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Abstract. We investigate the Hyers–Ulam–Rassias stability of the Jensen
functional equation in non-Archimedean normed spaces and study its asymptotic
behavior in two directions: bounded and unbounded Jensen differences. In
particular, we show that a mapping f between non-Archimedean spaces with
f(0) = 0 is additive if and only if

‖f(
x + y

2
) − f(x) + f(y)

2
‖ → 0

as max {‖x‖, ‖y‖} → ∞ .

1. Introduction and preliminaries

The history of the stability theory of functional equations started with
a problem concerning group homomorphisms posed by S.M. Ulam [30] in
1940 and its solution given by H.D. Hyers [7] in 1941. Hyers’ theorem was
generalized by T. Aoki [1] for additive mappings and by Th.M. Rassias
[24] for linear mappings by considering an unbounded Cauchy difference.
The paper [24] of Th.M. Rassias has provided a lot of influence in the
development of what we now call Hyers–Ulam–Rassias stability of functional
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equations. During the last decades many stability problems for various
functional equations have been studied by numerous mathematicians. We
refer the reader to [4, 8, 13, 25, 26] and references therein. The first result
on the stability of the classical Jensen equation f(x+y

2 ) = f(x)+f(y)
2 was

given by Z. Kominek [16]. The first author, who investigated the stability
problem on a restricted domain was F. Skof [29]. The stability of the Jensen
equation and its generalizations were studied by numerous researchers, cf.
[5, 12, 17, 22]

By a non-Archimedean field we mean a field K equipped with a function
(valuation) | · | from K into [0,∞) such that |r| = 0 if and only if
r = 0, |rs| = |r| |s| , and |r + s| ≤ max {|r|, |s|} for all r, s ∈ K . Clearly
|1| = | − 1| = 1 and |n| ≤ 1 for all n ∈ N .

Let X be a vector space over a field K with a non-Archimedean non-
trivial valuation | · | . A function ‖ · ‖ : X → [0,∞) is called a non-
Archimedean norm if it satisfies the following conditions:

(i) ‖x‖ = 0 if and only if x = 0;

(ii) ‖rx‖ = |r|‖x‖ (r ∈ K, x ∈ X);

(iii) the strong triangle inequality (ultrametric); namely,

‖x+ y‖ ≤ max {‖x‖, ‖y‖} (x, y ∈ X).

Then (X, ‖ · ‖) is called a non-Archimedean normed space; cf. [28, 10, 18].
Due to the fact that

‖xn − xm‖ ≤ max {‖xj+1 − xj‖ : m ≤ j ≤ n− 1} (n > m)

a sequence {xn} is Cauchy if and only if {xn+1 − xn} converges to zero in a
non-Archimedean normed space. By a complete non-Archimedean normed
space we mean one in which every Cauchy sequence is convergent. Theory
of non-Archimedean normed spaces is not trivial, for instance there may
not be any unit vector. Although many results in classical normed space
theory have a non-Archimedean counterpart, but their proofs are essentially
different and require an entirely new kind of intuition, cf. [20, 21, 23].

In 1897, Hensel [6] discovered the p-adic numbers as a number theoretical
analogue of power series in complex analysis. Fix a prime number p . For
any nonzero rational number x , there exists a unique integer nx ∈ Z such
that x = a

b p
nx , where a and b are integers not divisible by p . Then

|x|p := p−nx defines a non-Archimedean norm on Q . The completion of Q

with respect to the metric d(x, y) = |x − y|p is denoted by Qp , which is
called the p-adic number field; cf. [27, 3]. During the last three decades
p-adic numbers have gained the interest of physicists for their research in
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particular in problems coming from quantum physics, p-adic strings and
superstrings; cf. [15].

In [2], the authors investigated stability of approximate additive mappings
f : Qp → R . The stability of the Cauchy equation in normed spaces
over fields with valuation was studied in [14]. In [20], the stability of
Cauchy and quadratic functional equations were investigated in the context
of non-Archimedean normed spaces. In this paper, using some ideas from
[9, 11, 12, 19] we establish the Hyers–Ulam–Rassias stability of the Jensen
functional equation in the setting of non-Archimedean normed spaces and
study its asymptotic behavior in two directions: bounded and unbounded
Jensen differences.

2. Stability of the Jensen equation

In this section, we prove the stability of the Jensen functional equation.
Throughout this section we assume that X is a non-Archimedean normed
space and Y is a non-Archimedean Banach space over a non-Archimedean
field K with |3| < 1.

Theorem 2.1. Suppose that α, β ≥ 0 , 0 ≤ p < 1 and f : X → Y is a
mapping satisfying ‖f(0)‖ ≤ β and

(2.1) ‖f(
x+ y

2
) − f(x) − f(y)‖ ≤ αmax {‖x‖p, ‖y‖p} (x, y ∈ X\ {0}).

Then there exists a unique Jensen mapping T : X → Y such that

‖f(x) − T (x)‖ ≤ max
{

α

|3|p ‖x‖
p, |2|β

}
(x ∈ X\ {0}).(2.2)

Proof. Let x ∈ X\ {0} . Replace x and y by x and −x
3 in (2.1),

respectively, to get

‖2f(
x

3
) − f(x) − f(

−x
3

)‖ ≤ αmax
{
‖x‖p, ‖−x

3
‖p

}

=
α

|3|p ‖x‖
p (by |3|p < 1) .(2.3)

Replace x and y by x
3 and −x

3 in (2.1), respectively, to obtain

‖2f(0)− f(
x

3
) − f(

−x
3

)‖ ≤ αmax
{
‖x
3
‖p, ‖−x

3
‖p

}
=

α

|3|p ‖x‖
p
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whence
(2.4)

‖f(
x

3
) + f(

−x
3

)‖ ≤ max
{

α

|3|p ‖x‖
p, |2|‖f(0)‖

}
≤ max

{
α

|3|p ‖x‖
p, |2|β

}
.

It follows from (2.3) and (2.4) that

‖3f(
x

3
) − f(x)‖ ≤ max

{
‖2f(0)− f(

x

3
) − f(

−x
3

)‖, ‖f(
x

3
) + f(

−x
3

)‖
}

≤ max
{

α

|3|p ‖x‖
p,max

{
α

|3|p ‖x‖
p, |2|β

}}

= max
{

α

|3|p ‖x‖
p, |2|β

}
(x ∈ X\ {0}).(2.5)

Given x ∈ X\ {0} , replace x by x
3n in (2.5) and multiple the obtained

inequality with |3|n to get

‖3n+1f(
x

3n+1
) − 3nf(

x

3n
)‖ ≤ max

{
α

|3|p |3|
n‖ x

3n
‖p, |3|n|2|β

}

= max
{

(|3|1−p)n α

|3|p ‖x‖
p, |3|n|2|β

}

The right hand side tends to zero as n→ ∞ , so the sequence
{
3nf( x

3n )
}

is
Cauchy. Since Y is complete, we conclude that

{
3nf( x

3n )
}

is convergent.

Set T (x) := lim
n→∞3nf(

x

3n
). Assume that

‖3nf(
x

3n
) − f(x)‖ ≤ max

{
α

|3|p ‖x‖
p, |2|β

}
(2.6)

for some n ∈ N . Then

‖3n+1f(
x

3n+1
) − f(x)‖ ≤ max

{
‖3n+1f(

x

3n+1
) − 3nf(

x

3n
)‖, ‖3nf(

x

3n
) − f(x)‖

}

≤ max
{

max
{

(|3|1−p)n α

|3|p ‖x‖
p, |3|n|2|β

}
,

max
{

α

|3|p ‖x‖
p, |2|β

}}

= max
{

α

|3|p ‖x‖
p, |2|β

}



M. S. Moslehian 17

Hence (2.6) holds for all positive integer n . Letting n approach to infinity
in (2.6) we get

‖T (x) − f(x)‖ ≤ max
{

α

|3|p ‖x‖
p, |2|β

}
.

Replacing x and y by x
3n and y

3n , respectively, in (2.1) we get

‖3n2f(
x+ y

2.3n
) − 3nf(

x

3n
) − 3nf(

y

3n
)‖ ≤ α(|3|1−p)n max {‖x‖p, ‖y‖p} .

Taking the limit as n→ ∞ we obtain

2T (
x+ y

2
) = T (x) + T (y) (x, y ∈ X\ {0}).

If T ′ is another Jensen mapping satisfying (2.2), then

‖T (x) − T ′(x)‖ = lim
k→∞

|3|k‖T (
x

3k
) − T ′(

x

3k
)‖

≤ lim
k→∞

|3|k max
{
‖T (

x

3k
) − f(

x

3k
)‖, ‖f(

x

3k
) − T ′(

x

3k
)‖

}

≤ lim
k→∞

|3|k max
{

α

|3|p ‖
x

3k
‖p, |2|β

}

= lim
k→∞

max
{

α

|3|p (|3|1−p)k‖x‖p, |3|k|2|β
}

= 0, x ∈ X\ {0} .

Therefore T = T ′ . This completes the proof of the uniqueness of T . �

Corollary 2.2. Suppose that α ≥ 0 , 0 ≤ p < 1 and f : X → Y is a
mapping satisfying f(0) = 0 and

‖f(
x+ y

2
) − f(x) − f(y)‖ ≤ αmax {‖x‖p, ‖y‖p} (x, y ∈ X).

Then there exists a unique additive mapping T : X → Y such that

‖f(x) − T (x)‖ ≤ α

|3|p ‖x‖
p (x ∈ X).(2.7)

Proof. It follows from Theorem 2.1 that there is a unique Jensen mapping
T satisfying (2.2). Since f(0) = 0, we have T (0) = 0. Hence T is clearly
additive and satisfies (2.7). �
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3. Asymptotic aspect of a bounded Jensen difference

In this section, we deal with the asymptotic behavior of the Jensen
functional equation. Throughout this section we assume that X is a non-
Archimedean normed space over K with {‖x‖ : x ∈ X} = {|r| : r ∈ K}
and Y is a non-Archimedean Banach space over a non-Archimedean field
K with |3| < 1. Utilizing the strategy of Theorem 3 of [12] we get the
following result.

Theorem 3.1. Suppose that α, β > 0 and f : X → Y is a mapping
satisfying f(0) = 0 and

‖f(
x+ y

2
) − f(x) − f(y)‖ ≤ α(3.1)

for all x, y ∈ X with max {‖x‖, ‖y‖} ≥ |β| . Then there exists a unique
additive mapping T : X → Y such that

‖f(x) − T (x)‖ ≤ α (x ∈ X).

Proof. Assume that max {‖x‖, ‖y‖} < |β| . For x = y = 0 take z ∈ X

to be an element of X with ‖z‖ = |β| . Without loss of generality, assume
that ‖y‖ ≤ ‖x‖ < |β| . Let γ ∈ K with |γ| = ‖x‖ . Set z := x + β

3nγx for
large enough n such that x �= 0 or y �= 0,

max {‖x− z‖, ‖y+ z‖} ≥ |β|
max {‖2z‖, ‖x− z‖} ≥ |β|

max {‖y‖, ‖2z‖} ≥ |β|(3.2)

max {‖y + z‖, ‖z‖} ≥ |β|
max {‖x‖, ‖z‖} ≥ |β| .

It follows from (3.1) and (3.2), we get

‖f(
x+ y

2
) − f(x) + f(y)

2
‖ ≤ max

{
‖f(

x+ y

2
) − f(x− z) + f(y + z)

2
‖,

‖f(2z) + f(x− z)
2

− f(
x+ z

2
)‖,

‖f(
y + 2z

2
) − f(y) + f(2z)

2
‖,

‖f(y + z) + f(z)
2

− f(
y + 2z

2
)‖,

‖f(
x+ z

2
) − f(x) + f(z)

2
‖
}
.
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Thus

‖f(
x+ y

2
) − f(x) + f(y)

2
‖ ≤ α

for all x, y ∈ X . Now the result is deduced from Corollary 2.2. �

Theorem 3.2. Suppose that f : X → Y is a mapping satisfying
f(0) = 0 . Then f is additive if and only if

‖f(
x+ y

2
) − f(x) + f(y)

2
‖ → 0(3.3)

as max {‖x‖, ‖y‖} → ∞ .

Proof. If f is additive, then (3.3) evidently holds. Conversely, use the
limit (3.3) to get for each n ∈ N a real number βn > |βn| (replace βn by
a real number of the form k(n)βn where k(n) is an integer, if necessary, to
get k(n)βn > |βn| ≥ |k(n)βn| , since |k(n)| ≤ 1) such that

‖f(
x+ y

2
) − f(x) + f(y)

2
‖ ≤ 1/n

for all x, y ∈ X with

max {‖x‖, ‖y‖} ≥ βn > |βn| .

Next use Theorem 3.1 to conclude a unique additive mapping Tn such that

‖f(x) − Tn(x)‖ ≤ 1/n(3.4)

for all x ∈ X . Thus ‖f(x) − T1(x)‖ ≤ 1 and ‖f(x) − Tn(x)‖ ≤ 1/n ≤ 1
for each n . By the uniqueness of T1 we conclude that Tn = T1 for all n .
Tending n to infinity in (3.4) we deduce that f = T1 is additive. �

4. Asymptotic aspect of an unbounded Jensen difference

In this section, we deal with the asymptotic behavior of an unbounded
Jensen difference. Throughout this section we assume that Let X is a non-
Archimedean normed space and Y is a non-Archimedean Banach space over
a non-Archimedean field K with |2| < 1.

Theorem 4.1. Suppose that α ≥ 0 , M > 0 , 0 ≤ p < 1 and f : X → Y

is a mapping satisfying f(0) = 0 and

‖2f(
x+ y

2
) − f(x) − f(y)‖ ≤ αmax {‖x‖p, ‖y‖p}(4.1)
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for all x, y ∈ X with max {‖x‖, ‖y‖} ≥ M . Then there exists an additive
mapping T : X → Y such that

‖f(x) − T (x)‖ ≤ α‖x‖p(4.2)

for all x ∈ X with ‖x‖ ≥ M . Furthermore, T is independent of given
positive numbers α and M .

Proof. Let ‖x‖ ≥M . Put y = 0 in (4.1) to get

‖2f(
x

2
) − f(x)‖ ≤ α‖x‖p(4.3)

Using (4.3) and the fact that ‖x/2n‖ ≥ M for large enough n , we can
follow the same argument as in the proof of Theorem 2.1 to get a mapping
τ : {x ∈ X : ‖x‖ ≥M} → Y defined by limn→∞ 2nf(x/2n) satisfying

‖τ(x) − f(x)‖ ≤ α‖x‖p (‖x‖ ≥M).

and

τ(
x+ y

2
) =

1
2
(τ(x) + τ(y))

for all x, y ∈ X with max {‖x‖, ‖y‖} ≥ M .For each x ∈ X with ‖x‖ ≥ M

we have ‖x/2‖ ≥ ‖x‖ ≥ ||M , whence

(4.4) τ(x/2) = lim
n→∞ 2nf(x/2n+1) =

1
2

lim
n→∞ 2n+1f(x/2n+1) =

1
2
τ(x)

Given any x ∈ X with 0 < ‖x‖ < M , let k = k(x) denotes the least
positive integer such that ‖x/2k|| ≥M and define

T (x) =

⎧⎨
⎩

0 x = 0
2kτ( x

2k ) ‖x‖ < M
τ(x) ‖x‖ ≥M

Now we show that

T (x) = lim
n→∞ 2nf(

x

2n
) (x ∈ X).(4.5)

To see this, take any x ∈ X with 0 < ‖x‖ < M . Let k be the least positive
integer satisfying ‖x/2k−1‖ ≥ M . Then k − 1 is the least positive integer
satisfying ‖ x

2
2k−2 ‖ ≥M . Therefore

T (x/2) = 2k−1τ(
x
2

2k−1
) =

1
2
2kτ(

x

2k
) =

1
2
T (x).
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By (4.4) and the definition of T , we therefore conclude that

T (x/2) =
1
2
T (x)(4.6)

for all x ∈ X . Let x ∈ X\ {0} . There is a positive integer k0 such that
‖2−k0x‖ ≥M . We have

T (x) = 2k0T (2−k0x) = 2k0τ(2−k0x) = 2k0 lim
n→∞ f(

2−k0x

2n
)

= lim
n→∞ 2n+k0f(

x

2n+k0
) = lim

n→∞ 2nf(
x

2n
).

Trivially T (0) = 0 = limn→∞ 2nf( 0
2n ). Hence (4.5) holds for all x ∈ X .

If x = 0 or y = 0, by taking (4.6) into account, we get T (x+y
2 ) =

1
2 (T (x) + T (y)). So we may assume that x �= 0 and y �= 0. Choose
n ∈ N to be large enough such that

min
{
‖ x
2n

‖, ‖ y
2n

‖
}
≥M.

Utilizing (4.1) we obtain

‖2nf(
(x + y)/2

2n
) − 1

2
2nf(

x

2n
) − 1

2
2nf(

y

2n
)‖ ≤ (|2|1−p)n max {‖x‖p, ‖y‖p} .

Letting n approach to infinity we get

T (
x+ y

2
) =

1
2
(T (x) + T (y)).

Hence T is additive.
Suppose that T ′ is another additive mapping satisfying (4.2) with α and

M replaced by α′ and M ′ , respectively. For x ∈ X choose n ∈ N large
enough so that ‖2−nx‖ ≥ max {M,M ′} . Then

‖T (x) − T ′(x)‖ = lim
k→∞

|2|k‖T (
x

2k
) − T ′(

x

2k
)‖

≤ lim
k→∞

|2|k max
{
‖T (

x

2k
) − f(

x

2k
)‖, ‖f(

x

2k
) − T ′(

x

2k
)‖

}

≤ lim
k→∞

|2|k max
{
α‖ x

2k
‖p, α′‖ x

2k
‖p

}

= lim
k→∞

(|2|1−p)k‖x‖p max {α, α′}
= 0.

Hence T (x) = T ′(x). �
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Let f : X → Y be a mapping. Following [9]

(i) f is called p-asymptotic close to an additive mapping T if
lim‖x‖→∞

‖f(x)−T (x)‖
‖x‖p = 0.

(ii) f is said to satisfy p-asymptotically the Jensen equation if for each
α > 0 there exists M > 0 such that

‖f(
x+ y

2
) − f(x) − f(y)‖ ≤ αmax {‖x‖p, ‖y‖p}

for all x, y ∈ X with max {‖x‖, ‖y‖} ≥M .

Applying Theorem 4.1 and the uniqueness of obtained additive mapping
we infer the following corollary.

Corollary 4.2. If 0 < p < 1 and a mapping f : X → Y with f(0) = 0
satisfies p-asymptotically the Jensen equation, then it is p-asymptotic close
to an additive mapping.
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