP(L— |22)idu(2)
B

= lim lim V£, [P(1 - |2[2)9dv(z)

k—+o00 By m——+oo

< dm tm [V PO [oP) o)
By

~ k—+oom—+oo
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But {fjnL } C BB(p7q) (07 T') . Therefore

/ V£, (1 [2[2)du(z) < 17,

By,
so that
/ IV FIP(L— |2[?)0do(z) < 2.
B

Consequently, || fllpp,q) <7, and f € B(p,q). Hence | f;,, — f[l < 2r < oo
and the sequence {f;, — f} converges to 0 on compact subsets of B, by
the hypothesis of this lemma, it follows that Ty f;,, — T,f in B*. Thus
the set T, (K,) is relatively compact and the proof is complete.

O

Lemma 6. Let g € H(B), then for any f € H(B) and z € B

R[T,f](2) = f(2)Rg(2).

Proof. Suppose the holomorphic function fRg has the Taylor expansion

ng Z 2%

|| >1

Then we have

R(T,f)(z) = R | f(t2)R tz =R Z aq(tz)*—
/ 0 la|>1
= RY. - | =Y aaz® = (fRg)(2).
la|>1 la|>1

3. Proof of Theorem 1

Suppose sup,c (1 — [2]?)*Gati+q (2)|Rg(2)| < 00. By Lemmas 1, 2 and
p
6, it follows that for all f € H(B)

(1= |21*)*|RITy f1(=)] (1= 121 f (=) Rg(2)]

< (1= o) Garea (2) Ry (2)
< el (1 = [#2)°G wirsa (2) Ry (=)
< clflpa
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which implies that T is bounded. On the other hand, suppose T is
bounded, with || T, f|ze < c||fl|Bp,q)-

Case 1. If 0 < %}ﬂ <1, it is clear that T, f € B for f =1, i.e,

sup(l — |2|*)*|RT, f(2)] = sup(1 — |2[*)*|Rg(2)| < oc.
z€EB z€B

Case 2. If %}W > 1, we need to prove that
ntltq

1
su 1—z2a( ) ’ Rg(z)| < oo.
sup(1 — )" (1= Ry 2)

For w € B, consider the test function

1— |wf?
ntltqg ®

(I-<zw>) »

fw(2) =

It is easy to see that

(1— |2
< z,w > |[rHitaty dv(z) < c.

/B(l_|2| )V fu(2)[Pdu(z) < e(1-|w] )p/B =

The last inequality follws from [35], so that f,, € B(p,q) for any w € B.
With the boundedness of T}, we get

1 ntltq

(1—|Z|2)a(1_|z|2) 7 [Rg(2)]

(1= |2 f2(2)||Rg(2)|
(1= |2 |R(Ty f2)(2)|
Ty fellge < c||T,l| < oo.

IA

Case 3. If %}ﬂ =1, namely p=n+ 1+ ¢, we need to prove

2
sup(1 — |2]2)*log ———|Rg(2)| < cc.
sup(1 = [£[*)" log [ Rg(2)|

For w € B, consider the test function

)1+%.

3 [

fw(z) = (IOg )7 (1Og m

1
1 — |w|?
It is easy to show that f,, € B(p,q) from Lemma 4. The result follows by
the same discussion as that of Case 2, the detail is omitted. So, the proof
of Theorem 1 is completed.
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4. Proof of Theorem 2

Case 1. 0 < %}ﬂ < 1. If T, is compact, it is obvious that T, is
bounded, in the proof of Theorem 1, we have got that g € B“.

Conversely, let {f;} be an uniformly bounded sequence in B(p, ¢) which
converges to zero uniformly on any compact subset of B when j — oo.

From Lemma 1, we know that ||fjHBn+1+q < clfillBp,q), thus {f;} is

n+tltq

uniformly bounded in B~ » . Then by the hypothesis and Lemma 3, we
get that

lim sup|f;(z)| =0.
)70 zeB

From which we have
1Ty fill= < esup(1 —[2*)*[f;(2)Rg(2)| < ¢llglls sup |f;(2)| = 0,
zeB z€B

when j — 0o. So Ty is compact from Lemma 5.

Case 2. If %}ﬂ =1, it is sufficient to prove

1
lim (1 —|z*)®|R log——— =0
dgll( |2|7)% | Rg(2)] B TP

Suppose that lim (1 — |z|2)°‘|Rg(z)|logﬁ # 0. Then there exists

|z|—1

g0 >0, {27} € B, such that

_ 5712\ J - -
(1= 127 Ry (") log 77 > =0
Let
1 _2 1 142
(2) = (log ———)"»(log —————— )13,
f](z) (Og1_|zj|2) (Og 1_<Z7Zj >)

We have shown that f; € B(p,q) with || fj||p@,q < ¢, and it is obvious
that f; — 0 uniformly on any compact subset of B as j — co. While

1Ty f5llBo ' ' '
> (1—-[Z]2)1f5 ()| Rg (7))

= {0 =[PP Re() og T M) (o T— )

1

v

“ol (%) (108 T—57)”

= £o,
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then ||T,fjl|p~ doesn’t tend to 0 when j — oo. It’s a contraction by
Lemma 5. So

1
li 1—|z2)%R log——— =0
dgll( |2[%)%| Rg(2)]| e
Meanwhile, note that Hml 1ogﬁ = o0, it is easy to see that
z|—
lim (1 — |2[2)°|Rg(=)| = 0.

|z|]—1
Therefore, we have

2
li 1— [z}~ log — =0.
lim (1= =) | Rg(2) g =z =0
If %}ﬂ > 1, then consider
1—[29)?
fi(z) = ntitq

(I-<z,20>) »

and use the same method as in the case of %}H =1, we can also prove

li

m
|z]—1

1
2\« —

Conversely, let {f;} be an uniformly bounded sequence in B(p,q) which

converges to zero uniformly on any compact subset of B when j — oo.

If limp,q-(1 — |2[*)*G ne1ea (2)|Rg(2)| = 0, then for alle > 0, there
P

existsr € (0,1), such that

(1= |2|*)*G nsreq (2)|Rg(2)]| < &,7 < |2| < 1.

Then
1Ty 5 e
< csup (- PlIERIE] +e sup (1— 5P ()Re()]
j#l<r r<lzl<t
< c‘s1‘1<p (1= z[%)*[Rg(2)|If;(2)]
+c sup (1— [2°)*Gnrira (2)|RI(2)|| £l Bpra)
r<|z|<1 P
< c‘sl\l<p (1 =122 Rg(2)|f;(2)| + el fill Bp.a)
< ce )

if j is sufficiently large. It follows from Lemma 5 that T, is compact. So
now, the proof of Theorem 2 is completed.
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