Radial variation in some function spaces

David Walsh

(Communicated by Sten Kaijser)

2000 Mathematics Subject Classification. 30H05, 31A05, 46E15.

Keywords and phrases. Radial variation, Besov space, Lipschitz space.

Abstract. In a previous paper [8] we considered properties of the radial variation of analytic functions in a class of Besov spaces A_{pq}^s , s > 0. Here we wish to extend these results to certain related spaces. These are the Lipschitz classes Λ_s and the mean Lipschitz classes $\Lambda_{p,s}$ where $p \ge 1, 0 < s < 1$. We also consider A_{pq}^0 , where s = 0, although the results obtained for these are not as good as when s > 0.

1. Introduction

If f is analytic in the disc, the radial variation function of f is the function defined on the disc by

(1)
$$F(r,t) = \int_0^r |f'(ue^{it})| \, du, \quad r < 1, \quad 0 \le t \le 2\pi.$$

Since $f(re^{it}) - f(0) = \int_0^r f'(ue^{it}) du$, it is clear that

$$|f(re^{it})| \le |f(0)| + F(r,t), \quad r < 1, \quad 0 \le t \le 2\pi,$$

and F(r,t) is a majorant for f. The function F(r,t) represents the length of the image of the radius vector $[0, re^{it}]$ under the mapping f. It is clear from the definition, that the boundary function $F(t) = \lim_{r \to 1} F(r,t)$ exists, finite or infinite, for all $t \in [0, 2\pi]$. It is known as the radial or total variation. An immediate property of F is that if $F(t) < \infty$, then $\lim_{r\to 1} f(re^{it})$ exists.

We saw in [8] that the property that $f \in A_{pq}^s$, $0 < s < 1, 1 \le p, q < \infty$, translated into meaningful results for F, in particular that F(r,t) satisfies an analogous condition on the disc. In Section 1 we are led naturally to consider the case s = 0 when we ask for a condition under which F(t) is an integrable function on the circle. It follows immediately that $F \in L^1$ if and only if $f \in A_{11}^0$. We then show that F(r,t) satisfies a corresponding condition to that by f in the disc . This result extends to the general case $f \in A_{pq}^0$. In Section 3 we suppose that f belongs to a Lipschitz space or a mean Lipschitz space and show that both F(r,t) and F(t) exhibit the expected behaviour.

1.1 Preliminaries. Let D denote the unit disc, T the unit circle in the complex plane and $L^p = L^p(T)$ the usual Lebesgue space when $0 . For <math>p \ge 1$ we denote the norm of a function $f \in L^p$ by $||f||_p$. For convenience we shall let m denote normalised Lebesgue measure on the circle T.

Let $\Delta_t f(e^{ix}) = f(e^{i(x+t)}) - f(e^{ix})$ and $\Delta_t^m = \Delta_t(\Delta_t^{m-1})$. For $0 < s \leq 1$, the Lipschitz class Λ_s is the space of 2π -periodic functions on $[-\pi,\pi]$ for which $|\Delta_t f(e^{ix})| = O(|t|^s)$ uniformly in x. A generalization is the mean Lipschitz class $\Lambda(p,s)$ consisting of all functions f for which $||\Delta_t f||_p = O(|t|^s)$ for t > 0; $\Lambda(p,s)$ reduces to Λ_s when $p = \infty$. Suppose now that fis analytic in D. If $0 \leq r < 1$, let

$$M_p(f,r) = \left(\int_{-\pi}^{\pi} |f(re^{it})|^p \ dm\right)^{1/p}, \quad (0$$

denote the integral mean of f of order p. It is well known that $M_p(f,r)$ is an increasing function of r on [0,1) and that the class of functions ffor which $\sup_{r<1} M_p(f,r) < \infty$, is the familiar Hardy space H^p [2]. For $1 \le p, q < \infty, s > 0$, and an arbitrary integer m > s, we define the Besov space B_{pq}^s by

$$B_{pq}^{s} = \left\{ f \in L^{p} : \int_{-\pi}^{\pi} \frac{||\Delta_{t}^{m}f||_{p}^{q}}{|t|^{1+sq}} dm(t) < \infty \right\}.$$

It is well known that the definition is independent of m. For a discussion of these spaces see [1], [3], [4], [6], [7]. When s passes through a positive

D. Walsh

integer value, the working definition of the Besov space B_{pq}^s may require a change as indicated above.

The previous definition is no longer valid when $s \leq 0$; for these cases another description is required. For $n \geq 1$ we let W_n be the polynomial on T whose Fourier coefficients satisfy $\hat{W}_n(2^n) = 1, \hat{W}_n(j) = 0$ for $j \notin$ $(2^{n-1}, 2^{n+1})$ and \hat{W}_n is a linear function on $[2^{n-1}, 2^n]$ and on $[2^n, 2^{n+1}]$. If n < 0 we put $W_n = \overline{W}_{-n}$. We put $W_0 = \overline{z} + 1 + z$. For $s \leq 0, 1 \leq p, q < \infty$, B_{pq}^s consists of all distributions f on T for which

$$\sum_{n=-\infty}^{\infty} 2^{|n|s} \|f * W_n\|_p^q < \infty.$$

It is known that this description is equivalent to the previous one for s > 0, but for s = 0 in particular, only the second definition is valid. See [4] Appendix 2, [1]. In fact when q > p there exist $f \in B_{pq}^0$ such that $f \notin L^p$.

Let A_{pq}^s denote the subspace of B_{pq}^s consisting of analytic functions. The space A_{pq}^s for s > 0, may be characterized as follows: for an arbitrary integer m > s the analytic function $f \in A_{pq}^s$ if and only if

$$||f||_A = |f(0)| + \left\{ \int_0^1 (1 - r^2)^{q(m-s)-1} M_p(f^{(m)}, r)^q r \, dr \right\}^{1/q} < \infty.$$

Once again the definition is independent of m for m > s. For s = 0 this definition is easily modified. This is because of the property that $f \in A_{pq}^0$ if and only if $If \in A_{pq}^1$ where I is the integration operator. Therefore $f \in A_{pq}^0$ if and only if with m = 2,

$$||f||_{A} = |f(0)| + \left\{ \int_{0}^{1} (1 - r^{2})^{q-1} M_{p}(f', r)^{q} r \, dr \right\}^{1/q} < \infty,$$

and with m = 3, if and only if

$$||f||_A = |f(0)| + \left\{ \int_0^1 (1 - r^2)^{2q - 1} M_p(f^{(2)}, r)^q r \, dr \right\}^{1/q} < \infty.$$

We shall need both of these representations. In particular with p = q = 1we have $f \in A_{11}^0$ if and only if

$$||f||_A = |f(0)| + \int_0^1 \int_0^{2\pi} |f'(re^{it})| \, dmr \, dr < \infty.$$

2. Integrability of F

The function F(t) = F(1, t) is given from (1) by

$$F(t) = \int_0^1 |f'(ue^{it})| \, du, \quad 0 \le t \le 2\pi.$$

We now ask what is a sufficient condition that $F \in L^1$? Since $F \in L^1$ if and only if $\int_0^{2\pi} \int_0^1 |f'(re^{it})| r \, dr \, dm < \infty$, the answer is immediate from the definition:

Proposition 1. $F \in L^1(T)$ if and only if $f \in A^0_{11}$. Moreover

(2)
$$||F||_1 + |f(0)| = ||f||_A.$$

It may be observed here that if $f \in A_{11}^0$ then its boundary function $f(e^{it})$ exists a.e.; in fact $f \in H^1$. This follows by integrating the obvious inequality $|f(re^{it})| \leq |f(0)| + \int_0^r |f'(ue^{it})| \, du$.

We can equally express the relationship in terms of the A-norm of F(r,t). For this purpose we introduce the gradient of $F: \nabla F(r,t) = \left(\frac{\partial F}{\partial r}, 1/r\frac{\partial F}{\partial t}\right) = (|f'(re^{it})|, 1/r\frac{\partial F}{\partial t})$. The relationship referred to is

$$f \in A_{11}^0$$
 if and only if $\int_0^1 \int_0^{2\pi} |\nabla F(r,t)| \ dmr \ dr < \infty.$

If the integral is finite then it follows very simply that $f \in A_{11}^0$ and that $||f||_A \leq |f(0)| + ||F||_A$. The proof in the other direction has already been done in essence in [8] where we considered only s > 0. In fact we can state a more general result which follows from Theorem 1 there, and which works without any changes for our situation.

Theorem 1. Suppose that $1 \leq p, q < \infty$. There is a constant C = C(p,q) such that if $f \in A_{pq}^0$ then

$$\int_0^1 (1-r^2)^{q-1} \left(\int_{-\pi}^{\pi} |\nabla F(r,t)|^p \ dm \right)^{q/p} r \ dr \le C ||f||_A^q$$

Proof. The proof in [8] goes through word for word with s = 0. In the case p = q = 1 it is simpler since the use of Hölder's inequality is not needed. We do make use of the alternative definitions of A_{pq}^0 mentioned above.

D. Walsh

If the double integral for F(r,t) is finite then as noted already it is clear that $f \in A_{pq}^0$. The question when $F \in L^p$, p > 1, does not have so neat an answer. A reasonable sufficient condition is given by

Theorem 2. Suppose that $1 \le p, q < \infty$. If $f \in A_{p1}^0$ then

$$||F||_p \leq ||f||_A.$$

Proof. By Minkowski's Inequality in continuous form

$$\left(\int_0^{2\pi} |F(t)|^p \ dm \right)^{1/p} = \left(\int_0^{2\pi} \left(\int_0^1 |f'(re^{it})| \ dr \right)^p \ dm \right)^{1/p}$$

$$\leq \int_0^1 \left(\int_0^{2\pi} |f'(re^{it})|^p \ dm \right)^{1/p} \ dr$$

$$< \infty,$$

and $||F||_p \le ||f||_A$.

Remark. The condition $f \in A_{p1}^0$ implies that $f \in H^p$ for all $p \ge 1$. To see this we note that for r < 1

$$|f(re^{it})| \le |f(0)| + \int_0^r |f'(ue^{it})| \, du.$$

On using Minkowski's Inequality again we obtain

$$M_p(f,r) \leq |f(0)| + \int_0^r M_p(f',u) \, du$$

 $\leq ||f||_A$

and the result is immediate.

In [8] it was shown that if $f \in A_{pq}^s$, 0 < s < 1, then the boundary function $F \in B_{pq}^s$. We do not know whether this is true for the case s = 0 since the proof given there is no longer valid.

3. The Lipschitz spaces

The Lipschitz space $\Lambda_s, 0 < s < 1$, may be regarded as the Besov space $B^s_{\infty\infty}$. It is well known that for an analytic function f on the disc, $f \in \Lambda_s$ if and only if there exists M such that

(3)
$$|f'(z)| \le \frac{M}{(1-r)^{1-s}}$$

This property has its counterpart for the function F(r, t).

Theorem 3. The function $f \in \Lambda_s$, 0 < s < 1, if and only if $\nabla F(r,t) = O((1-r)^{s-1})$.

Proof. Suppose $f \in \Lambda_s$ and let M be the number noted above. First we show that F(t) is bounded.

$$F(r,t) = \int_0^r |f'(ue^{it})| \, du \leq M \int_0^r \frac{1}{(1-u)^{1-s}} \, du$$
$$= M \left(1 - (1-r)^s\right)/s \leq M/s,$$

for all r < 1 and so F(t) is bounded.

Since the first component of $\nabla F(r,t)$ is $|f'(re^{it})|$ we need only consider the second. Now by Lemma 3 of [8], $\frac{\partial F}{\partial t}(r,t) = \int_0^r \frac{\partial |f'|}{\partial t}(ue^{it}) du$ and

$$\begin{split} \left| 1/r \frac{\partial F}{\partial t}(r,t) \right| &= \left| 1/r \int_0^r \frac{\partial |f'|}{\partial t} (ue^{it}) \ du \right| \\ &\leq 1/r \int_0^r u |f''(ue^{it})| \ du \\ &\leq M \int_0^r \frac{1}{(1-u)^{2-s}} \ du \leq M' \frac{1}{(1-r)^{1-s}}. \end{split}$$

In the second inequality above we used Theorem 5.5 of [2]. The result follows. $\hfill \Box$

There is a corresponding result for F(t).

Theorem 4. If $f \in \Lambda_s$, 0 < s < 1, then $F(t) \in \Lambda_s$.

Proof. We have shown that F is bounded. We write

$$F(x) - F(t) = F(x) - F(r, x) + F(r, x) - F(r, t) + F(r, t) - F(t).$$

But

$$F(x) - F(r, x) = \int_{r}^{1} |f'(ue^{ix})| \, du \leq M \int_{r}^{1} \frac{1}{(1-r)^{1-s}} \, du$$
$$\leq M(1-r)^{s}/s$$

and the same holds for F(r,t) - F(t). Moreover $F(r,x) - F(r,t) = \int_t^x \frac{\partial F}{\partial v}(r,v) dv$. Consequently

D. Walsh

$$\begin{split} |F(r,x) - F(r,t)| &\leq \left| \int_t^x \left| \frac{\partial F}{\partial v}(r,v) \right| \, dv \right| &\leq M' \left| \int_t^x \frac{1}{(1-r)^{1-s}} \, dv \right| \\ &= M' \frac{1}{(1-r)^{1-s}} |t-x|, \end{split}$$

on using the previous theorem. If we now choose 1 - r = |x - t| we get $|F(r, x) - F(r, t)| \le M'' |t - x|^s$ and $F(t) \in \Lambda_s$.

The mean Lipschitz classes $\Lambda_{p,s}(T)$, $1 \leq p$, 0 < s < 1, are indentical with the Besov spaces $B^s_{p\infty}$. They satisfy the condition: A function $g \in L^p(T)$ belongs to $\Lambda_{p,s}$ if

$$||g||_{p,s} = \left(\int_0^{2\pi} |g(x+t) - g(x)|^p dx\right)^{1/p} = O(|t|^s)$$

for small t. It is known (Theorem 5.4 of [2]) that an analytic function f is in $\Lambda_{p,s}$ if and only if $M_p(f',r) = O(\frac{1}{(1-r)^{1-s}}) \qquad 0 < r < 1$. With the aid of this, similar results to those of the last two theorems can be shown to hold and the proofs are straightforward.

Theorem 5. If $f \in \Lambda_{p,s}$, $1 \le p$, 0 < s < 1, then there exists C = C(p,s) such that

(a)
$$\left(\int_{-\pi}^{\pi} |\nabla F(r,t)|^p dm\right)^{1/p} \le C \|f\|_{p,s} (1-r)^{s-1};$$

(b) $F(t) \in \Lambda_{p,s}$ and $\|F\|_{p,s} \le C \|f\|_{p,s}.$

Whether a particular type of continuity for f implies the same holds for F is uncertain. The boundary function $f(e^{it})$ is absolutely continuous if and only if $f' \in H^1$. We dont know that this implies that F(t) is absolutely continuous but it does imply that F is continuous.

Proposition 2. If $f(e^{it})$ is absolutely continuous then F(t) is continuous.

Proof. We have $F(t+x)-F(t)=\int_0^1 (|f'(re^{i(t+x)})|-|f'(re^{it})|)\ dr$ and therefore

$$\begin{aligned} |F(t+x) - F(t)| &\leq \int_0^1 |f'(re^{i(t+x)}) - f'(re^{it})| \ dr \\ &= \int_0^1 |f'_x(re^{it}) - f'(re^{it})| \ dr \end{aligned}$$

where $g_x(t) = g(t+x)$ is a translate of g. The Fejer-Riesz inequality allows us to conclude

$$\begin{aligned} |F(t+x) - F(t)| + |F(t+x+\pi) - F(t+\pi)| \\ &\leq \int_{-1}^{1} |f'_x(re^{it}) - f'(re^{it})| \ dr \leq \frac{1}{2} \int_{0}^{2\pi} |f'_x(re^{it}) - f'(re^{it})| \ dx \to 0 \end{aligned}$$

as $x \to 0$ uniformly in t, because the translation map $x \to g_x$ is uniformly continuous from T to L^1 . The proof is complete.

In [8] it was seen that if we assume slightly more, namely if $f \in A_{11}^1$, then $F \in B_{11}^1$ which implies that F is absolutely continuous. However mere continuity of f on the circle does not even imply that F is bounded. In fact Walter Rudin [5] has shown that there exists an analytic function fcontinuous in the closed disc, such that $F(t) = \infty$ almost everywhere.

References

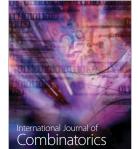
- D. Adams, and L. Hedberg, Function Spaces and Potential Theory, Springer, 1999.
- [2] P.L. Duren, Theory of H^p Spaces, Academic Press, New York, 1970.
- [3] S.M. Nikolskii, Approximation of Functions of Several Variables and Embedding Theorems, Springer, 1975.
- [4] V.V. Peller, Hankel Operators and Their Applications, Springer, 2003.
- [5] W. Rudin, The radial variation of analytic functions, Duke Math. J., 22 (1955) 235-242.
- [6] E.M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, 1970.
- [7] H. Triebel, Spaces of Besov-Hardy-Sobolev Type, Teubner, Leipzig 1978.
- [8] D. Walsh, Radial variation of functions in Besov spaces, Publ. Mat., 50 (2006) 371–399.

Department of Mathematics NUI Maynooth Ireland (*E-mail : David.Walsh@maths.nuim.ie*)

(Received : January 2008)

Advances in **Operations Research**

The Scientific World Journal



Hindawi

Submit your manuscripts at http://www.hindawi.com

Algebra

Journal of Probability and Statistics

International Journal of Differential Equations

Complex Analysis

International Journal of

Mathematics and Mathematical Sciences

Mathematical Problems in Engineering

Abstract and Applied Analysis

Discrete Dynamics in Nature and Society

Function Spaces

International Journal of Stochastic Analysis

