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Abstract. Let 𝑔 be a holomorphic of the unit ball 𝐵 in the 𝑛 -dimensional

complex space, and denote by 𝑇𝑔 the extended Ces 𝑎́ ro operator with symbol 𝑔 .

Let 0 < 𝑝 < +∞,−𝑛 − 1 < 𝑞 < +∞ , 𝑞 > −1 and 𝛼 > 0, starting with a

brief introduction to well known results about Ces 𝑎́ ro operator, we investigate

the boundedness and compactness of 𝑇𝑔 between generalized Besov space 𝐵(𝑝, 𝑞)

and 𝛼 - Bloch space ℬ𝛼 in the unit ball, and also present some necessary and

sufficient conditions.

1. Introduction

For any 𝑧 = (𝑧1, ⋅ ⋅ ⋅ , 𝑧𝑛), 𝑤 = (𝑤1, ⋅ ⋅ ⋅ , 𝑤𝑛) ∈ 𝐶𝑛 , the inner product is

defined by ⟨𝑧, 𝑤⟩ =
𝑛∑

𝑘=1

𝑧𝑘𝑤̄𝑘 . Let 𝐵 be the unit ball of 𝐶𝑛 , the class of all

holomorphic functions on 𝐵 is defined by 𝐻(𝐵). For 𝑓 ∈ 𝐻(𝐵), we write

∇𝑓(𝑧) =
(
∂𝑓

∂𝑧1
(𝑧), ⋅ ⋅ ⋅ , ∂𝑓

∂𝑧𝑛
(𝑧)

)
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and

𝑅𝑓(𝑧) = ⟨∇𝑓(𝑧), 𝑧⟩ =
𝑛∑

𝑗=1

𝑧𝑗
∂𝑓(𝑧)

∂𝑧𝑗
.

For 𝛼 ≥ 0, 𝑓 is said to be in the 𝐵𝑙𝑜𝑐ℎ space ℬ𝛼 provided that 𝑓 ∈ 𝐻(𝐵)

and

∥𝑓∥𝛼 = sup
𝑧∈𝐵
(1 − ∣𝑧∣2)𝛼∣∇𝑓(𝑧)∣ < +∞.

As we all know, ℬ𝛼 is a 𝐵𝑎𝑛𝑎𝑐ℎ space when 𝛼 ≥ 1 under the norm ∥𝑓∥ℬ𝛼 =

∣𝑓(0)∣+ ∥𝑓∥𝛼 . The spaces ℬ1 and ℬ𝛼(0 < 𝛼 < 1) are just the 𝐵𝑙𝑜𝑐ℎ space

and the 𝐿𝑖𝑝𝑠𝑐ℎ𝑖𝑡𝑧 spaces 𝐿1−𝛼 respectively. From [26] we know that a

holomorphic function 𝑓 ∈ ℬ𝛼 if and only if sup𝑧∈𝐵(1−∣𝑧∣2)𝛼∣𝑅𝑓(𝑧)∣ < +∞.

Furthermore, by the Norm Equivalent Theorem we have

∥𝑓∥ℬ𝛼 ≈ ∣𝑓(0)∣+ sup
𝑧∈𝐵
(1− ∣𝑧∣2)𝛼∣𝑅𝑓(𝑧)∣,

where 𝑀 ≈ 𝑁 means that the two quantities 𝑀 and 𝑁 are comparable,

that is, there exist two positive constants 𝐶1 and 𝐶2 such that 𝐶1𝑀 ≤
𝑁 ≤ 𝐶2𝑀 .

Let 𝑑𝑣 be the 𝐿𝑒𝑏𝑒𝑠𝑒𝑔𝑢𝑒 measure on the unit ball 𝐵 of 𝐶𝑛 normalized

so that 𝑣(𝐵) = 1. For 𝑎 ∈ 𝐵 , let 𝑔(𝑧, 𝑎) = log ∣𝜑𝑎(𝑧)∣−1 be the Green’s

function on B with logarithmic singularity at 𝑎 , where 𝜑𝑎 is the 𝑀𝑜𝑏𝑖𝑢𝑠

transformation of 𝐵 with 𝜑𝑎(0) = 𝑎, 𝜑𝑎(𝑎) = 0, 𝜑𝑎 = 𝜑−1
𝑎 .

Let 0 < 𝑝, 𝑠 < +∞,−𝑛 − 1 < 𝑞 < +∞ and 𝑞 + 𝑠 > −1. We say
𝑓 ∈ 𝐹 (𝑝, 𝑞, 𝑠) provided that 𝑓 ∈ 𝐻(𝐵) and

∥𝑓∥𝐹 (𝑝,𝑞,𝑠) = ∣𝑓(0)∣+
{
sup
𝑎∈𝐵

∫
𝐵

∣∇𝑓(𝑧)∣𝑝(1 − ∣𝑧∣2)𝑞𝑔𝑠(𝑧, 𝑎)𝑑𝑣(𝑧)
} 1

𝑝

< +∞.

The space 𝐹 (𝑝, 𝑞, 𝑠) was first defined in [31] (see also [27]).

Let 0 < 𝑝 < +∞ , −𝑛−1 < 𝑞 < +∞ and 𝑞 > −1. We say that𝑓 ∈ 𝐵(𝑝, 𝑞)

if 𝑓 ∈ 𝐻(𝐵) and

∥𝑓∥(𝑝,𝑞) =
{∫

𝐵

∣∇𝑓(𝑧)∣𝑝(1− ∣𝑧∣2)𝑞𝑑𝑣(𝑧)
} 1

𝑝

< +∞.

It is obvious that 𝐵(𝑝, 𝑞) is a classical Besov space if we take special

parameters 𝑝, 𝑞 . It is not hard to show that 𝐵(𝑝, 𝑞) is a Banach space

under the norm ∥𝑓∥𝐵(𝑝,𝑞) = ∣𝑓(0)∣ + ∥𝑓∥(𝑝,𝑞) , we refer the reader to see
Zhu’s book [35]. From Exercises 2.2 in [35], we know that a holomorphic

function 𝑓 ∈ 𝐵(𝑝, 𝑞) if and only if
∫
𝐵
∣𝑅𝑓(𝑧)∣𝑝(1 − ∣𝑧∣2)𝑞 < +∞ .
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Let 𝑓(𝑧) be a holomorphic function on the unit disc 𝐷 with 𝑇𝑎𝑦𝑙𝑜𝑟

expansion 𝑓(𝑧) =
∞∑
𝑗=0

𝑎𝑗𝑧
𝑗 , the classical Ces 𝑎́ro operator acting on 𝑓 is

defined by

𝒞[𝑓 ](𝑧) =
∞∑
𝑗=0

(
1

𝑗 + 1

𝑗∑
𝑘=0

𝑎𝑘

)
𝑧𝑗.

Despite the simplicity of the definition of 𝒞[𝑓 ](𝑧), several problems
are encountered when characterizing the boundedness and compactness of

Ces 𝑎́ro operator between spaces of holomorphic functions. These problems

require profound and interesting analytical machinery. Moreover, the

study of Ces 𝑎́ro operator has arguably become a major driving force in

the development of modern complex analysis. The papers listed in the

bibliography are excellent sources for the recent developments in the theory

of Ces 𝑎́ro operators. It is well known that the operator 𝒞 is bounded on the
usual Hardy spaces 𝐻𝑝(𝐷) for 0 < 𝑝 < ∞ , Bergman spaces and Dirichlet
spaces. See [3, 7, 19, 20, 17, 25].

But the operator 𝒞 is not always bounded, in [22], Shi and Ren gave
a necessary and sufficient condition for the operator 𝒞 to be bounded on
mixed norm spaces in the unit disc. It is natural to ask what are the

conditions for higher dimensional case.

A little calculation shows 𝒞[𝑓 ](𝑧) = 1
𝑧

∫ 𝑧

0
𝑓(𝑡)(log 1

1−𝑡 )
′𝑑𝑡 . From this point

of view, if 𝑔 ∈ 𝐻(𝐵), it is natural to consider the extended Ces 𝑎́ro operator

(also called Volterra-type operator or Riemann-Stieltjes type operator) 𝑇𝑔

on 𝐻(𝐵) defined by

𝑇𝑔(𝑓)(𝑧) =

∫ 1

0

𝑓(𝑡𝑧)𝑅𝑔(𝑡𝑧)
𝑑𝑡

𝑡
.

It is easy to show that 𝑇𝑔 take 𝐻(𝐵) into itself. In general, there is no

easy way to determine when an extended Ces 𝑎́ro operator is bounded or

compact.

The boundedness and compactness of this operator on weighted Bergman,

mixed norm , Bloch, and Dirichlet spaces in the unit ball have been studided

by Xiao [25], Hu and Zhang [9, 10, 11, 30], Li and Stević [12, 13, 15]. More

recently, Li and Stević [14] discuss the compactness of the operator between

𝐹 (𝑝, 𝑞, 𝑠) and 𝛼 -Bloch spaces in the ball, where 𝑠 must be positive.

In this paper, we will continue this line of research and characterize those

𝑔 for which 𝑇𝑔 is bounded (or compact) between generalized Besov space

𝐵(𝑝, 𝑞) and 𝛼 - Bloch space ℬ𝛼 in the unit ball, and also present some

necessary and sufficient conditions. For the proof, we need different method

and some complex calculation skills.



212 Extended Ces 𝑎́ro operators

For 𝑝 > 0, 𝑧 ∈ 𝐵, denote the function

𝐺𝑝(𝑧) =

⎧⎨
⎩
1, 0 < 𝑝 < 1;
log 2

1−∣𝑧∣2 , 𝑝 = 1;(
1

1−∣𝑧∣2
)𝛼−1

, 𝑝 > 1.

The main results of the paper are the following:

Theorem 1. For 0 < 𝑝 < +∞ , −𝑛 − 1 < 𝑞 < +∞ , 𝑞 > −1, 𝛼 ≥ 0 ,

𝑔 ∈ 𝐻(𝐵) , 𝑇𝑔 is bounded from 𝐵(𝑝, 𝑞) to ℬ𝛼 if and only if

sup
𝑧∈𝐵
(1− ∣𝑧∣2)𝛼𝐺𝑛+1+𝑞

𝑝
(𝑧)∣𝑅𝑔(𝑧)∣ < ∞.

Theorem 2. For 0 < 𝑝 < +∞,−𝑛 − 1 < 𝑞 < +∞ , 𝑞 > −1, 𝛼 ≥ 0 ,

𝑔 ∈ 𝐻(𝐵) , 𝑇𝑔 is compact from 𝐵(𝑝, 𝑞) to ℬ𝛼 if and only if 𝑔 ∈ ℬ𝛼

for 0 < 𝑛+1+𝑞
𝑝 < 1 , and lim∣𝑧∣→1−(1 − ∣𝑧∣2)𝛼𝐺𝑛+1+𝑞

𝑝
(𝑧)∣𝑅𝑔(𝑧)∣ = 0 for

𝑛+1+𝑞
𝑝 ≥ 1 .

2. Some Lemmas

In the following, we will use the symbol 𝑐 or 𝐶 to denote a finite positive

number which does not depend on variable 𝑧 and may depend on some

norms and parameters 𝑝, 𝑞, 𝑛, 𝛼, 𝑥, 𝑓 etc, not necessarily the same at each

occurrence. We first give some lemmas.

Lemma 1. If 0 < 𝑝 < +∞ , −𝑛 − 1 < 𝑞 < +∞ , 𝑞 > −1 , then
𝐵(𝑝, 𝑞) ⊂ ℬ 𝑛+1+𝑞

𝑝 and there exists 𝑐 > 0 , such that for all 𝑓 ∈ 𝐵(𝑝, 𝑞) ,

∥𝑓∥
ℬ

𝑛+1+𝑞
𝑝

≤ 𝑐∥𝑓∥𝐵(𝑝,𝑞).

Proof. Suppose 𝑓 ∈ 𝐵(𝑝, 𝑞). Fix 𝑟0 with 0 < 𝑟0 < 1. Since

(𝑅𝑓) ∘ 𝜑𝑎 ∈ 𝐻(𝐵), ∣(𝑅𝑓) ∘ 𝜑𝑎∣𝑝 is subharmonic in 𝐵 . That is

∣𝑅𝑓(𝑎)∣𝑝 = ∣(𝑅𝑓) ∘ 𝜑𝑎(0)∣𝑝 ≤ 1

𝑟2𝑛0

∫
𝑟0𝐵

∣(𝑅𝑓) ∘ 𝜑𝑎(𝜔)∣𝑝𝑑𝑣(𝜔)

=
1

𝑟2𝑛0

∫
𝜑𝑎(𝑟0𝐵)

∣(𝑅𝑓(𝑧))∣𝑝 (1− ∣𝑎∣2)𝑛+1

∣1− < 𝑧, 𝑎 > ∣(2𝑛+2)
𝑑𝑣(𝑧).

From (5) in [37], we have

1− 𝑟0
1 + 𝑟0

(1− ∣𝑎∣2) ≤ (1− ∣𝑧∣2) ≤ 1 + 𝑟0
1− 𝑟0

(1− ∣𝑧∣2)
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as 𝑧 ∈ 𝜑𝑎(𝑟0𝐵). Thus

(1− ∣𝑎∣2)𝑛+1

∣1− < 𝑧, 𝑎 > ∣2𝑛+2(1− ∣𝑧∣2)𝑞 ≤ 4𝑛+1

(1− ∣𝑎∣2)𝑛+1+𝑞
(
1 + 𝑟0
1− 𝑟0

)∣𝑞∣.

Consequently, we have

∣𝑅𝑓(𝑎)∣𝑝 ≤ 1

𝑟2𝑛0

∫
𝜑𝑎(𝑟0𝐵)

∣𝑅𝑓(𝑧)∣𝑝 (1 − ∣𝑎∣2)𝑛+1

∣1− < 𝑧, 𝑎 > ∣2𝑛+2
𝑑𝑣(𝑧)

=
1

𝑟2𝑛0

∫
𝜑𝑎(𝑟0𝐵)

∣𝑅𝑓(𝑧)∣𝑝(1− ∣𝑧∣2)𝑞 (1− ∣𝑎∣2)𝑛+1

∣1− < 𝑧, 𝑎 > ∣2𝑛+2(1− ∣𝑧∣2)𝑞 𝑑𝑣(𝑧)

≤ 4𝑛+1𝑟−2𝑛
0

(1 − ∣𝑎∣2)𝑛+1+𝑞
(
1 + 𝑟0
1− 𝑟0

)∣𝑞∣∥𝑓∥𝑝𝐵(𝑝,𝑞).

This shows that 𝑓 ∈ ℬ 𝑛+1+𝑞
𝑝 and ∥𝑓∥

ℬ
𝑛+1+𝑞

𝑝
≤ 𝑐∥𝑓∥𝐵(𝑝,𝑞). □

Lemma 2. Let 𝑝 > 0 . Then there exits a constant 𝑐 > 0 such that for

all 𝑓 ∈ ℬ𝑝 and 𝑧 ∈ 𝐵, the estimate

∣𝑓(𝑧)∣ ≤ 𝑐𝐺𝑝(𝑧)∥𝑓∥ℬ𝑝 ,

holds, where 𝐺𝑝(𝑧) is the function defined in the introduction.

Proof. This Lemma can be easily obtained by some integral estimates.

See Lemma 2.2 in [27] for details. □

Lemma 3. ([30]) Let 0 < 𝑝 < 1 , {𝑓𝑗} be any bounded sequence in ℬ𝑝

and 𝑓𝑗(𝑧)→ 0 on any compact subset of 𝐵 . Then

lim
𝑗→∞

sup
𝑧∈𝐵

∣𝑓𝑗(𝑧)∣ = 0.

Lemma 4. There exists a constant 𝑐 > 0 such that for all 𝑡 > −1 and
𝑧 ∈ 𝐵 ,∫

𝐵

∣∣∣ log 1

1− < 𝑧,𝑤 >

∣∣∣2 (1− ∣𝑤∣2)𝑡
(1− < 𝑧,𝑤 >)𝑛+1+𝑡

𝑑𝑣(𝑤) ≤ 𝐶
(
log

1

1− ∣𝑧∣2
)2
.

Proof. This Lemma can be proved by Stirling formula and some complex

integral estimates. For the convenience of the readers, we will provide the

proof here.
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Denote the left term as 𝐼𝑡 and let 2𝜆 = 𝑡+ 𝑛+ 1. By Taylor expansion

∣ log 1

1− < 𝑧,𝑤 >
∣2 =

+∞∑
𝑢,𝑣=1

< 𝑧,𝑤 >𝑢< 𝑤, 𝑧 >𝑣

𝑢𝑣

and

1

∣1− < 𝑧,𝑤 > ∣2𝜆 =
+∞∑
𝑘,𝑙=0

Γ(𝜆+ 𝑘)Γ(𝜆+ 𝑙)

𝑘!𝑙!Γ(𝜆)2
< 𝑧,𝑤 >𝑘< 𝑤, 𝑧 >𝑙 .

Therefore

𝐼𝑡 =

∫
𝐵

+∞∑
𝑢,𝑣=1

+∞∑
𝑘,𝑙=0

Γ(𝜆+ 𝑘)Γ(𝜆+ 𝑙)

𝑢𝑣𝑘!𝑙!Γ(𝜆)2
< 𝑧,𝑤 >𝑘+𝑢< 𝑤, 𝑧 >𝑙+𝑣 (1− ∣𝑤∣2)𝑡𝑑𝑣(𝑤)

=

+∞∑
𝑢=1

+∞∑
𝑘=0

𝑢+𝑘−1∑
𝑙=0

Γ(𝜆+ 𝑘)Γ(𝜆+ 𝑙)

𝑢(𝑢+ 𝑘 − 𝑙)𝑘!𝑙!Γ(𝜆)2

∫
𝐵

∣ < 𝑧,𝑤 > ∣2(𝑢+𝑘)(1− ∣𝑤∣2)𝑡𝑑𝑣(𝑤)

Without any loss of generality, we may assume that 𝑧 = ∣𝑧∣𝑒1, so that∫
𝐵

∣ < 𝑧,𝑤 > ∣2(𝑢+𝑘)(1 − ∣𝑤∣2)𝑡𝑑𝑣(𝑤)

=

∫
𝐵

(∣𝑧∣𝑤1)
2(𝑢+𝑘)(1− ∣𝑤∣2)𝑡𝑑𝑣(𝑤)

= 2𝑛

∫ 1

0

∫
∂𝐵

𝜌2𝑛−1∣𝑧∣2(𝑢+𝑘)∣𝜌𝜉1∣2(𝑢+𝑘)(1− 𝜌2)𝑡𝑑𝜌𝑑𝛿𝑛(𝜉)

= 2𝑛∣𝑧∣2(𝑢+𝑘)

∫ 1

0

𝜌2(𝑢+𝑘+𝑛−1)+1(1− 𝜌2)𝑡𝑑𝜌

∫
∂𝐵

∣𝜉1∣2(𝑢+𝑘)𝑑𝛿(𝜉)

= 𝑛∣𝑧∣2(𝑢+𝑘)Γ(𝑢+ 𝑘 + 𝑛)Γ(𝑡+ 1)

Γ(𝑢 + 𝑘 + 𝑛+ 𝑡+ 1)

(𝑛− 1)!(𝑢+ 𝑘)!

(𝑢+ 𝑘 + 𝑛− 1)!
=

Γ(𝑡+ 1)Γ(𝑢+ 𝑘 + 1)𝑛!

Γ(2𝜆+ 𝑢+ 𝑘)
∣𝑧∣2(𝑢+𝑘),

which gives

𝐼𝑡 =

+∞∑
𝑢=1

+∞∑
𝑘=0

𝑢+𝑘−1∑
𝑙=0

Γ(𝜆+ 𝑘)Γ(𝜆+ 𝑙)

𝑢(𝑢+ 𝑘 − 𝑙)𝑘!𝑙!Γ(𝜆)2
Γ(𝑡+ 1)Γ(𝑢+ 𝑘 + 1)𝑛!

Γ(2𝜆+ 𝑢+ 𝑘)
∣𝑧∣2(𝑢+𝑘)

=

+∞∑
𝑢=1

+∞∑
𝑘=0

𝑛!Γ(𝑡+ 1)Γ(𝜆+ 𝑘)Γ(𝑢+ 𝑘 + 1)

𝑢𝑘!Γ(𝜆)2Γ(2𝜆+ 𝑢+ 𝑘)

𝑢+𝑘−1∑
𝑙=0

Γ(𝜆+ 𝑙)

(𝑢+ 𝑘 − 𝑙)𝑙!
∣𝑧∣2(𝑢+𝑘)
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=

+∞∑
𝑢=1

+∞∑
𝑘=1

𝑛!Γ(𝑡+ 1)Γ(𝜆+ 𝑘)Γ(𝑢+ 𝑘 + 1)

𝑢𝑘!Γ(𝜆)2Γ(2𝜆+ 𝑢+ 𝑘)

𝑢+𝑘−1∑
𝑙=0

Γ(𝜆+ 𝑙)

(𝑢+ 𝑘 − 𝑙)𝑙!
∣𝑧∣2(𝑢+𝑘)

+

+∞∑
𝑢=1

𝑛!Γ(𝑡+ 1)Γ(𝑢+ 1)

𝑢Γ(𝜆)Γ(2𝜆+ 𝑢)

𝑢−1∑
𝑙=0

Γ(𝜆+ 𝑙)

(𝑢− 𝑙)𝑙!
∣𝑧∣2𝑢

= 𝐼1 + 𝐼2.

By Stirling formula, there exists an absolute constant 𝐶1 such that for

all 𝑙, 𝑢, 𝑘 ≥ 1
Γ(𝜆+ 𝑙)

𝑙!
≤ 𝐶1𝑙

𝜆−1,
Γ(𝑢 + 𝑘 + 1)

Γ(2𝜆+ 𝑢+ 𝑘)
≤ 𝐶1(𝑢+ 𝑘)1−2𝜆,

Γ(𝑢+ 𝑘 + 1)

Γ(2𝜆+ 𝑢)
≤ 𝐶1𝑢

1−2𝜆,
Γ(𝜆+ 𝑘)

𝑘!
≤ 𝐶1𝑘

𝜆−1

so that

𝐼1 ≤ 𝐶3
1

+∞∑
𝑢=1

+∞∑
𝑘=1

𝑛!Γ(𝑡+ 1)𝑘𝜆−1(𝑢 + 𝑘)1−2𝜆

𝑢Γ(𝜆)2

𝑢+𝑘−1∑
𝑙=1

𝑙𝜆−1

(𝑢+ 𝑘 − 𝑙)
∣𝑧∣2(𝑢+𝑘)

and

𝐼2 ≤ 𝐶2
1

+∞∑
𝑢=1

𝑛!Γ(𝑡+ 1)𝑢1−2𝜆

𝑢Γ(𝜆)

𝑢−1∑
𝑙=1

𝑙𝜆−1

(𝑢− 𝑙)
∣𝑧∣2𝑢.

Note that
𝑀−1∑
𝑙=1

𝑙(𝜆−1)

𝑀 − 𝑙
≈ 𝑀𝜆−2 log𝑀

for any 𝑀 ≥ 2. Consequently, there exists a constant 𝐶 , such that

𝐼1 ≤ 𝐶

+∞∑
𝑢=1

+∞∑
𝑘=1

𝑛!Γ(𝑡+ 1)𝑘𝜆−1(𝑢+ 𝑘)1−2𝜆

Γ(𝜆)2𝑢
(𝑢+ 𝑘)𝜆−2 log(𝑢+ 𝑘)∣𝑧∣2(𝑢+𝑘)

= 𝐶

+∞∑
𝑢=1

+∞∑
𝑘=1

𝑛!Γ(𝑡+ 1)

Γ(𝜆)2
𝑘𝜆

(𝑢 + 𝑘)𝜆
log(𝑢+ 𝑘)

𝑢+ 𝑘

1

𝑢𝑘
∣𝑧∣2(𝑢+𝑘)

≤ 𝐶

+∞∑
𝑢=1

+∞∑
𝑘=1

1

𝑢𝑘
∣𝑧∣2(𝑢+𝑘) = 𝐶

(
log

1

1− ∣𝑧∣2
)2

and
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𝐼2 ≤ 𝐶
+∞∑
𝑢=1

𝑛!Γ(𝑡+ 1)𝑢1−2𝜆

Γ(𝜆)𝑢
𝑢𝜆−2 log 𝑢∣𝑧∣2𝑢

= 𝐶

+∞∑
𝑢=1

𝑛!Γ(𝑡+ 1)

Γ(𝜆)

1

𝑢𝜆+1

log 𝑢

𝑢
∣𝑧∣2𝑢.

Clearly, 𝐼2 can be controlled by
(
log 1

1−∣𝑧∣2
)2
and the assertion is proved.

□

Lemma 5. Let 𝑔 be a holomorphic self-map of 𝐵 , 𝐾 is an arbitrary

compact subset of 𝐵 . Then 𝑇𝑔 : 𝐵(𝑝, 𝑞)→ ℬ𝛼 is compact if and only if for

any uniformly bounded sequence {𝑓𝑗}(𝑗 ∈ 𝑁) in 𝐵(𝑝, 𝑞) which converges to

zero uniformly for 𝑧 on 𝐾 when 𝑗 → ∞ , ∥𝑇𝑔𝑓𝑗∥ℬ𝛼 → 0 holds.

Proof. Assume that 𝑇𝑔 is compact and suppose {𝑓𝑗} is a sequence in
𝐵(𝑝, 𝑞) with sup𝑗∈𝑁 ∥𝑓𝑗∥𝐵(𝑝,𝑞) < ∞ and 𝑓𝑗 → 0 uniformly on compact

subsets of 𝐵 . By the compactness of 𝑇𝑔 we have that {𝑇𝑔𝑓𝑗} has a
subsequence {𝑇𝑔𝑓𝑗𝑚} which converges in ℬ𝛼 , say, to ℎ . By Lemma 2,

it follows that for any compact set 𝐾 ⊂ 𝐵 , there is a positive constant

𝐶𝐾 independent of 𝑓 such that ∣𝑇𝑔𝑓𝑗(𝑧)− ℎ(𝑧)∣ ≤ 𝐶𝐾∥𝑇𝑔𝑓𝑗 − ℎ∥𝛽𝛼 for all

𝑧 ∈ 𝐾 . This implies that 𝑇𝑔𝑓𝑗(𝑧)− ℎ(𝑧)→ 0 uniformly on compact sets of

𝐵 . Since 𝐾 is a compact subset of 𝐵 , by the hypothesis and the definition

of 𝑇𝑔 , 𝑇𝑔𝑓𝑗(𝑧) converges to zero uniformly on 𝐾 . Since 𝐾 is arbitrary, it

follows that the limit function ℎ is equal to 0. Since it is true for arbitrary

subsequence of {𝑓𝑗} , we see that 𝑇𝑔𝑓𝑗 → 0 in ℬ𝛼 .

Conversely, let {𝑓𝑗} ∈ 𝐾𝑟 = 𝐵𝐵(𝑝,𝑞)(0, 𝑟), where 𝐵𝐵(𝑝,𝑞)(0, 𝑟) is a ball in

𝐵(𝑝, 𝑞). Then by Lemma 2, {𝑓𝑗} is uniformly bounded in arbitrary compact
subset 𝑀 of 𝐵 . By 𝑀𝑜𝑛𝑡𝑒𝑙′𝑠 Lemma, {𝑓𝑗} is a normal family , therefore
there is a subsequence {𝑓𝑗𝑚} which converges uniformly to 𝑓 ∈ 𝐻(𝐵) on

compact subsets of 𝐵 . It follows that ∇𝑓𝑗𝑚 → ∇𝑓 uniformly on compact
subsets of B.

Denote 𝐵𝑘 = 𝐵(0, 1− 1
𝑘 ) ⊂ 𝐶𝑛 , then∫

𝐵

∣∇𝑓 ∣𝑝(1− ∣𝑧∣2)𝑞𝑑𝑣(𝑧)

= lim
𝑘→+∞

∫
𝐵𝑘

lim
𝑚→+∞ ∣∇𝑓𝑗𝑚 ∣𝑝(1− ∣𝑧∣2)𝑞𝑑𝑣(𝑧)

≤ lim
𝑘→+∞

lim
𝑚→+∞

∫
𝐵𝑘

∣∇𝑓𝑗𝑚 ∣𝑝(1− ∣𝑧∣2)𝑞𝑑𝑣(𝑧).
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But {𝑓𝑗𝑚} ⊂ 𝐵𝐵(𝑝,𝑞)(0, 𝑟). Therefore∫
𝐵𝑘

∣∇𝑓𝑗𝑚 ∣𝑝(1− ∣𝑧∣2)𝑞𝑑𝑣(𝑧) < 𝑟𝑝,

so that ∫
𝐵

∣∇𝑓 ∣𝑝(1− ∣𝑧∣2)𝑞𝑑𝑣(𝑧) ≤ 𝑟𝑝.

Consequently, ∥𝑓∥𝐵(𝑝,𝑞) ≤ 𝑟, and 𝑓 ∈ 𝐵(𝑝, 𝑞). Hence ∥𝑓𝑗𝑚 − 𝑓∥ ≤ 2𝑟 < ∞
and the sequence {𝑓𝑗𝑚 − 𝑓} converges to 0 on compact subsets of 𝐵 , by
the hypothesis of this lemma, it follows that 𝑇𝑔𝑓𝑗𝑚 → 𝑇𝑔𝑓 in ℬ𝛼 . Thus

the set 𝑇𝑔(𝐾𝑟) is relatively compact and the proof is complete.

□

Lemma 6. Let 𝑔 ∈ 𝐻(𝐵) , then for any 𝑓 ∈ 𝐻(𝐵) and 𝑧 ∈ 𝐵

𝑅[𝑇𝑔𝑓 ](𝑧) = 𝑓(𝑧)𝑅𝑔(𝑧).

Proof. Suppose the holomorphic function 𝑓𝑅𝑔 has the 𝑇𝑎𝑦𝑙𝑜𝑟 expansion

(𝑓𝑅𝑔)(𝑧) =
∑
∣𝛼∣≥1

𝑎𝛼𝑧
𝛼.

Then we have

𝑅(𝑇𝑔𝑓)(𝑧) = 𝑅

∫ 1

0

𝑓(𝑡𝑧)𝑅(𝑡𝑧)
𝑑𝑡

𝑡
= 𝑅

∫ 1

0

∑
∣𝛼∣≥1

𝑎𝛼(𝑡𝑧)
𝛼 𝑑𝑡

𝑡

= 𝑅[
∑
∣𝛼∣≥1

𝑎𝛼𝑧
𝛼

∣𝛼∣ ] =
∑
∣𝛼∣≥1

𝑎𝛼𝑧
𝛼 = (𝑓𝑅𝑔)(𝑧).

□

3. Proof of Theorem 1

Suppose sup𝑧∈𝐵(1 − ∣𝑧∣2)𝛼𝐺𝑛+1+𝑞
𝑝
(𝑧)∣𝑅𝑔(𝑧)∣ < ∞ . By Lemmas 1, 2 and

6, it follows that for all 𝑓 ∈ 𝐻(𝐵)

(1− ∣𝑧∣2)𝛼∣𝑅[𝑇𝑔𝑓 ](𝑧)∣ = (1− ∣𝑧∣2)𝛼∣𝑓(𝑧)∣∣𝑅𝑔(𝑧)∣
≤ 𝑐(1− ∣𝑧∣2)𝛼𝐺𝑛+1+𝑞

𝑝
(𝑧)∣𝑅𝑔(𝑧)∣

≤ 𝑐∥𝑓∥𝐵(𝑝,𝑞)(1− ∣𝑧∣2)𝛼𝐺𝑛+1+𝑞
𝑝
(𝑧)∣𝑅𝑔(𝑧)∣

≤ 𝑐∥𝑓∥𝐵(𝑝,𝑞)
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which implies that 𝑇𝑔 is bounded. On the other hand, suppose 𝑇𝑔 is

bounded, with∥𝑇𝑔𝑓∥ℬ𝛼 ≤ 𝑐∥𝑓∥𝐵(𝑝,𝑞).

Case 1. If 0 < 𝑛+1+𝑞
𝑝 < 1, it is clear that 𝑇𝑔𝑓 ∈ ℬ𝛼 for 𝑓 = 1, i.e.,

sup
𝑧∈𝐵
(1 − ∣𝑧∣2)𝛼∣𝑅𝑇𝑔𝑓(𝑧)∣ = sup

𝑧∈𝐵
(1− ∣𝑧∣2)𝛼∣𝑅𝑔(𝑧)∣ < ∞.

Case 2. If 𝑛+1+𝑞
𝑝 > 1 , we need to prove that

sup
𝑧∈𝐵
(1− ∣𝑧∣2)𝛼

( 1

1− ∣𝑧∣2
)𝑛+1+𝑞

𝑝 −1

∣𝑅𝑔(𝑧)∣ < ∞.

For 𝑤 ∈ 𝐵 , consider the test function

𝑓𝑤(𝑧) =
1− ∣𝑤∣2

(1− < 𝑧,𝑤 >)
𝑛+1+𝑞

𝑝

.

It is easy to see that∫
𝐵

(1−∣𝑧∣2)𝑞∣∇𝑓𝑤(𝑧)∣𝑝𝑑𝑣(𝑧) ≤ 𝑐(1−∣𝑤∣2)𝑝
∫
𝐵

(1− ∣𝑧∣2)𝑞
∣1− < 𝑧,𝑤 > ∣𝑛+1+𝑞+𝑝

𝑑𝑣(𝑧) ≤ 𝑐.

The last inequality follws from [35], so that 𝑓𝑤 ∈ 𝐵(𝑝, 𝑞) for any 𝑤 ∈ 𝐵 .

With the boundedness of 𝑇𝑔 , we get

(1− ∣𝑧∣2)𝛼( 1

1− ∣𝑧∣2 )
𝑛+1+𝑞

𝑝 −1∣𝑅𝑔(𝑧)∣

= (1− ∣𝑧∣2)𝛼∣𝑓𝑧(𝑧)∣∣𝑅𝑔(𝑧)∣
= (1− ∣𝑧∣2)𝛼∣𝑅(𝑇𝑔𝑓𝑧)(𝑧)∣
≤ ∥𝑇𝑔𝑓𝑧∥ℬ𝛼 ≤ 𝑐∥𝑇𝑔∥ < ∞.

Case 3. If 𝑛+1+𝑞
𝑝 = 1, namely 𝑝 = 𝑛+ 1 + 𝑞 , we need to prove

sup
𝑧∈𝐵
(1− ∣𝑧∣2)𝛼 log 2

1− ∣𝑧∣2 ∣𝑅𝑔(𝑧)∣ < ∞.

For 𝑤 ∈ 𝐵 , consider the test function

𝑓𝑤(𝑧) = (log
1

1− ∣𝑤∣2 )
− 2

𝑝 (log
1

1− < 𝑧,𝑤 >
)1+

2
𝑝 .

It is easy to show that 𝑓𝑤 ∈ 𝐵(𝑝, 𝑞) from Lemma 4. The result follows by

the same discussion as that of Case 2, the detail is omitted. So, the proof

of Theorem 1 is completed.
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4. Proof of Theorem 2

Case 1. 0 < 𝑛+1+𝑞
𝑝 < 1. If 𝑇𝑔 is compact, it is obvious that 𝑇𝑔 is

bounded, in the proof of Theorem 1, we have got that 𝑔 ∈ ℬ𝛼 .

Conversely, let {𝑓𝑗} be an uniformly bounded sequence in 𝐵(𝑝, 𝑞) which

converges to zero uniformly on any compact subset of 𝐵 when 𝑗 → ∞ .
From Lemma 1, we know that ∥𝑓𝑗∥ℬ𝑛+1+𝑞

𝑝
≤ 𝑐∥𝑓𝑗∥𝐵(𝑝,𝑞) , thus {𝑓𝑗} is

uniformly bounded in ℬ 𝑛+1+𝑞
𝑝 . Then by the hypothesis and Lemma 3, we

get that

lim
𝑗→∞

sup
𝑧∈𝐵

∣𝑓𝑗(𝑧)∣ = 0.

From which we have

∥𝑇𝑔𝑓𝑗∥ℬ𝛼 ≤ 𝑐 sup
𝑧∈𝐵
(1− ∣𝑧∣2)𝛼∣𝑓𝑗(𝑧)𝑅𝑔(𝑧)∣ ≤ 𝑐∥𝑔∥ℬ𝛼 sup

𝑧∈𝐵
∣𝑓𝑗(𝑧)∣ → 0,

when 𝑗 → ∞ . So 𝑇𝑔 is compact from Lemma 5.

Case 2. If 𝑛+1+𝑞
𝑝 = 1, it is sufficient to prove

lim
∣𝑧∣→1

(1− ∣𝑧∣2)𝛼∣𝑅𝑔(𝑧)∣ log 1

1− ∣𝑧∣2 = 0.

Suppose that lim
∣𝑧∣→1

(1 − ∣𝑧∣2)𝛼∣𝑅𝑔(𝑧)∣ log 1
1−∣𝑧∣2 ∕= 0. Then there exists

𝜀0 > 0, {𝑧𝑗} ∈ 𝐵 , such that

(1− ∣𝑧𝑗 ∣2)𝛼∣𝑅𝑔(𝑧𝑗)∣ log 1

1− ∣𝑧𝑗 ∣2 ≥ 𝜀0.

Let

𝑓𝑗(𝑧) = (log
1

1− ∣𝑧𝑗∣2 )
− 2

𝑝 (log
1

1− < 𝑧, 𝑧𝑗 >
)1+

2
𝑝 .

We have shown that 𝑓𝑗 ∈ 𝐵(𝑝, 𝑞) with ∥𝑓𝑗∥𝐵(𝑝,𝑞) ≤ 𝑐 , and it is obvious

that 𝑓𝑗 → 0 uniformly on any compact subset of 𝐵 as 𝑗 → ∞ . While

∥𝑇𝑔𝑓𝑗∥ℬ𝛼

≥ (1− ∣𝑧𝑗∣2)𝛼∣𝑓𝑗(𝑧𝑗)∣∣𝑅𝑔(𝑧𝑗)∣
= {(1− ∣𝑧𝑗 ∣2)𝛼∣𝑅𝑔(𝑧𝑗)∣ log 1

1− ∣𝑧𝑗∣2 }∣𝑓𝑗(𝑧
𝑗)∣(log 1

1− ∣𝑧𝑗∣2 )
−1

≥ 𝜀0∣𝑓𝑗(𝑧𝑗)∣(log 1

1− ∣𝑧𝑗∣2 )
−1

= 𝜀0,
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then ∥𝑇𝑔𝑓𝑗∥ℬ𝛼 doesn’t tend to 0 when 𝑗 → ∞ . It’s a contraction by
Lemma 5. So

lim
∣𝑧∣→1

(1− ∣𝑧∣2)𝛼∣𝑅𝑔(𝑧)∣ log 1

1− ∣𝑧∣2 = 0.
Meanwhile, note that lim

∣𝑧∣→1
log 1

1−∣𝑧∣2 = ∞ , it is easy to see that
lim
∣𝑧∣→1

(1 − ∣𝑧∣2)𝛼∣𝑅𝑔(𝑧)∣ = 0.
Therefore, we have

lim
∣𝑧∣→1

(1− ∣𝑧∣2)𝛼∣𝑅𝑔(𝑧)∣ log 2

1− ∣𝑧∣2 = 0.

If 𝑛+1+𝑞
𝑝 > 1, then consider

𝑓𝑗(𝑧) =
1− ∣𝑧𝑗∣2

(1− < 𝑧, 𝑧𝑗 >)
𝑛+1+𝑞

𝑝

and use the same method as in the case of 𝑛+1+𝑞
𝑝 = 1, we can also prove

lim
∣𝑧∣→1

(1− ∣𝑧∣2)𝛼∣𝑅𝑔(𝑧)∣ log 1

1− ∣𝑧∣2 = 0.

Conversely, let {𝑓𝑗} be an uniformly bounded sequence in 𝐵(𝑝, 𝑞) which

converges to zero uniformly on any compact subset of 𝐵 when 𝑗 → ∞ .
If lim∣𝑧∣→1−(1 − ∣𝑧∣2)𝛼𝐺𝑛+1+𝑞

𝑝
(𝑧)∣𝑅𝑔(𝑧)∣ = 0, then for all𝜀 > 0, there

exists𝑟 ∈ (0, 1), such that

(1− ∣𝑧∣2)𝛼𝐺𝑛+1+𝑞
𝑝
(𝑧)∣𝑅𝑔(𝑧)∣ < 𝜀, 𝑟 < ∣𝑧∣ < 1.

Then

∥𝑇𝑔𝑓𝑗∥ℬ𝛼

≤ 𝑐 sup
∣𝑧∣≤𝑟

(1− ∣𝑧∣2)𝛼∣𝑓𝑗(𝑧)𝑅𝑔(𝑧)∣+ 𝑐 sup
𝑟<∣𝑧∣<1

(1− ∣𝑧∣2)𝛼∣𝑓𝑗(𝑧)𝑅𝑔(𝑧)∣

≤ 𝑐 sup
∣𝑧∣≤𝑟

(1− ∣𝑧∣2)𝛼∣𝑅𝑔(𝑧)∣∣𝑓𝑗(𝑧)∣

+ 𝑐 sup
𝑟<∣𝑧∣<1

(1− ∣𝑧∣2)𝛼𝐺𝑛+1+𝑞
𝑝
(𝑧)∣𝑅𝑔(𝑧)∣∥𝑓𝑗∥𝐵(𝑝,𝑞)

≤ 𝑐 sup
∣𝑧∣≤𝑟

(1− ∣𝑧∣2)𝑞𝛼∣𝑅𝑔(𝑧)∣∣𝑓𝑗(𝑧)∣+ 𝑐𝜀∥𝑓𝑗∥𝐵(𝑝,𝑞)

≤ 𝑐𝜀

if 𝑗 is sufficiently large. It follows from Lemma 5 that 𝑇𝑔 is compact. So

now, the proof of Theorem 2 is completed.
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