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Abstract. We characterize Triebel-Lizorkin spaces with positive smoothness

on ℝ
𝑛 , obtained by different approaches. First we present three settings F𝑠

𝑝,𝑞(ℝ
𝑛) ,

𝐹 𝑠
𝑝,𝑞(ℝ

𝑛) , 𝔉𝑠
𝑝,𝑞(ℝ

𝑛) associated to definitions by differences, Fourier-analytical

methods and subatomic decompositions. We study their connections and diversity,

as well as embeddings between these spaces and into Lorentz spaces. Secondly,

relying on previous results obtained for Besov spaces 𝔅𝑠
𝑝,𝑞(ℝ

𝑛) , we determine

their growth envelopes 𝔈G
(
𝔉𝑠
𝑝,𝑞(ℝ

𝑛)
)

for 0 < 𝑝 < ∞ , 0 < 𝑞 ≤ ∞ , 𝑠 > 0, and

finally discuss some applications.

1. Introduction

In this article Triebel-Lizorkin spaces of positive smoothness on ℝ𝑛 are

investigated. They were introduced independently by Triebel and Lizorkin

in the early 1970s. For a detailed treatment together with historical remarks

we refer to Triebel [18, 19]. The idea for this paper originates from its

forerunner [12], where we studied corresponding problems for Besov spaces.

Since the substantial theory of the Triebel-Lizorkin spaces is strongly linked
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with the theory of Besov spaces – in the sequel briefly denoted as F-

spaces and B-spaces, respectively – the question came up whether those

previous results could be carried over to the F-space setting. This paper

aims at providing a rather final answer to this question. According to

the well-known Besov spaces, Triebel-Lizorkin spaces inherited different

characterizations, creating the task of comparing and – in the optimal

case – identifying the resulting spaces. In the case, 0 < 𝑠 ≤ 𝑛( 1𝑝 − 1),

0 < 𝑝 < 1, for a long time, it was only known that, say, two of the

most prominent approaches – based on characterizations by differences on

the one hand and by Fourier-analytical decompositions on the other hand

– necessarily differ, but may otherwise share similar properties. Modern

subatomic characterizations now admit new insights into the nature of these

spaces.

More precisely, we restrict ourselves to the following three approaches to

F-spaces only: the classical approach, which introduces F𝑠
𝑝,𝑞(ℝ

𝑛) as those

subspaces of 𝐿𝑝(ℝ
𝑛) such that

∥𝑓 ∣F𝑠
𝑝,𝑞(ℝ

𝑛)∥𝑟 = ∥𝑓 ∣𝐿𝑝(ℝ
𝑛)∥+

∥∥∥∥∥
(∫ 1

0

𝑡−𝑠𝑞𝑑𝑟𝑡,𝑝𝑓(⋅)𝑞
d𝑡

𝑡

)1/𝑞

∣𝐿𝑝(ℝ
𝑛)

∥∥∥∥∥
is finite, where 0 < 𝑝 < ∞ , 0 < 𝑞 ≤ ∞ , 𝑠 > 0, 𝑟 ∈ ℕ with 𝑟 > 𝑠

(appropriately modified for 𝑞 =∞), and 𝑑𝑟𝑡,𝑝𝑓(⋅) denote the ball means of
𝑓 ∈ 𝐿𝑝(ℝ

𝑛). Secondly, we deal with the Fourier-analytical approach leading

to spaces 𝐹 𝑠
𝑝,𝑞(ℝ

𝑛) as the set of all tempered distributions 𝑓 ∈ 𝒮 ′(ℝ𝑛) such

that ∥∥𝑓 ∣𝐹 𝑠
𝑝,𝑞(ℝ

𝑛)
∥∥ = ∥∥∥∥∥{2𝑗𝑠ℱ−1(𝜑𝑗ℱ𝑓)(⋅)}

𝑗∈ℕ0
∣ℓ𝑞
∥∥∣𝐿𝑝(ℝ

𝑛)
∥∥∥

is finite, where 𝑠 ∈ ℝ , 0 < 𝑝 < ∞ , 0 < 𝑞 ≤ ∞ , and {𝜑𝑗}𝑗 is a smooth
dyadic resolution of unity. Finally, the most recent definition 𝔉𝑠𝑝,𝑞(ℝ

𝑛) relies

on subatomic decompositions and contains those 𝑓 ∈ 𝐿𝑝(ℝ
𝑛) which can be

represented as

𝑓(𝑥) =
∑
𝛽∈ℕ𝑛

0

∞∑
𝑗=0

∑
𝑚∈ℤ𝑛

𝜆𝛽𝑗,𝑚𝑘
𝛽
𝑗,𝑚(𝑥), 𝑥 ∈ ℝ

𝑛,

with coefficients 𝜆 = {𝜆𝛽𝑗,𝑚 ∈ ℂ : 𝛽 ∈ ℕ𝑛
0 , 𝑗 ∈ ℕ0,𝑚 ∈ ℤ𝑛} belonging

to some appropriate sequence space 𝑓𝑠,𝜚𝑝,𝑞 , where 𝑠 > 0, 0 < 𝑝 < ∞ ,

0 < 𝑞 ≤ ∞ , 𝜚 ≥ 0, and 𝑘𝛽𝑗,𝑚(𝑥) are certain standardized building blocks.

Recent results by Hedberg, Netrusov [11] on atomic decompositions and by
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Triebel [22, Sect. 9.2] on the reproducing formula prove coincidences

F𝑠
𝑝,𝑞(ℝ

𝑛) = 𝔉𝑠𝑝,𝑞(ℝ
𝑛), 𝑠 > 𝑛

(
1

min(𝑝, 𝑞)
− 1

𝑝

)
, 0 < 𝑝 < ∞, 0 < 𝑞 ≤ ∞,

and

𝐹 𝑠
𝑝,𝑞(ℝ

𝑛) = 𝔉𝑠𝑝,𝑞(ℝ
𝑛), 𝑠 > 𝑛

(
1

min(𝑝, 𝑞, 1)
− 1
)
, 0 < 𝑝 < ∞, 0 < 𝑞 ≤ ∞,

resulting in

𝐹 𝑠
𝑝,𝑞(ℝ

𝑛) = F𝑠
𝑝,𝑞(ℝ

𝑛) = 𝔉𝑠𝑝,𝑞(ℝ
𝑛),

whenever

0 < 𝑝 < ∞, 0 < 𝑞 ≤ ∞, 𝑠 > 𝑛

(
1

min(𝑝, 𝑞)
− 1

max(1, 𝑝)

)

(in terms of equivalent (quasi-)norms). We discuss these three approaches

in view of embeddings and envelope results. In particular, our first main

result, Theorem 2.16, extends ‘limiting embeddings’ of type

𝔉𝑠𝑝,𝑞1(ℝ
𝑛) ↪→ 𝔉𝜎𝑟,𝑞2(ℝ

𝑛), 𝑠− 𝑛

𝑝
= 𝜎 − 𝑛

𝑟
,

to all admitted parameters 0 < 𝜎 < 𝑠 , 0 < 𝑝 < 𝑟 < ∞ , 0 < 𝑞1, 𝑞2 ≤ ∞ ,

and similarly for

𝔉𝑠𝑝,𝑞(ℝ
𝑛) ↪→ 𝐿𝑟,𝑝(ℝ

𝑛), 𝑠− 𝑛

𝑝
= −𝑛

𝑟
,

where 0 < 𝑠 < 𝑛
𝑝 , 0 < 𝑞 ≤ ∞ ; in both cases 𝔉𝑠𝑝,𝑞(ℝ

𝑛) can be replaced

by F𝑠
𝑝,𝑞(ℝ

𝑛), whenever 𝑠 > 𝑛
(

1
min(𝑝,𝑞) − 1

𝑝

)
; in fact the second embedding

holds in general as well. This result is further clarified in Corollary 4.1.

Secondly, the paper is devoted to the study of the ‘typical’ singularity

behaviour in these F-spaces in the sense of growth envelopes. This

recently introduced concept originates from such classical ideas as the

famous Sobolev embedding theorem [16]. Basically, this characterizes

the unboundedness of functions that belong to (classical) Sobolev spaces

𝑊 𝑘
𝑝 (ℝ

𝑛), 𝑘 ∈ ℕ0 , 1 ≤ 𝑝 < ∞ , (and more general scales of spaces). By

Sobolev’s embedding theorem it is known that for 𝑘 ≤ 𝑛
𝑝 , 1 ≤ 𝑝 < ∞ ,

there are (essentially) unbounded functions in 𝑊 𝑘
𝑝 (ℝ

𝑛), whereas beyond

the ‘critical line’ 𝑘 = 𝑛
𝑝 , i.e., for 𝑘 > 𝑛

𝑝 (or 𝑘 = 𝑛 and 𝑝 = 1) we have

𝑊 𝑘
𝑝 (ℝ

𝑛) ↪→ 𝐿∞(ℝ𝑛). In the past a lot of work has been done to refine

Sobolev type embeddings in terms of wider classes of function spaces. We

do not want to report on this elaborate history here; apart from the original
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papers assertions of this type are indispensable parts in books dealing with

Sobolev spaces and related questions, cf. [1], [26], [14], [5]. We study the

growth and unboundedness of such functions (distributions) in terms of

their growth envelope 𝔈G(𝑋) = (ℰ𝑋G (𝑡), 𝑢𝑋G ) , where 𝑋 ⊂ 𝐿loc
1 is a function

space and

ℰ𝑋G (𝑡) ∼ sup {𝑓∗(𝑡) : ∥𝑓 ∣𝑋∥ ≤ 1} , 𝑡 > 0,

its growth envelope function, and 𝑢𝑋G ∈ (0,∞] is some additional index
providing a finer description. Here 𝑓∗ denotes the non-increasing rearrange-
ment of 𝑓 , as usual. These concepts were introduced in [21], [8, 9], the latter

book also contains a recent survey of the present state-of-the-art (concerning

extensions and more general approaches) as well as applications and further

references.

Our second main result, Theorem 3.11, can now be formulated as

𝔈G(𝔉
𝑠
𝑝,𝑞(ℝ

𝑛)) =
(
𝑡−

1
𝑝+

𝑠
𝑛 , 𝑝
)
,

where 0 < 𝑝 < ∞ , 0 < 𝑞 ≤ ∞ , 0 < 𝑠 < 𝑛
𝑝 . Moreover, globally we obtain

ℰ𝔉𝑠
𝑝,𝑞

G (𝑡) ∼ 𝑡−
1
𝑝 for 𝑡 → ∞.

Similarly for the spaces F𝑠
𝑝,𝑞(ℝ

𝑛). This naturally extends results for

𝐹 𝑠
𝑝,𝑞(ℝ

𝑛) below the line 𝑠 = 𝑛max( 1𝑝 − 1, 0) which – though indispensable
for spaces 𝐹 𝑠

𝑝,𝑞(ℝ
𝑛) in order to admit an interpretation of 𝑓 ∈ 𝐹 𝑠

𝑝,𝑞(ℝ
𝑛) as

a regular distribution – is not necessary for the approaches 𝔉𝑠𝑝,𝑞(ℝ
𝑛) and

F𝑠
𝑝,𝑞(ℝ

𝑛), respectively. Moreover, since the scale of F-spaces contains the

( fractional) Sobolev spaces as a special case, i.e.,

𝐹 𝑠
𝑝,2(ℝ

𝑛) = 𝐻𝑠
𝑝(ℝ

𝑛), 𝑠 ∈ ℝ, 1 < 𝑝 < ∞,

our results admit new insights into the nature of these classical function

spaces as well, cf. Remark 2.12 and Corollary 3.12.

The paper is organized as follows. In Section 2 we first present three

different approaches to Triebel-Lizorkin spaces of positive smoothness and

briefly discuss these concepts. We also extend well-known embedding results

to all admitted values of positive smoothness. In Section 3 we recall the

concepts of growth envelopes, collect some fundamentals needed below

including basic examples. The main results in this context are contained in

Section 3.2. Finally Section 4 contains two interesting applications of our

results in terms of Hardy-type inequalities and criteria of sharp embeddings.



C. Schneider 255

2. Triebel-Lizorkin spaces with positive smoothness on ℝ
𝑛

We use standard notation. Let ℕ be the collection of all natural numbers

and let ℕ0 = ℕ∪{0} . Let ℝ𝑛 be euclidean 𝑛-space, 𝑛 ∈ ℕ , ℂ the complex

plane. The set of multi-indices 𝛽 = (𝛽1, . . . , 𝛽𝑛), 𝛽𝑖 ∈ ℕ0 , 𝑖 = 1, . . . , 𝑛 ,

is denoted by ℕ𝑛
0 , with ∣𝛽∣ = 𝛽1 + ⋅ ⋅ ⋅ + 𝛽𝑛 , as usual. Moreover, if

𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ ℝ𝑛 and 𝛽 = (𝛽1, . . . , 𝛽𝑛) ∈ ℕ𝑛
0 we put 𝑥

𝛽 = 𝑥𝛽1

1 ⋅ ⋅ ⋅𝑥𝛽𝑛
𝑛 .

We use the equivalence ‘∼ ’ in

𝑎𝑘 ∼ 𝑏𝑘 or 𝜑(𝑥) ∼ 𝜓(𝑥)

always to mean that there are two positive numbers 𝑐1 and 𝑐2 such that

𝑐1 𝑎𝑘 ≤ 𝑏𝑘 ≤ 𝑐2 𝑎𝑘 or 𝑐1 𝜑(𝑥) ≤ 𝜓(𝑥) ≤ 𝑐2 𝜑(𝑥)

for all admitted values of the discrete variable 𝑘 or the continuous variable

𝑥 , where {𝑎𝑘}𝑘 , {𝑏𝑘}𝑘 are non-negative sequences and 𝜑 , 𝜓 are non-

negative functions. If 𝑎 ∈ ℝ , then 𝑎+ := max(𝑎, 0) and [𝑎] denotes the

integer part of 𝑎 . Given two (quasi-)Banach spaces 𝑋 and 𝑌 , we write

𝑋 ↪→ 𝑌 if 𝑋 ⊂ 𝑌 and the natural embedding of 𝑋 in 𝑌 is continuous.

All unimportant positive constants will be denoted by 𝑐 , occasionally with

subscripts. Integration with respect to the n-dimensional Lebesgue measure

in ℝ𝑛 is denoted by d𝑥 , whereas ∣𝐴∣ stands for the Lebesgue measure
of a Lebesgue-measurable set 𝐴 in ℝ𝑛 . As we shall always deal with

function spaces on ℝ
𝑛 , we may usually omit the ‘ℝ𝑛 ’ from their notation

for convenience.

2.1 Different approaches. In this section we discuss three different

approaches to Triebel-Lizorkin spaces with positive smoothness. We first

present these approaches separately before we come to some comparison.

At the end we collect and extend some embedding results that will also be

needed below.

Let for 0 < 𝑝, 𝑞 ≤ ∞ the numbers 𝜎𝑝 and 𝜎𝑝𝑞 be given by

(2.1) 𝜎𝑝 = 𝑛

(
1

𝑝
− 1
)

+

and 𝜎𝑝𝑞 = 𝑛

(
1

min(𝑝, 𝑞)
− 1
)

+

.

The classical approach: Triebel-Lizorkin spaces F𝑠
𝑝,𝑞(ℝ

𝑛). If 𝑓 is

an arbitrary function on ℝ𝑛 , ℎ ∈ ℝ𝑛 and 𝑟 ∈ ℕ , then

(Δ1
ℎ𝑓)(𝑥) = 𝑓(𝑥+ ℎ)− 𝑓(𝑥) and (Δ𝑟+1

ℎ 𝑓)(𝑥) = Δ1
ℎ(Δ

𝑟
ℎ𝑓)(𝑥), 𝑥 ∈ ℝ

𝑛.
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For convenience we may write Δℎ instead of Δ1
ℎ . Furthermore, for a

function 𝑓 ∈ 𝐿𝑝(ℝ
𝑛), 0 < 𝑝 < ∞ , 𝑟 ∈ ℕ , the ball means are denoted

by

(2.2) 𝑑𝑟𝑡,𝑝𝑓(𝑥) =

(
𝑡−𝑛

∫
∣ℎ∣≤𝑡

∣(Δ𝑟
ℎ𝑓)(𝑥)∣𝑝dℎ

)1/𝑝

, 𝑥 ∈ ℝ
𝑛, 𝑡 > 0.

Definition 2.1. Let 0 < 𝑝 < ∞ , 0 < 𝑞 ≤ ∞ , 𝑠 > 0, and 𝑟 ∈ ℕ such

that 𝑟 > 𝑠 . Then F𝑠
𝑝,𝑞(ℝ

𝑛) is the collection of all 𝑓 ∈ 𝐿𝑝(ℝ
𝑛) such that

(2.3) ∥𝑓 ∣F𝑠
𝑝,𝑞(ℝ

𝑛)∥𝑟 = ∥𝑓 ∣𝐿𝑝(ℝ
𝑛)∥+

∥∥∥∥∥
(∫ 1

0

𝑡−𝑠𝑞𝑑𝑟𝑡,𝑝𝑓(⋅)𝑞
d𝑡

𝑡

)1/𝑞

∣𝐿𝑝(ℝ
𝑛)

∥∥∥∥∥
(with the usual modification if 𝑞 =∞) is finite.

Remark 2.2. The approach by differences for the spaces F𝑠
𝑝,𝑞(ℝ

𝑛)

has been described in detail in [18] for those spaces which can also be

considered as subspaces of 𝑆′(ℝ𝑛). Otherwise one finds in [22], Section

9.2.2, pp. 386-390, the necessary explanations and references to the relevant

literature. In particular, the spaces in Definition 2.1 are independent of 𝑟 ,

meaning that different values of 𝑟 > 𝑠 result in (quasi-)norms which are

equivalent. Furthermore, the spaces are (quasi-)Banach spaces (Banach

spaces, if 1 ≤ 𝑝 < ∞ , 1 ≤ 𝑞 ≤ ∞). Recall that we deal with subspaces of

𝐿𝑝(ℝ
𝑛), in particular, we have the embedding

F𝑠
𝑝,𝑞(ℝ

𝑛) ↪→ 𝐿𝑝(ℝ
𝑛), 𝑠 > 0, 0 < 𝑝 < ∞, 0 < 𝑞 ≤ ∞.

There is a corresponding approach by differences for the classical Besov

spaces B𝑠
𝑝,𝑞 . The 𝑘 -th modulus of smoothness of a function 𝑓 ∈ 𝐿𝑝(ℝ

𝑛),

0 < 𝑝 ≤ ∞ , 𝑘 ∈ ℕ , is defined by

(2.4) 𝜔𝑘(𝑓, 𝑡)𝑝 = sup
∣ℎ∣≤𝑡

∥Δ𝑘
ℎ𝑓 ∣ 𝐿𝑝(ℝ

𝑛)∥, 𝑡 > 0.

Let 0 < 𝑝, 𝑞 ≤ ∞ , 𝑠 > 0, and 𝑟 ∈ ℕ such that 𝑟 > 𝑠 . Then the Besov

space B𝑠
𝑝,𝑞(ℝ

𝑛) contains all 𝑓 ∈ 𝐿𝑝(ℝ
𝑛) such that

(2.5) ∥𝑓 ∣B𝑠
𝑝,𝑞(ℝ

𝑛)∥𝑟 = ∥𝑓 ∣𝐿𝑝(ℝ
𝑛)∥+

(∫ 1

0

𝑡−𝑠𝑞𝜔𝑟(𝑓, 𝑡)
𝑞
𝑝

d𝑡

𝑡

)1/𝑞

(with the usual modification if 𝑞 =∞) is finite. Further information on the
classical approach for B- and F-spaces – treated in a more general context

– may be found in [11].
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The Fourier-analytical approach: Triebel-Lizorkin spaces

𝐹 𝑠
𝑝,𝑞(ℝ

𝑛). The Schwartz space 𝒮(ℝ𝑛) and its dual 𝒮 ′(ℝ𝑛) of all

complex-valued tempered distributions have their usual meaning here. Let

𝜑0 = 𝜑 ∈ 𝒮(ℝ𝑛) be such that

(2.6) supp𝜑 ⊂ {𝑦 ∈ ℝ
𝑛 : ∣𝑦∣ < 2} and 𝜑(𝑥) = 1 if ∣𝑥∣ ≤ 1 ,

and for each 𝑗 ∈ ℕ let 𝜑𝑗(𝑥) = 𝜑(2−𝑗𝑥) − 𝜑(2−𝑗+1𝑥). Then {𝜑𝑗}∞𝑗=0

forms a smooth dyadic resolution of unity. Given any 𝑓 ∈ 𝒮 ′(ℝ𝑛), we

denote by ℱ𝑓 and ℱ−1𝑓 its Fourier transform and its inverse Fourier

transform, respectively. Let 𝑓 ∈ 𝒮 ′(ℝ𝑛), then the compact support of

𝜑𝑗ℱ𝑓 implies by the Paley-Wiener-Schwartz theorem that ℱ−1(𝜑𝑗ℱ𝑓) is

an entire analytic function on ℝ𝑛 .

Definition 2.3. Let 𝑠 ∈ ℝ , 0 < 𝑝 < ∞ , 0 < 𝑞 ≤ ∞ , and {𝜑𝑗}𝑗
a smooth dyadic resolution of unity. The space 𝐹 𝑠

𝑝,𝑞(ℝ
𝑛) is the set of all

distributions 𝑓 ∈ 𝒮 ′(ℝ𝑛) such that

∥∥𝑓 ∣𝐹 𝑠
𝑝,𝑞(ℝ

𝑛)
∥∥ = ∥∥∥∥∥{2𝑗𝑠ℱ−1(𝜑𝑗ℱ𝑓)(⋅)}

𝑗∈ℕ0
∣ℓ𝑞
∥∥∣𝐿𝑝(ℝ

𝑛)
∥∥∥(2.7)

is finite.

Remark 2.4. The spaces 𝐹 𝑠
𝑝,𝑞(ℝ

𝑛) are independent of the particular

choice of the smooth dyadic resolution of unity {𝜑𝑗}𝑗 appearing in their
definition. They are (quasi-)Banach spaces (Banach spaces for 𝑝, 𝑞 ≥ 1),

and 𝒮(ℝ𝑛) ↪→ 𝐹 𝑠
𝑝,𝑞(ℝ

𝑛) ↪→ 𝒮 ′(ℝ𝑛), where the first embedding is dense if

𝑞 < ∞ . An extension of Definition 2.3 to 𝑝 = ∞ does not make sense if

0 < 𝑞 < ∞ (in particular, a corresponding space is not independent of the

choice {𝜑𝑗}𝑗 ). The case 𝑝 = 𝑞 =∞ yields the Besov spaces 𝐵𝑠
∞,∞(ℝ

𝑛).

In general, the Fourier-analytical Besov spaces 𝐵𝑠
𝑝,𝑞(ℝ

𝑛) are defined

correspondingly to the spaces 𝐹 𝑠
𝑝,𝑞(ℝ

𝑛) by interchanging the order in which

the (quasi-)norms are taken, i.e., first using the 𝐿𝑝 -norm and afterwards

applying the ℓ𝑞 -norm – in view of (2.7). These B-spaces are closely linked

with the Triebel-Lizorkin spaces 𝐹 𝑠
𝑝,𝑞(ℝ

𝑛) via

(2.8) 𝐵𝑠
𝑝,min(𝑝,𝑞)(ℝ

𝑛) ↪→ 𝐹 𝑠
𝑝,𝑞(ℝ

𝑛) ↪→ 𝐵𝑠
𝑝,max(𝑝,𝑞)(ℝ

𝑛).

We shall later on return to this embedding. The theory of the spaces

𝐹 𝑠
𝑝,𝑞(ℝ

𝑛) (and 𝐵𝑠
𝑝,𝑞(ℝ

𝑛)) has been developed in detail in [18] and [19]

(and continued and extended in the more recent monographs [21], [22]),

but has a longer history already including many contributors; we do

not further want to discuss this here. Note that the spaces 𝐹 𝑠
𝑝,𝑞(ℝ

𝑛)

contain tempered distributions which can only be interpreted as regular
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distributions (functions) for sufficiently high smoothness. More precisely,

we have

(2.9)

𝐹 𝑠
𝑝,𝑞(ℝ

𝑛) ⊂ 𝐿loc
1 (ℝ𝑛) if, and only if,

⎧⎨
⎩
𝑠 ≥ 𝜎𝑝, for 0 < 𝑝 < 1, 0 < 𝑞 ≤ ∞,

𝑠 > 𝜎𝑝, for 1 ≤ 𝑝 < ∞, 0 < 𝑞 ≤ ∞,

𝑠 = 𝜎𝑝, for 1 ≤ 𝑝 < ∞, 0 < 𝑞 ≤ 2,

cf. [17, Thm. 3.3.2]. In particular, for 𝑠 < 𝜎𝑝 one cannot interpret

𝑓 ∈ 𝐹 𝑠
𝑝,𝑞(ℝ

𝑛) as a regular distribution in general. The scale 𝐹 𝑠
𝑝,𝑞(ℝ

𝑛)

contains many well-known function spaces. We list a few special cases.

Let 1 < 𝑝 < ∞ , then

𝐹 𝑠
𝑝,2(ℝ

𝑛) = 𝐻𝑠
𝑝(ℝ

𝑛), 𝑠 ∈ ℝ,

are the (fractional) Sobolev spaces containing all 𝑓 ∈ 𝑆′(ℝ𝑛) with

ℱ−1(1 + ∣𝜉∣2)𝑠/2ℱ𝑓 ∈ 𝐿𝑝(ℝ
𝑛).

In particular, for 𝑘 ∈ ℕ0 , we obtain the classical Sobolev spaces

𝐹 𝑘
𝑝,2(ℝ

𝑛) =𝑊 𝑘
𝑝 (ℝ

𝑛), i.e., 𝐹 0
𝑝,2(ℝ

𝑛) = 𝐿𝑝(ℝ
𝑛),

usually normed by

∥𝑓 ∣𝑊 𝑘
𝑝 (ℝ

𝑛)∥ =
⎛
⎝∑

∣𝛼∣≤𝑘

∥D𝛼𝑓 ∣𝐿𝑝(ℝ
𝑛)∥𝑝

⎞
⎠

1/𝑝

.

Furthermore,

𝐹 0
𝑝,2(ℝ

𝑛) = ℎ𝑝(ℝ
𝑛), 0 < 𝑝 < ∞,

the latter being the Hardy spaces.

The subatomic approach: Triebel-Lizorkin spaces 𝔉𝑠𝑝,𝑞(ℝ
𝑛). In

this subsection we simultaneously give definitions for the Besov spaces

𝔅𝑠
𝑝,𝑞(ℝ

𝑛) and the spaces 𝔉𝑠𝑝,𝑞(ℝ
𝑛). The reason for this is that later on

we want to use results previously obtained for the spaces 𝔅𝑠
𝑝,𝑞(ℝ

𝑛) in [12],

in order to now establish corresponding results for the spaces 𝔉𝑠𝑝,𝑞(ℝ
𝑛).

We complement our notation. Let 𝑄𝑗,𝑚 with 𝑗 ∈ ℕ0 and 𝑚 ∈ ℤ𝑛

denote a cube in ℝ𝑛 with sides parallel to the axes of coordinates, centered

at 2−𝑗𝑚 , and with side length 2−𝑗+1 . Besides, if 𝑄 is a cube in ℝ
𝑛 and

𝑟 > 0, then 𝑟𝑄 is the cube in ℝ𝑛 concentric with 𝑄 and 𝑟 times the side

length of 𝑄 .
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Let 𝜒𝑗,𝑚 be the characteristic function of 𝑄𝑗,𝑚 and

ℝ
𝑛
++ := {𝑦 ∈ ℝ

𝑛 : 𝑦 = (𝑦1, . . . , 𝑦𝑛), 𝑦𝑗 > 0}.

The subatomic approach provides a constructive definition for Besov and

Triebel-Lizorkin spaces, expanding functions 𝑓 via building blocks with

suitable coefficients, where the latter belong to certain sequence spaces 𝑏𝑠,𝜚𝑝,𝑞

and 𝑓 𝑠,𝜚𝑝,𝑞 , respectively.

Definition 2.5. Let 𝑘 be a non-negative 𝐶∞ -function in ℝ𝑛 with

(2.10) supp 𝑘 ⊂ {𝑦 ∈ ℝ
𝑛 : ∣𝑦∣ < 2𝐽−𝜀

} ∩ ℝ
𝑛
++

for some fixed 𝜀 > 0 and some fixed 𝐽 ∈ ℕ , satisfying

(2.11)
∑
𝑚∈ℤ𝑛

𝑘(𝑥−𝑚) = 1, 𝑥 ∈ ℝ
𝑛.

Let 𝛽 ∈ ℕ𝑛
0 , 𝑗 ∈ ℕ0 , 𝑚 ∈ ℤ𝑛 , and set 𝑘𝛽(𝑥) = (2−𝐽𝑥)𝛽𝑘(𝑥). Then

(2.12) 𝑘𝛽𝑗,𝑚(𝑥) = 𝑘𝛽(2𝑗𝑥−𝑚)

denote the building blocks related to 𝑄𝑗,𝑚 .

Remark 2.6. Let 𝛽 ∈ ℕ𝑛
0 , 𝑗 ∈ ℕ0 , 𝑚 ∈ ℤ𝑛 , with 𝜀 > 0 and 𝐽 ∈ ℕ as

in Definition 2.5. The above definition implies that the building blocks are

bounded by

(2.13) 0 ≤ 𝑘𝛽𝑗,𝑚(𝑥) ≤ 2−𝜀∣𝛽∣, 𝑥 ∈ ℝ
𝑛,

uniformly in 𝑗 ∈ ℕ0 , 𝑚 ∈ ℤ
𝑛 , and for their supports we observe that

(2.14) supp 𝑘𝛽𝑗,𝑚 ⊂ 2𝐽−𝜀𝑄𝑗,𝑚

uniformly in 𝛽 ∈ ℕ𝑛
0 .

Definition 2.7. Let 𝜚 ≥ 0, 𝑠 ∈ ℝ , 0 < 𝑝, 𝑞 ≤ ∞ and

𝜆 =
{
𝜆𝛽𝑗,𝑚 ∈ ℂ : 𝛽 ∈ ℕ

𝑛
0 ,𝑚 ∈ ℤ

𝑛, 𝑗 ∈ ℕ0

}
.

(i) Then the sequence space 𝑏𝑠,𝜚𝑝,𝑞 is defined as

(2.15) 𝑏𝑠,𝜚𝑝,𝑞 :=
{
𝜆 : ∥𝜆∣𝑏𝑠,𝜚𝑝,𝑞∥ < ∞},
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where

(2.16) ∥𝜆∣𝑏𝑠,𝜚𝑝,𝑞∥ = sup
𝛽∈ℕ𝑛

0

2𝜚∣𝛽∣

⎛
⎝ ∞∑

𝑗=0

2𝑗(𝑠−𝑛/𝑝)𝑞

( ∑
𝑚∈ℤ𝑛

∣𝜆𝛽𝑗,𝑚∣𝑝
)𝑞/𝑝

⎞
⎠

1/𝑞

(with the usual modification if 𝑝 =∞ and/or 𝑞 =∞ ).

(ii) Furthermore, the sequence space 𝑓𝑠,𝜚𝑝,𝑞 consists of all sequences 𝜆

such that

(2.17) 𝑓 𝑠,𝜚𝑝,𝑞 :=
{
𝜆 : ∥𝜆∣𝑓 𝑠,𝜚𝑝,𝑞 ∥ < ∞},

where

(2.18) ∥𝜆∣𝑓 𝑠,𝜚𝑝,𝑞 ∥ = sup
𝛽∈ℕ𝑛

0

2𝜚∣𝛽∣

∥∥∥∥∥∥∥
⎛
⎝ ∞∑

𝑗=0

∑
𝑚∈ℤ𝑛

2𝑗𝑠𝑞 ∣𝜆𝛽𝑗,𝑚∣𝑞𝜒𝑗,𝑚(⋅)
⎞
⎠

1/𝑞

∣𝐿𝑝(ℝ
𝑛)

∥∥∥∥∥∥∥
(with the usual modification if 𝑝 =∞ and/or 𝑞 =∞ ).

We now define the related function spaces.

Definition 2.8. Let 𝑠 > 0, 0 < 𝑞 ≤ ∞ , 𝜚 ≥ 0.

(i) Let 0 < 𝑝 ≤ ∞ . Then 𝔅𝑠
𝑝,𝑞(ℝ

𝑛) contains all 𝑓 ∈ 𝐿𝑝(ℝ
𝑛) which

can be represented as

(2.19) 𝑓(𝑥) =
∑
𝛽∈ℕ𝑛

0

∞∑
𝑗=0

∑
𝑚∈ℤ𝑛

𝜆𝛽𝑗,𝑚𝑘
𝛽
𝑗,𝑚(𝑥), 𝑥 ∈ ℝ

𝑛,

with coefficients 𝜆 =
{
𝜆𝛽𝑗,𝑚

}
𝛽∈ℕ𝑛

0 ,𝑗∈ℕ0,𝑚∈ℤ𝑛
∈ 𝑏𝑠,𝜚𝑝,𝑞 . Then

(2.20)
∥∥𝑓 ∣𝔅𝑠

𝑝,𝑞(ℝ
𝑛)
∥∥ = inf ∥∥𝜆∣𝑏𝑠,𝜚𝑝,𝑞

∥∥ ,
where the infimum is taken over all possible representations (2.19).

(ii) Let 0 < 𝑝 < ∞ . Then 𝔉𝑠𝑝,𝑞(ℝ
𝑛) contains all 𝑓 ∈ 𝐿𝑝(ℝ

𝑛) which can

be represented as

(2.21) 𝑓(𝑥) =
∑
𝛽∈ℕ𝑛

0

∞∑
𝑗=0

∑
𝑚∈ℤ𝑛

𝜆𝛽𝑗,𝑚𝑘
𝛽
𝑗,𝑚(𝑥), 𝑥 ∈ ℝ

𝑛,

with coefficients 𝜆 =
{
𝜆𝛽𝑗,𝑚

}
𝛽∈ℕ𝑛

0 ,𝑗∈ℕ0,𝑚∈ℤ𝑛
∈ 𝑓 𝑠,𝜚𝑝,𝑞 . Then

(2.22)
∥∥𝑓 ∣𝔉𝑠𝑝,𝑞(ℝ𝑛)

∥∥ = inf ∥∥𝜆∣𝑓 𝑠,𝜚𝑝,𝑞

∥∥ ,
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where the infimum is taken over all possible representations (2.21).

Remark 2.9. The definitions given above follow closely [22, Sect. 9.2].

The spaces 𝔉𝑠𝑝,𝑞(ℝ
𝑛) as well as 𝔅𝑠

𝑝,𝑞(ℝ
𝑛) are (quasi-)Banach spaces (Banach

spaces for 𝑝, 𝑞 ≥ 1) and independent of 𝑘 and 𝜚 (in terms of equivalent

(quasi-)norms). Furthermore, for all admitted parameters 𝑝 , 𝑞 , 𝑠 , we have

𝔉𝑠𝑝,𝑞(ℝ
𝑛) ↪→ 𝐿𝑝(ℝ

𝑛) and 𝔅𝑠
𝑝,𝑞(ℝ

𝑛) ↪→ 𝐿𝑝(ℝ
𝑛),

as well as the following embedding for B- and F-spaces,

(2.23) 𝔅𝑠
𝑝,min(𝑝,𝑞)(ℝ

𝑛) ↪→ 𝔉𝑠𝑝,𝑞(ℝ
𝑛) ↪→ 𝔅𝑠

𝑝,max(𝑝,𝑞)(ℝ
𝑛).

Proofs of the above assertions can be found in [22, Th. 9.8]. In particular,

the Besov and Triebel-Lizorkin spaces coincide if 𝑝 = 𝑞 , i.e.,

𝔅𝑠
𝑝,𝑝(ℝ

𝑛) = 𝔉𝑠𝑝,𝑝(ℝ
𝑛), 0 < 𝑝 < ∞.

Concerning the convergence of (2.19) and (2.21) one obtains as a

consequence of 𝜆 ∈ 𝑏𝑠,𝜚𝑝,𝑞 and 𝜆 ∈ 𝑓 𝑠,𝜚𝑝,𝑞 , respectively, that the series on

the right-hand sides converge absolutely in 𝐿𝑝(ℝ
𝑛) if 𝑝 < ∞ , and in

𝐿∞(ℝ𝑛, 𝑤𝜎), where 𝑤𝜎(𝑥) = (1 + ∣𝑥∣2)𝜎/2 with 𝜎 < 0 if 𝑝 = ∞ . Since

this implies unconditional convergence we may simplify (2.19), (2.21) and

write in the sequel

𝑓 =
∑
𝛽,𝑗,𝑚

𝜆𝛽𝑗𝑚𝑘𝛽𝑗𝑚.

We now discuss the coincidence and diversity of the above presented

concepts of F-spaces and may restrict ourselves to positive smoothness

𝑠 > 0. In view of our Remarks 2.2, 2.4 and 2.9 concerning the different

nature of these spaces, it is obvious that there cannot be established a

complete coincidence of all approaches when 𝑠 < 𝜎𝑝 .

It has been shown that such a characterization is also impossible if 𝜎𝑝 <

𝑠 < 𝜎𝑝𝑞 (in particular, when 0 < 𝑞 < 𝑝), cf. [22, Rem. 9.15], based on

[3] – so the situation is even more complicated. Nevertheless, under certain

restrictions on the smoothness parameter 𝑠 , the above approaches result in

the same F-space.

Theorem 2.10. Let 𝑠 > 0 , 0 < 𝑝 < ∞ and 0 < 𝑞 ≤ ∞ .

(i) Then

(2.24) F𝑠
𝑝,𝑞(ℝ

𝑛) = 𝔉𝑠𝑝,𝑞(ℝ
𝑛), 𝑠 > 𝑛

(
1

min(𝑝, 𝑞)
− 1

𝑝

)
,
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and

(2.25) 𝐹 𝑠
𝑝,𝑞(ℝ

𝑛) = 𝔉𝑠𝑝,𝑞(ℝ
𝑛), 𝑠 > 𝜎𝑝𝑞

( in the sense of equivalent (quasi-)norms) .

(ii) Furthermore,

(2.26)

𝐹 𝑠
𝑝,𝑞(ℝ

𝑛) = F𝑠
𝑝,𝑞(ℝ

𝑛) = 𝔉𝑠𝑝,𝑞(ℝ
𝑛), 𝑠 > 𝑛

(
1

min(𝑝, 𝑞)
− 1

max(1, 𝑝)

)

( in the sense of equivalent (quasi-)norms) .

Remark 2.11. The
first equality in (2.26)
is longer known, see
[18, Section 2.5.11], [19,
Thm. 3.5.3], whereas the
second equality in (2.26) is a
consequence of the recently
proved coincidence (2.24),
see [22, Prop. 9.14] (with
forerunners in [20, Sect. 13.8],
[21, Thm. 2.9]). In the figures
aside and below we have
indicated the situation in
the usual ( 1𝑝 , 𝑠)-diagram for

different values of 𝑞.

𝑠

1
𝑝1

𝐹 𝑠
𝑝,∞ = 𝔉𝑠𝑝,∞ = F𝑠

𝑝,∞

𝔉𝑠𝑝,∞ = F𝑠
𝑝,∞

Figure 1: Parameter 𝑞 = ∞
0

𝑠 = 𝜎𝑝,∞ = 𝜎𝑝

𝑠

1
𝑝1

𝑛

𝐹 𝑠
𝑝,1 = 𝔉𝑠𝑝,1 = F𝑠

𝑝,1

𝔉𝑠𝑝,1 = 𝐹 𝑠
𝑝,1

𝔉𝑠𝑝,1 = F𝑠
𝑝,1

Figure 2: Parameter 𝑞 = 1
0

𝑠 = 𝜎𝑝,1

𝑠

1
𝑝1

2𝑛

𝑛

𝐹 𝑠
𝑝, 12

= 𝔉𝑠
𝑝, 12

= F𝑠
𝑝, 12

𝔉𝑠
𝑝, 12

= 𝐹 𝑠
𝑝, 12

𝔉𝑠
𝑝, 12

= F𝑠
𝑝, 12

Figure 3: Parameter 𝑞 = 1
2

0 2

𝑠 = 𝜎𝑝, 12

Remark 2.12. In view of the results stated in Theorem 2.10 and Remark

2.4, where we noted that the (fractional) Sobolev spaces are contained in

the F-scale as a special case, i.e.,

𝐹 𝑠
𝑝,2(ℝ

𝑛) = 𝐻𝑠
𝑝(ℝ

𝑛), 1 < 𝑝 < ∞, 𝑠 ∈ ℝ,
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it makes sense to introduce new Sobolev-type spaces

(2.27)

H𝑠
𝑝(ℝ

𝑛) = F𝑠
𝑝,2(ℝ

𝑛), ℌ𝑠
𝑝(ℝ

𝑛) = 𝔉𝑠𝑝,2(ℝ
𝑛), 0 < 𝑝 < ∞, 𝑠 > 0.

In particular, for 1 < 𝑝 ≤ 2, these
spaces coincide with the (fractional)
Sobolev spaces, i.e.,

𝐻𝑠
𝑝(ℝ

𝑛) = H𝑠
𝑝(ℝ

𝑛) = ℌ𝑠
𝑝(ℝ

𝑛).

The figure aside illustrates the general
situation.

𝑠

1
𝑝11

2

𝑛
2

𝐻𝑠
𝑝 = ℌ𝑠

𝑝 = H𝑠
𝑝

ℌ𝑠
𝑝 = 𝐻𝑠

𝑝

ℌ𝑠
𝑝 = H𝑠

𝑝

Figure 4: Parameter 𝑞 = 2
0

𝑠 = 𝜎𝑝,2

Remark 2.13. Let us briefly mention the important feature of duality

that clearly distinguishes between the spaces 𝔉𝑠𝑝,𝑞(ℝ
𝑛) and 𝐹 𝑠

𝑝,𝑞(ℝ
𝑛) when

0 < 𝑝 < 1 and 𝑠 < 𝜎𝑝 . Then in the usual (𝒮(ℝ𝑛),𝒮 ′(ℝ𝑛)) understanding,

(
𝐹 𝑠
𝑝,𝑞(ℝ

𝑛)
)′
= 𝐵−𝑠+𝜎𝑝∞,∞ (ℝ𝑛), 𝑠 ∈ ℝ, 0 < 𝑝 < 1, 0 < 𝑞 < ∞,

see [18, Thm. 2.11.3], whereas using (2.23),

(2.28)(
𝔉𝑠𝑝,𝑞(ℝ

𝑛)
)′ ⊂ (𝔅𝑠

𝑝,min(𝑝,𝑞)(ℝ
𝑛)
)′
= {0}, 0 < 𝑠 < 𝜎𝑝, 0 < 𝑝 < 1, 0 < 𝑞 < ∞,

complemented by the well-known counterpart for 𝐿𝑝 spaces,

(2.29) (𝐿𝑝(ℝ
𝑛))′ = {0}, 0 < 𝑝 < 1,

see [23, Thm. 6.37]. This immediately implies that for 0 < 𝑝 < 1 neither

𝐿𝑝(ℝ
𝑛) nor 𝔉𝑠𝑝,𝑞(ℝ

𝑛) or 𝔅𝑠
𝑝,𝑞(ℝ

𝑛) with 0 < 𝑠 < 𝜎𝑝 admit wavelet frames

or bases (in contrast to 𝐹 𝑠
𝑝,𝑞(ℝ

𝑛) and 𝐵𝑠
𝑝,𝑞(ℝ

𝑛)), cf. [23, Cor. 6.38]. On

the other hand, there are atomic characterizations for all spaces covered by

(2.24), see [15], [11, Thm. 1.1.14].

2.2 Embeddings. We now come to embedding results and recall what

is already known, in particular, for spaces of type 𝐹 𝑠
𝑝,𝑞 .

Proposition 2.14. Let 𝑠 ∈ ℝ , 0 < 𝑝 < ∞ and 0 < 𝑞 ≤ ∞ .

(i) Let 0 < 𝑝0 < 𝑝 < 𝑝1 ≤ ∞ , 𝑠0, 𝑠1 ∈ ℝ such that

(2.30) 𝑠0 − 𝑛

𝑝0
= 𝑠− 𝑛

𝑝
= 𝑠1 − 𝑛

𝑝1
,

and 0 < 𝑞, 𝑢, 𝑣 ≤ ∞ . Then

(2.31) 𝐵𝑠0
𝑝0,𝑢(ℝ

𝑛) ↪→ 𝐹 𝑠
𝑝,𝑞(ℝ

𝑛) ↪→ 𝐵𝑠1
𝑝1,𝑣(ℝ

𝑛)
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if, and only if,

(2.32) 0 < 𝑢 ≤ 𝑝 ≤ 𝑣 ≤ ∞.

(ii) Let 𝜀 > 0 , 0 < 𝑢 ≤ ∞ , and 𝑞 ≤ 𝑣 ≤ ∞ . Then

𝐹 𝑠+𝜀
𝑝,𝑢 (ℝ

𝑛) ↪→ 𝐹 𝑠
𝑝,𝑞(ℝ

𝑛) and 𝐹 𝑠
𝑝,𝑞(ℝ

𝑛) ↪→ 𝐹 𝑠
𝑝,𝑣(ℝ

𝑛).

(iii) Let 𝜎 < 𝑠 , and 𝑝 < 𝑟 < ∞ be such that

(2.33) 𝑠− 𝑛

𝑝
= 𝜎 − 𝑛

𝑟
.

Then for all 0 < 𝑞1, 𝑞2 ≤ ∞ ,

(2.34) 𝐹 𝑠
𝑝,𝑞1(ℝ

𝑛) ↪→ 𝐹 𝜎
𝑟,𝑞2(ℝ

𝑛).

(iv) Let 𝜎𝑝 < 𝑠 < 𝑛
𝑝 , 𝑝 ≤ 𝑢 ≤ ∞ , and 𝑟 such that

(2.35) 𝑠− 𝑛

𝑝
= −𝑛

𝑟
.

Then

𝐹 𝑠
𝑝,𝑞(ℝ

𝑛) ↪→ 𝐿𝑟,𝑢(ℝ
𝑛).

Remark 2.15. For a proof of (i) we refer to [17, Sect. 5.2]. The ”if”-part

of the right-hand embedding is due to Jawerth [13], whereas the ”if”-part of

the left-hand embedding was proved by Franke [7]. Both original proofs use

interpolation techniques. For F-spaces of type 𝐹 𝑠
𝑝,𝑞(ℝ

𝑛) it is known that

(2.36)
(
𝐹 𝑠0
𝑝,𝑞0 (ℝ

𝑛), 𝐹 𝑠1
𝑝,𝑞1 (ℝ

𝑛)
)
𝜃,𝑞
= 𝐵𝑠

𝑝,𝑞(ℝ
𝑛) ,

where we have to assume 0 < 𝜃 < 1 , 0 < 𝑝 < ∞ , 𝑠0, 𝑠1 ∈ ℝ with

𝑠0 ∕= 𝑠1 , 0 < 𝑞0, 𝑞1, 𝑞 ≤ ∞ , and 𝑠 = (1− 𝜃)𝑠0 + 𝜃𝑠1 ; we refer to [18, Thm.

2.4.2]. The other results above can be found in [18, Prop. 2.3.2, Thm. 2.7.1].

Limiting embeddings of type (iii) and (iv) with conditions (2.33) and (2.35)

refer to embeddings along ‘constant differential dimension’. Concerning (iii)

this is essentially due to some Plancherel-Polya-Nikolskij inequality (cf. [18,

(1.3.2/5), Rem. 1.4.1/4]), whereas (iv) again is a matter of real interpolation

(2.36) together with the embedding 𝐹 𝑠
𝑝,𝑞(ℝ

𝑛) ↪→ 𝐹 0
𝑟,2(ℝ

𝑛) = 𝐿𝑟(ℝ
𝑛), where

the parameters satisfy (2.35).

We want to prove corresponding results for spaces of type 𝔉𝑠𝑝,𝑞 and F𝑠
𝑝,𝑞 .

Theorem 2.16. Let 𝑠 > 0 , 0 < 𝑝 < ∞ and 0 < 𝑞 ≤ ∞ .
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(i) Let 0 < 𝑝0 < 𝑝 < 𝑝1 ≤ ∞ , 𝑠0, 𝑠1 > 0 such that

(2.37) 𝑠0 − 𝑛

𝑝0
= 𝑠− 𝑛

𝑝
= 𝑠1 − 𝑛

𝑝1
,

and 0 < 𝑞, 𝑢, 𝑣 ≤ ∞ . If

(2.38) 0 < 𝑢 ≤ 𝑝 ≤ 𝑣 ≤ ∞,

then

(2.39) 𝔅𝑠0
𝑝0,𝑢(ℝ

𝑛) ↪→ 𝔉𝑠𝑝,𝑞(ℝ
𝑛) ↪→ 𝔅𝑠1

𝑝1,𝑣(ℝ
𝑛).

(ii) Let 𝜀 > 0 , 0 < 𝑢 ≤ ∞ , and 𝑞 ≤ 𝑣 ≤ ∞ , then

𝔉𝑠+𝜀
𝑝,𝑢 (ℝ

𝑛) ↪→ 𝔉𝑠𝑝,𝑞(ℝ
𝑛) and 𝔉𝑠𝑝,𝑞(ℝ

𝑛) ↪→ 𝔉𝑠𝑝,𝑣(ℝ
𝑛).

(iii) Let 0 < 𝜎 < 𝑠 , and 𝑝 < 𝑟 < ∞ be such that

(2.40) 𝑠− 𝑛

𝑝
= 𝜎 − 𝑛

𝑟
.

Then for all 0 < 𝑞1, 𝑞2 ≤ ∞ ,

(2.41) 𝔉𝑠𝑝,𝑞1(ℝ
𝑛) ↪→ 𝔉𝜎𝑟,𝑞2(ℝ

𝑛).

(iv) Let 𝑠 < 𝑛
𝑝 , 𝑝 ≤ 𝑢 ≤ ∞ , and 𝑟 such that

(2.42) 𝑠− 𝑛

𝑝
= −𝑛

𝑟
.

Then

𝔉𝑠𝑝,𝑞(ℝ
𝑛) ↪→ 𝐿𝑟,𝑢(ℝ

𝑛).

Remark 2.17. Previously, we obtained similar results for the spaces

𝔅𝑠
𝑝,𝑞(ℝ

𝑛) (which coincide with the classical Besov spaces B𝑠
𝑝,𝑞(ℝ

𝑛) if 𝑠 > 0

and 0 < 𝑝, 𝑞 ≤ ∞) in [12]. In particular, Theorem 2.16 (ii) holds

analogously for 𝔅𝑠
𝑝,𝑞(ℝ

𝑛), whereas (iii) is only valid if 𝑞1 ≤ 𝑞2 , and (iv) for

𝑢 ≥ 𝑞 . Furthermore, we shall strengthen the above assertions in Corollaries

4.1, 4.4 below.

Proof. Step 1. We want to establish (i), the so-called Franke-Jawerth

embedding. J. Vyb́ıral proved in [24, Thms. 3.1, 3.2, 3.3] corresponding

assertions for the underlying sequence spaces, i.e., for 𝜚 ≥ 0 and the above

given restrictions on the parameters (2.37) we have

(2.43) 𝑏𝑠0,𝜚𝑝0,𝑢 ↪→ 𝑓 𝑠,𝜚𝑝,𝑞 ↪→ 𝑏𝑠1,𝜚𝑝1,𝑣
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if, and only if,

(2.44) 0 < 𝑢 ≤ 𝑝 ≤ 𝑣 ≤ ∞.

Using this, we are able to obtain similar embeddings for the function spaces.

Let 𝑓 ∈ 𝔉𝑠𝑝,𝑞 with representation

𝑓(𝑥) =
∑
𝛽,𝑗,𝑚

𝜆𝛽𝑗,𝑚𝑘𝛽𝑗,𝑚(𝑥)

according to (2.21). Then a simple calculation yields

∥𝑓 ∣𝔉𝑠𝑝,𝑞∥ ≤ ∥𝜆∣𝑓𝑠,𝜚𝑝,𝑞 ∥ ≤ 𝑐∥𝜆∣𝑏𝑠0,𝜚𝑝0,𝑢∥,

where the last step follows from (2.43). Thus taking the infimum over all

representations yields

∥𝑓 ∣𝔉𝑠𝑝,𝑞∥ ≤ 𝑐∥𝑓 ∣𝔅𝑠0
𝑝0,𝑢∥,

which establishes the first embedding in (2.39). The second embedding is

proved in the same way.

Step 2. In order to prove (ii), we use a corresponding embedding obtained

for the Besov spaces 𝔅𝑠
𝑝,𝑞 in [12]

𝔅𝑠+𝜀
𝑝,𝑞1 ↪→ 𝔅𝑠

𝑝,𝑞2

with parameters 𝜀 > 0, 𝑠 > 0, and 0 < 𝑝, 𝑞1, 𝑞2 ≤ ∞ . Together with (2.23)

this immediately yields

𝔉𝑠+𝜀
𝑝,𝑢 ↪→ 𝔅𝑠+𝜀

𝑝,max(𝑝,𝑢) ↪→ 𝔅𝑠
𝑝,min(𝑝,𝑞) ↪→ 𝔉𝑠𝑝,𝑞,

where 0 < 𝑢, 𝑞 ≤ ∞ , which is the desired result. The second embedding

follows immediately from the monotonicity of the ℓ𝑞 sequence spaces, i.e.,

ℓ𝑞 ↪→ ℓ𝑣 for 𝑞 ≤ 𝑣 .

Step 3. We want to prove (iii). Using (2.39) together with an embedding

for Besov spaces proved in [12], namely

𝔅𝑠1
𝑝1,𝑝 ↪→ 𝔅𝑠1

𝑝1,𝑟 if 𝑝 ≤ 𝑟

(which follows immediately from the monotonicity of the ℓ𝑞 spaces) we see

that

𝔉𝑠𝑝,𝑞1 ↪→ 𝔅𝑠1
𝑝1,𝑝 ↪→ 𝔅𝑠1

𝑝1,𝑟 ↪→ 𝔉𝜎𝑟,𝑞2 ,
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where 0 < 𝑞1, 𝑞2 ≤ ∞ , and 𝑠1 , 𝑝1 are chosen such that

𝑠 > 𝑠1 > 𝜎 with 𝑠− 𝑛

𝑝
= 𝑠1 − 𝑛

𝑝1
= 𝜎 − 𝑛

𝑟
.

Step 4. In order to establish (iv) we again make use of (2.39) and the

following embedding for Besov spaces established in [12]

𝔅𝑠
𝑝,𝑞 ↪→ 𝐿𝑟,𝑢, where 𝑠− 𝑛

𝑝
= −𝑛

𝑟
, 𝑢 ≥ 𝑞.

This yields

𝔉𝑠𝑝,𝑞 ↪→ 𝔅𝑠1
𝑝1,𝑝 ↪→ 𝐿𝑟,𝑢,

with 𝑠1 and 𝑝1 such that 𝑠 > 𝑠1 > 0 and

𝑠− 𝑛

𝑝
= 𝑠1 − 𝑛

𝑝1
= −𝑛

𝑟
and 𝑢 ≥ 𝑝,

which completes the proof. □
Remark 2.18. Clearly the
above Theorem is covered
by Proposition 2.14 whenever
𝑠 > 𝜎𝑝𝑞 . This follows from
Theorem 2.10(i). However,
smoothness parameters 0 <
𝑠 ≤ 𝜎𝑝𝑞 were not yet covered
by these earlier approaches.
In the diagram aside we re-
stricted ourselves to the case
when 𝑞1 ≥ 1, and sketched
the maximal area of possible
embeddings of a fixed original
space 𝐹 𝑠1

𝑝1,𝑞1 or 𝔉𝑠1𝑝1,𝑞1 into
spaces 𝐹 𝑠2

𝑝2,𝑞2 , 𝔉𝑠2𝑝2,𝑞2 , and
𝐿𝑟,𝑢 , respectively.

𝑠

1
𝑝

1

𝑠 = 𝜎𝑝,𝑞1
𝐹 𝑠1
𝑝1,𝑞1

𝐹 𝑠2
𝑝2,𝑞2

𝔉𝑠1𝑝1,𝑞1

𝔉𝑠2𝑝2,𝑞2
𝐿𝑟,𝑢

Figure 4: Parameter 𝑞1 ≥ 1

We finally add what is known for the spaces F𝑠
𝑝,𝑞 in terms of embeddings

results.

Proposition 2.19. Let 𝑠 > 0 , 0 < 𝑝 < ∞ and 0 < 𝑞 ≤ ∞ .

(i) Then

(2.45) B𝑠
𝑝,min(𝑝,𝑞)(ℝ

𝑛) ↪→ F𝑠
𝑝,𝑞(ℝ

𝑛) ↪→ B𝑠
𝑝,max(𝑝,𝑞)(ℝ

𝑛).

(ii) Let 𝜀 > 0 , 0 < 𝑢 ≤ ∞ , and 𝑞 ≤ 𝑣 ≤ ∞ , then

F𝑠+𝜀
𝑝,𝑢 (ℝ

𝑛) ↪→ F𝑠
𝑝,𝑞(ℝ

𝑛) and F𝑠
𝑝,𝑞(ℝ

𝑛) ↪→ F𝑠
𝑝,𝑣(ℝ

𝑛).
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(iii) Let 0 < 𝑝 < 𝑝1 ≤ ∞ , 𝑠1 > 0 such that

(2.46) 𝑠− 𝑛

𝑝
= 𝑠1 − 𝑛

𝑝1
,

and 0 < 𝑞, 𝑣 ≤ ∞ . If

(2.47) 0 < 𝑝 ≤ 𝑣 ≤ ∞,

then

(2.48) F𝑠
𝑝,𝑞(ℝ

𝑛) ↪→ B𝑠1
𝑝1,𝑣(ℝ

𝑛).

(iv) Let 𝑠 < 𝑛
𝑝 , 𝑝 ≤ 𝑢 ≤ ∞ , and 𝑟 such that

(2.49) 𝑠− 𝑛

𝑝
= −𝑛

𝑟
,

then

F𝑠
𝑝,𝑞(ℝ

𝑛) ↪→ 𝐿𝑟,𝑢(ℝ
𝑛).

Proof. Step 1. We prove (i). Let first 𝑞 ≥ 𝑝 , then we have B𝑠
𝑝,𝑢 =𝔅𝑠

𝑝,𝑢

and F𝑠
𝑝,𝑞 = 𝔉𝑠𝑝,𝑞 , see Theorem 2.10(i) and [22, Prop. 9.14], such that

(2.45) is covered by (2.23). Furthermore (ii), (iii), and (iv) are covered

by Theorem 2.16(ii), (i), and (iv), respectively. Hence it remains to deal

with the case 𝑞 < 𝑝 .

Let 𝑟 ∈ ℕ with 𝑟 > 𝑠 , 0 < 𝑢 ≤ ∞ ; then rewriting (2.5) and (2.3) gives

∥∥𝑓 ∣B𝑠
𝑝,𝑢

∥∥ ∼ ∥𝑓 ∣𝐿𝑝∥+
⎛
⎝ 1∫

0

𝑡−𝑠𝑢

(
sup
∣ℎ∣≤𝑡

∥Δ𝑟
ℎ𝑓 ∣𝐿𝑝∥

)𝑢
d𝑡

𝑡

⎞
⎠

1
𝑢

(2.50)

(usual modification for 𝑢 =∞) and

∥∥𝑓 ∣F𝑠
𝑝,𝑞

∥∥ ∼ ∥𝑓 ∣𝐿𝑝∥+
(∫

ℝ𝑛

( 1∫
0

𝑡−(𝑠+𝑛
𝑝 )𝑞

( ∫
∣ℎ∣≤𝑡

∣Δ𝑟
ℎ𝑓(𝑥)∣𝑝dℎ

) 𝑞
𝑝
d𝑡

𝑡

) 𝑝
𝑞

d𝑥

) 1
𝑝

,

(2.51)

(usual modification for 𝑞 =∞).

We begin with the left-hand embedding in (2.45). Recall that we need

only consider the case 𝑞 < 𝑝 , that is, min(𝑝, 𝑞) = 𝑞 . In view of (2.50),
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(2.51) it is sufficient to show that

(∫
ℝ𝑛

( 1∫
0

𝑡−(𝑠+𝑛
𝑝 )𝑞

( ∫
∣ℎ∣≤𝑡

∣Δ𝑟
ℎ𝑓(𝑥)∣𝑝dℎ

) 𝑞
𝑝
d𝑡

𝑡

) 𝑝
𝑞

d𝑥

) 1
𝑝

≤ 𝑐

( 1∫
0

𝑡−𝑠𝑞

(
sup
∣ℎ∣≤𝑡

∥Δ𝑟
ℎ𝑓 ∣𝐿𝑝∥

)𝑞
d𝑡

𝑡

) 1
𝑞

.(2.52)

We make use of the generalized triangle inequality for integrals,

(2.53)

(∫
𝑋

(∫
𝑌

∣𝜑(𝑥, 𝑦)∣ d𝑦
)𝑟

d𝑥

) 1
𝑟

≤
∫
𝑌

(∫
𝑋

∣𝜑(𝑥, 𝑦)∣𝑟 d𝑥
) 1

𝑟

d𝑦

for 𝑟 > 1, cf. [10, Thm. 202, p. 148]. We put 𝑟 = 𝑝
𝑞 and

𝜑(𝑥, 𝑡) = 𝑡−(𝑠+𝑛
𝑝 )𝑞−1𝜒

(0,1)
(𝑡)

( ∫
∣ℎ∣≤𝑡

∣Δ𝑟
ℎ𝑓(𝑥)∣𝑝dℎ

) 𝑞
𝑝

, 𝑥 ∈ ℝ
𝑛, 𝑡 ∈ ℝ.

Then the left-hand side of (2.52) can be written as

(∫
ℝ𝑛

(∫
ℝ

𝜑(𝑥, 𝑡)d𝑡

)𝑟

d𝑥

) 1
𝑟𝑞

and an application of (2.53) yields

(∫
ℝ𝑛

( 1∫
0

𝑡−(𝑠+𝑛
𝑝 )𝑞

( ∫
∣ℎ∣≤𝑡

∣Δ𝑟
ℎ𝑓(𝑥)∣𝑝 dℎ

) 𝑞
𝑝
d𝑡

𝑡

) 𝑝
𝑞

d𝑥

) 1
𝑝

≤ 𝑐1

(∫
ℝ

(∫
ℝ𝑛

𝜑(𝑥, 𝑡)
𝑝
𝑞 d𝑥

) 𝑞
𝑝

d𝑡

) 1
𝑞

= 𝑐1

( 1∫
0

𝑡−(𝑠+ 𝑛
𝑝 )𝑞

(∫
ℝ𝑛

∫
∣ℎ∣≤𝑡

∣Δ𝑟
ℎ𝑓(𝑥)∣𝑝 dℎ d𝑥

) 𝑞
𝑝
d𝑡

𝑡

) 1
𝑞

≤ 𝑐2

( 1∫
0

𝑡−(𝑠+ 𝑛
𝑝 )𝑞

(
sup
∣ℎ∣≤𝑡

∥Δ𝑟
ℎ𝑓 ∣𝐿𝑝∥ 𝑡𝑛

𝑝

)𝑞
d𝑡

𝑡

) 1
𝑞

,
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that is, the right-hand side of (2.52).

We deal with the right-hand embedding of (2.45) and max(𝑝, 𝑞) = 𝑝 .

First we use an argument from Step 3 of the proof of [18, Thm. 2.5.12]

which gives (with (2.50) applied to 2𝑟 instead of 𝑟 ),

(2.54)
∥∥𝑓 ∣B𝑠

𝑝,𝑝

∥∥ ≤ 𝑐 ∥𝑓 ∣𝐿𝑝∥+ 𝑐2

( ∫
∣ℎ∣≤1

∣ℎ∣−𝑠𝑝 ∥Δ𝑟
ℎ𝑓 ∣𝐿𝑝∥𝑝 dℎ

∣ℎ∣𝑛
) 1

𝑝

.

Note that

∫
∣ℎ∣≤1

∣ℎ∣−𝑠𝑝 ∥Δ𝑟
ℎ𝑓 ∣𝐿𝑝∥𝑝 dℎ

∣ℎ∣𝑛 ∼
∫

∣ℎ∣≤1

∥Δ𝑟
ℎ𝑓 ∣𝐿𝑝∥𝑝

1∫
∣ℎ∣

𝑡−𝑠𝑝−𝑛 d𝑡

𝑡
dℎ

≤ 𝑐

1∫
0

𝑡−𝑠𝑝−𝑛

∫
∣ℎ∣≤𝑡

∥Δ𝑟
ℎ𝑓 ∣𝐿𝑝∥𝑝 dℎ d𝑡

𝑡
.(2.55)

Since 𝑝 > 𝑞 we have for any 𝑥 ∈ ℝ𝑛 that

1∫
0

𝑡−(𝑠+ 𝑛
𝑝 )𝑝

∫
∣ℎ∣≤𝑡

∣Δ𝑟
ℎ𝑓(𝑥)∣𝑝 dℎ

d𝑡

𝑡
≤ 𝑐

( 1∫
0

𝑡−(𝑠+𝑛
𝑝 )𝑞

( ∫
∣ℎ∣≤𝑡

∣Δ𝑟
ℎ𝑓(𝑥)∣𝑝 dℎ

) 𝑞
𝑝
d𝑡

𝑡

) 𝑝
𝑞

,

(2.56)

and in view of (2.54), (2.55) and (2.56) we can estimate

∥∥∥𝑓 ∣B𝑠
𝑝,max(𝑝,𝑞)

∥∥∥ ≤ 𝑐 ∥𝑓 ∣𝐿𝑝∥+ 𝑐

(∫
ℝ𝑛

1∫
0

𝑡−𝑠𝑝−𝑛

∫
∣ℎ∣≤𝑡

∣Δ𝑟
ℎ𝑓(𝑥)∣𝑝 dℎ

d𝑡

𝑡
d𝑥

) 1
𝑝

≤ 𝑐′ ∥𝑓 ∣𝐿𝑝∥+ 𝑐′
(∫

ℝ𝑛

1∫
0

𝑡−(𝑠+𝑛
𝑝 )𝑞

( ∫
∣ℎ∣≤𝑡

∣Δ𝑟
ℎ𝑓(𝑥)∣𝑝 dℎ

) 𝑞
𝑝
d𝑡

𝑡

) 𝑝
𝑞

d𝑥

) 1
𝑝

≤ 𝑐′′
∥∥𝑓 ∣F𝑠

𝑝,𝑞

∥∥ .
Step 2. We establish (ii). The second assertion follows from

∥∥𝑓 ∣F𝑠
𝑝,𝑞

∥∥ ∼ ∥𝑓 ∣𝐿𝑝∥+
(∫

ℝ𝑛

( 1∫
0

𝑡−(𝑠+𝑛
𝑝 )𝑞

( ∫
∣ℎ∣≤𝑡

∣Δ𝑟
ℎ𝑓(𝑥)∣𝑝dℎ

) 𝑞
𝑝
d𝑡

𝑡

) 𝑝
𝑞

d𝑥

) 1
𝑝
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∼ ∥𝑓 ∣𝐿𝑝∥+
(∫

ℝ𝑛

( ∞∑
𝑘=0

2𝑘(𝑠+
𝑛
𝑝 )𝑞

( ∫
∣ℎ∣≤2−𝑘

∣Δ𝑟
ℎ𝑓(𝑥)∣𝑝dℎ

) 𝑞
𝑝
) 𝑝

𝑞

d𝑥

) 1
𝑝

and the monotonicity of the ℓ𝑞 sequence spaces. The first embedding is

clear using (i) and corresponding assertions for the Besov spaces B𝑠
𝑝,𝑞 , cf.

[12, Th. 1.16(i)]. We see that

F𝑠+𝜀
𝑝,𝑢 ↪→ B𝑠+𝜀

𝑝,max(𝑝,𝑢) ↪→ B𝑠
𝑝,min(𝑝,𝑞) ↪→ F𝑠

𝑝,𝑞,

which yields the desired embedding.

Step 3. Now (iii) follows from (ii) and the Franke-Jawerth embedding

as stated in Theorem 2.16(i). We obtain

F𝑠
𝑝,𝑞 ↪→ F𝑠

𝑝,∞ = 𝔉𝑠𝑝,∞ ↪→ 𝔅𝑠1
𝑝1,𝑝 = B𝑠1

𝑝1,𝑝 ↪→ B𝑠1
𝑝1,𝑣,

where the last embedding follows from the monotonicity of the ℓ𝑞 sequence

spaces and holds if 𝑝 ≤ 𝑣 .

Step 4. The proof of (iv) follows from (ii), (iii), and the corresponding

assertion for Besov spaces, cf. [12, Th. 1.16(iii)], and

F𝑠
𝑝,𝑞 ↪→ F𝑠

𝑝,∞ ↪→ B𝑠1
𝑝1,𝑝 ↪→ 𝐿𝑟,𝑢,

where

𝑠− 𝑛

𝑝
= 𝑠1 − 𝑛

𝑝1
= −𝑛

𝑟
and 𝑝 ≤ 𝑢.

□

Remark 2.20. If 𝑠 > 𝜎𝑝𝑞 , then the above proposition is well-known

since B𝑠
𝑝,𝑢 = 𝐵𝑠

𝑝,𝑢 and F𝑠
𝑝,𝑞 = 𝐹 𝑠

𝑝,𝑞 , cf. [22, Rem. 9.13].

Using Proposition 2.19(i) together with the interpolation results for classical

Besov spaces B𝑠
𝑝,𝑞 ,(

B𝑠0
𝑝,𝑞0(ℝ

𝑛),B𝑠1
𝑝,𝑞1(ℝ

𝑛)
)
𝜃,𝑞
= B𝑠

𝑝,𝑞(ℝ
𝑛),

where 0 < 𝜃 < 1, 0 < 𝑝 < ∞ , 0 < 𝑠0, 𝑠1 < ∞ , 𝑠0 ∕= 𝑠1 , 0 < 𝑞0, 𝑞1, 𝑞 ≤ ∞ ,

and 𝑠 = (1− 𝜃)𝑠0 + 𝜃𝑠1 , cf. [4, Cor. 6.2], we obtain(
F𝑠0
𝑝,𝑞0(ℝ

𝑛),F𝑠1
𝑝,𝑞1(ℝ

𝑛)
)
𝜃,𝑞
= B𝑠

𝑝,𝑞(ℝ
𝑛)
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for the same restrictions on the parameters. Furthermore in Proposition 2.19(iii)

we only established the right-hand side of the well-known Franke-Jawerth

embedding. Until now we were unable to prove that the left-hand side holds

in general for the full range of parameters. But when 𝑝 ≤ 𝑞 Theorem 2.10(i)

together with Theorem 2.16(i) yields for 0 < 𝑝0 < 𝑝 < 𝑝1 ≤ ∞ , 𝑠0, 𝑠1 > 0

such that

(2.57) 𝑠0 − 𝑛

𝑝0
= 𝑠− 𝑛

𝑝
= 𝑠1 − 𝑛

𝑝1
,

and 0 < 𝑞, 𝑢, 𝑣 ≤ ∞ , that if

(2.58) 0 < 𝑢 ≤ 𝑝 ≤ 𝑣 ≤ ∞,

then

(2.59) B𝑠0
𝑝0,𝑢(ℝ

𝑛) ↪→ F𝑠
𝑝,𝑞(ℝ

𝑛) ↪→ B𝑠1
𝑝1,𝑣(ℝ

𝑛).

3. Growth envelopes

3.1 Definitions and basic properties. Let for some measurable

function 𝑓 : ℝ𝑛 → ℂ , finite a.e., its decreasing rearrangement 𝑓∗ be defined
as usual, 𝑓∗(𝑡) = inf {𝑠 ≥ 0 : ∣{𝑥 ∈ ℝ𝑛 : ∣𝑓(𝑥)∣ > 𝑠}∣ ≤ 𝑡} , 𝑡 ≥ 0 .

Definition 3.1. Let 𝑋 be some (quasi-)normed function space on ℝ𝑛 .
(i) The growth envelope function ℰ𝑋G : (0,∞)→ [0,∞] of 𝑋 is defined by

(3.1) ℰ𝑋G (𝑡) = sup
∥𝑓 ∣𝑋∥≤1

𝑓∗(𝑡) , 𝑡 > 0.

(ii) Assume 𝑋 ∕↪→ 𝐿∞(ℝ𝑛). Let 𝜀 ∈ (0, 1), 𝐻(𝑡) = − log ℰ𝑋G (𝑡), 𝑡 ∈ (0, 𝜀] ,
and let 𝜇𝐻 be the associated Borel measure. The number 𝑢𝑋G ,

0 < 𝑢𝑋G ≤ ∞ , is defined as the infimum of all numbers 𝑣 , 0 < 𝑣 ≤ ∞ ,

such that

(3.2)

( 𝜀∫
0

( 𝑓∗(𝑡)
ℰ𝑋G (𝑡)

)𝑣
𝜇𝐻(d𝑡)

)1/𝑣
≤ 𝑐 ∥𝑓 ∣𝑋∥

(with the usual modification if 𝑣 = ∞) holds for some 𝑐 > 0 and all

𝑓 ∈ 𝑋 . The couple

𝔈G(𝑋) =
(
ℰ𝑋G (⋅), 𝑢𝑋G

)
is called (local) growth envelope for the function space 𝑋 .
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This concept was introduced and first studied in [21, Ch. 2], [8], see also

[9]. For convenience we recall some properties. In view of (i) we obtain –

strictly speaking – equivalence classes of growth envelope functions when

working with equivalent (quasi-)norms in 𝑋 as we shall usually do. But we

do not want to distinguish between representative and equivalence class in

what follows and thus stick at the notation introduced in (i). Concerning

(ii) we shall assume that we can choose a continuous representative in the

equivalence class [ℰ𝑋G ] , for convenience (but in a slight abuse of notation)
denoted by ℰ𝑋G again. It is obvious that (3.2) holds for 𝑣 =∞ and any 𝑋 .

Moreover, one verifies that

(3.3)

sup
0<𝑡≤𝜀

𝑔(𝑡)

ℰ𝑋G (𝑡)
≤ 𝑐1

( 𝜀∫
0

( 𝑔(𝑡)

ℰ𝑋G (𝑡)
)𝑣1

𝜇𝐻(d𝑡)

) 1
𝑣1 ≤ 𝑐2

( 𝜀∫
0

( 𝑔(𝑡)

ℰ𝑋G (𝑡)
)𝑣0

𝜇𝐻(d𝑡)

) 1
𝑣0

for 0 < 𝑣0 < 𝑣1 < ∞ and all non-negative monotonically decreasing

functions 𝑔 on (0, 𝜀] ; cf. [21, Prop. 12.2]. So with 𝑔 = 𝑓∗ we observe

that the left-hand sides in (3.2) are monotonically ordered in 𝑣 and it is

natural to look for the smallest possible one.

Proposition 3.2. (i) Let 𝑋𝑖 , 𝑖 = 1, 2 , be some function spaces on

ℝ𝑛 . Then 𝑋1 ↪→ 𝑋2 implies that there is some positive constant 𝑐

such that for all 𝑡 > 0 ,

(3.4) ℰ𝑋1

G (𝑡) ≤ 𝑐 ℰ𝑋2

G (𝑡).

(ii) We have 𝑋 ↪→ 𝐿∞ if, and only if, ℰ𝑋G is bounded.

(iii) Let 𝑋𝑖 , 𝑖 = 1, 2 , be some function spaces on ℝ𝑛 with 𝑋1 ↪→ 𝑋2 .

Assume for their growth envelope functions

ℰ𝑋1

G (𝑡) ∼ ℰ𝑋2

G (𝑡), 𝑡 ∈ (0, 𝜀),

for some 𝜀 > 0 . Then we get for the corresponding indices 𝑢𝑋𝑖

G ,

𝑖 = 1, 2 , that

𝑢𝑋1

G ≤ 𝑢𝑋2

G .

This result coincides with [9, Props. 3.4, 4.5].

Remark 3.3. For rearrangement-invariant Banach function spaces 𝑋

with fundamental function 𝜑𝑋 it is proved in [9, Sect. 2.3] that

(3.5) ℰ𝑋G (𝑡) ∼
1

𝜑𝑋(𝑡)
=
∥∥𝜒

𝐴𝑡

∣∣𝑋∥∥−1
, 𝑡 > 0,

where 𝐴𝑡 ⊂ ℝ𝑛 with ∣𝐴𝑡∣ = 𝑡 .
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In contrast to the local characterization in Definition 3.1(ii) it turned out

recently, that sometimes also the global behaviour of the envelope function,

ℰ𝑋G (𝑡) for 𝑡 → ∞ is of interest.

Example 3.4. Let 𝐿𝑝,𝑞(ℝ
𝑛), 0 < 𝑝 < ∞ , 0 < 𝑞 ≤ ∞ , denote the well-

known Lorentz spaces, consisting of all functions 𝑓 for which the quantity

(3.6) ∥𝑓 ∣𝐿𝑝,𝑞(ℝ
𝑛)∥ =

⎧⎨
⎩

⎛
⎝ ∞∫

0

[
𝑡
1
𝑝 𝑓∗(𝑡)

]𝑞 d𝑡
𝑡

⎞
⎠

1/𝑞

, if 0 < 𝑞 < ∞,

sup
0<𝑡<∞

𝑡
1
𝑝 𝑓∗(𝑡) , if 𝑞 =∞,

is finite. They are natural refinements of the scale of Lebesgue spaces; we

refer to [2, Ch. 4] for further details. It is proved in [9, Thm. 4.7, Cor. 10.14]

that

(3.7) 𝔈G(𝐿𝑝,𝑞(ℝ
𝑛)) =

(
𝑡−

1
𝑝 , 𝑞
)
,

and

(3.8) ℰ𝐿𝑝,𝑞

G (𝑡) ∼ 𝑡−
1
𝑝 for 𝑡 → ∞.

3.2 Growth envelopes for F-spaces. We now turn to Triebel-Lizorkin

and Besov spaces and first collect what is known. We will make use of our

previous results obtained for growth envelopes in Besov spaces 𝔅𝑠
𝑝,𝑞(ℝ

𝑛),

cf. [12].

As explained, the above concept is interesting only for spaces 𝑋 ∕↪→ 𝐿∞ ; in
case of F-spaces this reads as follows.

Proposition 3.5. Let 0 < 𝑝 < ∞ , 0 < 𝑞 ≤ ∞ and 𝑠 ∈ ℝ .

(i) Then

𝐹 𝑠
𝑝,𝑞(ℝ

𝑛) ↪→ 𝐿∞(ℝ𝑛) if, and only if,

{
0 < 𝑝 < ∞, if 𝑠 > 𝑛

𝑝 ,

0 < 𝑝 ≤ 1, if 𝑠 = 𝑛
𝑝 .

(ii) Furthermore,

(3.9) 𝔉𝑠𝑝,𝑞(ℝ
𝑛) ↪→ 𝐿∞(ℝ𝑛) if, and only if,

{
0 < 𝑝 < ∞, if 𝑠 > 𝑛

𝑝 ,

0 < 𝑝 ≤ 1, if 𝑠 = 𝑛
𝑝 .

Proof. Part (i) coincides with [6, 2.3.3(iii)], so we are left to prove (ii).

Clearly the limiting case 𝑠 = 𝑛
𝑝 is of interest only, in view of Theorem
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2.16(i) and the corresponding result for the Besov spaces in [12, Prop. 2.5],

(3.10) 𝔅𝑠
𝑝,𝑞(ℝ

𝑛) ↪→ 𝐿∞(ℝ𝑛) if, and only if,

{
0 < 𝑞 ≤ ∞, if 𝑠 > 𝑛

𝑝 ,

0 < 𝑞 ≤ 1, if 𝑠 = 𝑛
𝑝 .

But also in the limiting case the argument relies on the result for 𝔅-spaces.

Assume

𝔉𝑛/𝑝𝑝,𝑞 ↪→ 𝐿∞,

then for all 0 < 𝑟 < 𝑝 , Theorem 2.16(i) gives

𝔅𝑛/𝑟
𝑟,𝑝 ↪→ 𝔉𝑛/𝑝𝑝,𝑞 ↪→ 𝐿∞,

such that (3.10) implies

0 < 𝑝 ≤ 1.

Conversely, if 0 < 𝑝 ≤ 1, we may choose 𝑟 with 𝑝 < 𝑟 < ∞ , such that

(3.10) yields

𝔉𝑛/𝑝𝑝,𝑞 ↪→ 𝔅𝑛/𝑟
𝑟,𝑝 ↪→ 𝐿∞.

This completes the proof. □

Remark 3.6. Note that we did not use the identity (2.25), that is

𝐹 𝑠
𝑝,𝑞(ℝ

𝑛) = 𝔉𝑠𝑝,𝑞(ℝ
𝑛)

in the above proof, which is only clear for 𝑠 > 𝜎𝑝𝑞 . This implies that for

𝑠 = 𝑛
𝑝 these spaces may differ if 𝑞 < min(𝑝, 1). However, as verified above,

they are both embedded into 𝐿∞ .

We separately investigate the situation for the spaces F𝑠
𝑝,𝑞 .

Proposition 3.7. Let 0 < 𝑝 < ∞ , 0 < 𝑞 ≤ ∞ , and 𝑠 > 0 .

(i) Then

F𝑠
𝑝,𝑞(ℝ

𝑛) ↪→ 𝐿∞(ℝ𝑛) if

{
0 < 𝑝 < ∞, 𝑠 > 𝑛

𝑝 ,

0 < 𝑝 ≤ 1, 𝑠 = 𝑛
𝑝 .

(ii) Assume 𝑠 < 𝑛
𝑝 or 𝑠 = 𝑛

𝑝 , 1 < 𝑝 < ∞ and 𝑞 > min
(
𝑝
2 , 1
)
. Then

(3.11) F𝑠
𝑝,𝑞(ℝ

𝑛) ∕↪→ 𝐿∞(ℝ𝑛).

Proof. The proof of (i) follows immediately from Theorem 2.10(i) and

Proposition 3.5(ii), since for 𝑠 > 𝑛
𝑝 or 𝑠 = 𝑛

𝑝 and 0 < 𝑝 ≤ 1 we have

F𝑠
𝑝,𝑞 ↪→ F𝑠

𝑝,∞ = 𝔉𝑠𝑝,∞ ↪→ 𝐿∞.
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Concerning (ii), if 𝑠 < 𝑛
𝑝 we proceed indirectly assuming F𝑠

𝑝,𝑞 ↪→ 𝐿∞ .
Choosing 𝑠 < 𝜎 < 𝑛

𝑝 we see that

𝔉𝜎𝑝,𝑝 = F𝜎
𝑝,𝑝 ↪→ F𝑠

𝑝,𝑞 ↪→ 𝐿∞,

which gives the desired contradiction according to Proposition 3.5(ii).

If 𝑠 = 𝑛
𝑝 , 1 < 𝑝 < ∞ , Theorem 2.10(i) yields

F𝑛/𝑝
𝑝,𝑞 = 𝔉𝑛/𝑝𝑝,𝑞 , where

1

𝑞
<

𝑠

𝑛
+
1

𝑝
=
2

𝑝
,

from which we see – again using Proposition 3.5(ii) – that

F𝑠
𝑝,𝑞 ∕↪→ 𝐿∞.

On the other hand, if 𝑠 = 𝑛
𝑝 , 1 < 𝑝 < ∞ , and 𝑞 ≤ 𝑝

2 , then F
𝑛/𝑝
𝑝,𝑞 ↪→ 𝐿∞

implies B
𝑛/𝑝
𝑝,𝑞 ↪→ 𝐿∞ leading to 𝑞 ≤ 1. □

Remark 3.8. In view of Proposition 3.5 we claim that “if” in Proposition

3.7(i) could probably be replaced by “if, and only if“, i.e., when 0 < 𝑞 ≤ ∞
Proposition 3.7(ii) can be generalized to

F𝑛/𝑝
𝑝,𝑞 ∕↪→ 𝐿∞, if 1 < 𝑝 < ∞ and 𝑞 ≤ min

(𝑝
2
, 1
)
.

We now focus on growth
envelopes for the spaces 𝔉𝑠𝑝,𝑞 .
In the diagram aside we have
shaded the area corresponding
to the remaining cases (as-
suming that 𝑞 ≥ 1) apart
from (3.9), where the lower
right triangle refers to our new
result in Theorem 3.11 below,
extending the already known
situation repeated below.

𝑠

1
𝑝1

𝑠 = 𝜎𝑝𝑞𝑠 = 𝑛
𝑝

𝔈G(𝔉
𝑠
𝑝,𝑞(ℝ

𝑛)) =
(
𝑡−

1
𝑝+

𝑠
𝑛 , 𝑝
)

Figure 5: Parameter 𝑞 ≥ 1

Recall that by (2.9) and Proposition 3.5(i) only smoothness parameters

0 ≤ 𝑠 ≤ 𝑛
𝑝 are of interest for the local behaviour of ℰG(𝑡).

Proposition 3.9. Let 0 < 𝑝 < ∞ , 0 < 𝑞 ≤ ∞ and 𝑠 ≥ 0 .

(i) Let 𝜎𝑝 < 𝑠 < 𝑛
𝑝 , then

𝔈G(𝐹
𝑠
𝑝,𝑞(ℝ

𝑛)) =
(
𝑡−

1
𝑝+

𝑠
𝑛 , 𝑝
)
.
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(ii) Let 𝑠 = 𝑛
𝑝 , 1 < 𝑝 < ∞ and 𝑝′ given by 1

𝑝 +
1
𝑝′ = 1 . Then

𝔈G(𝐹
𝑛/𝑝
𝑝,𝑞 (ℝ

𝑛)) =
(
∣ log 𝑡∣1/𝑝′ , 𝑝

)
.

(iii) Let 1 ≤ 𝑝 < ∞ , 0 < 𝑞 ≤ 2 , then

𝔈G(𝐹
0
𝑝,𝑞(ℝ

𝑛)) =
(
𝑡−1/𝑝, 𝑝

)
.

(iv) Let 𝑠 = 𝜎𝑝 , 0 < 𝑝 < 1 , and 0 < 𝑞 ≤ ∞ , then

𝔈G(𝐹
𝑠
𝑝,𝑞(ℝ

𝑛)) =
(
𝑡−1, 𝑝

)
.

(v) Assume 0 < 𝑝 < ∞ , 𝑠 > 𝜎𝑝 , then

ℰ𝐹
𝑠
𝑝,𝑞

G (𝑡) ∼ 𝑡−
1
𝑝 for 𝑡 → ∞.

Proofs can be found in [9, Thms. 8.1, 8.16, 10.19, Props. 8.12, 8.14],

concerning (i) and (ii) also in [21, Thms. 13.2, 15.2]. Furthermore, the

assertion on the additional index in (iv) – still an open problem in [9,

Proposition 8.14]– was proved recently in [25, Theorem 1.3]. In view of

Theorem 2.10 - assuming that 𝑞 ≥ 𝑝 , and 0 < 𝑝 ≤ 1 - we thus have results

for the spaces F𝑠
𝑝,𝑞 and 𝔉𝑠𝑝,𝑞 in case of 𝜎𝑝 < 𝑠 < 𝑛

𝑝 and want to extend this

to 𝑠 > 0.

In [12] we established the following results concerning growth envelopes

for Besov spaces 𝔅𝑠
𝑝,𝑞(ℝ

𝑛).

Proposition 3.10. Let 0 < 𝑝 < ∞ , 0 < 𝑞 ≤ ∞ and 𝑠 > 0 .

(i) Let 𝑠 < 𝑛
𝑝 , then

𝔈G(𝔅
𝑠
𝑝,𝑞(ℝ

𝑛)) =
(
𝑡−

1
𝑝+

𝑠
𝑛 , 𝑞
)
.

(ii) Let 𝑠 = 𝑛
𝑝 , 1 < 𝑞 ≤ ∞ and 𝑞′ given by 1

𝑞 +
1
𝑞′ = 1 . Then

𝔈G(𝔅
𝑛/𝑝
𝑝,𝑞 (ℝ

𝑛)) =
(
∣ log 𝑡∣1/𝑞′ , 𝑞

)
.

(iii) We have

ℰ𝔅𝑠
𝑝,𝑞

G (𝑡) ∼ 𝑡−
1
𝑝 for 𝑡 → ∞.

Note that we could replace 𝔅𝑠
𝑝,𝑞(ℝ

𝑛) in the above proposition by the

classical Besov spaces B𝑠
𝑝,𝑞(ℝ

𝑛), since these coincide for 𝑠 > 0.

We are now able to formulate corresponding results for the spaces 𝔉𝑠𝑝,𝑞(ℝ
𝑛).

Theorem 3.11. Let 0 < 𝑝 < ∞ , 0 < 𝑞 ≤ ∞ and 𝑠 > 0 .
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(i) Let 𝑠 < 𝑛
𝑝 , then

𝔈G(𝔉
𝑠
𝑝,𝑞(ℝ

𝑛)) =
(
𝑡−

1
𝑝+

𝑠
𝑛 , 𝑝
)
.

(ii) Let 𝑠 = 𝑛
𝑝 , 1 < 𝑝 < ∞ and 𝑝′ given by 1

𝑝 +
1
𝑝′ = 1 . Then

𝔈G(𝔉
𝑛/𝑝
𝑝,𝑞 (ℝ

𝑛)) =
(
∣ log 𝑡∣1/𝑝′ , 𝑝

)
.

(iii) We have

ℰ𝔉𝑠
𝑝,𝑞

G (𝑡) ∼ 𝑡−
1
𝑝 for 𝑡 → ∞.

Proof. Step 1. We show that ℰ𝔉𝑠
𝑝,𝑞

G (𝑡) ∼ 𝑡−
1
𝑝+

𝑠
𝑛 , 0 < 𝑡 < 1. Using

(2.23)

𝔅𝑠
𝑝,min(𝑝,𝑞) ↪→ 𝔉𝑠𝑝,𝑞 ↪→ 𝔅𝑠

𝑝,max(𝑝,𝑞),

together with Proposition 3.2(i), and the results for Besov spaces from

Proposition 3.10(i), we see that

𝑐1𝑡
− 1

𝑟 ≤ 𝑐2ℰ𝔅𝑠
𝑝,min(𝑝,𝑞)

G (𝑡) ≤ ℰ𝔉𝑠
𝑝,𝑞

G (𝑡) ≤ 𝑐3ℰ𝔅𝑠
𝑝,max(𝑝,𝑞)

G (𝑡) ≤ 𝑐4𝑡
− 1

𝑟 , 0 < 𝑡 < 1,

where − 1
𝑟 = − 1

𝑝 +
𝑠
𝑛 .

Step 2. In order to show that for the additional index 𝑢
𝔉𝑠

𝑝,𝑞

G = 𝑝 , we use

the Franke-Jawerth embedding from Theorem 2.16(i),

𝔅𝑠0
𝑝0,𝑝 ↪→ 𝔉𝑠𝑝,𝑞 ↪→ 𝔅𝑠1

𝑝1,𝑝,

where we may choose 𝑠0, 𝑠1 and 𝑝0, 𝑝1 such that

𝑠0 > 𝑠 > 𝑠1 > 0, and 𝑠0 − 𝑛

𝑝0
= 𝑠− 𝑛

𝑝
= 𝑠1 − 𝑛

𝑝1
.

But then the growth envelope functions for all these spaces turn out to be

equivalent. This observation together with Proposition 3.2(iii) and the fact

that 𝑢
𝔅

𝑠𝑖
𝑝𝑖,𝑝

G = 𝑝 , 𝑖 = 0, 1, yields 𝑢
𝔉𝑠

𝑝,𝑞

G = 𝑝 .

Step 3. We prove (ii). Choosing 𝑟1 < 𝑝 < 𝑟2 according to Theorem

2.16(i) such that

𝔅𝑛/𝑟1
𝑟1,𝑝 ↪→ 𝔉𝑛/𝑝𝑝,𝑞 ↪→ 𝔅𝑛/𝑟2

𝑟2,𝑝 ,

we see from Propostion 3.10(ii) that

𝔈G(𝔅
𝑛/𝑟𝑖
𝑟𝑖,𝑝 (ℝ

𝑛)) =
(
∣ log 𝑡∣1/𝑝′ , 𝑝

)
, 𝑖 = 1, 2.
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But then Proposition 3.2(i),(iii) yields

𝔈G(𝔉
𝑛/𝑝
𝑝,𝑞 (ℝ

𝑛)) =
(
∣ log 𝑡∣1/𝑝′ , 𝑝

)
.

Step 4. We establish ℰ𝔉𝑠
𝑝,𝑞

G (𝑡) ∼ 𝑡−
1
𝑝 for 𝑡 → ∞ .

Concerning the global behaviour – using the same argumentation as in Step

1 together with Proposition 3.10(iii) – we see that

𝑐1𝑡
− 1

𝑝 ≤ 𝑐2ℰ𝔅𝑠
𝑝,min(𝑝,𝑞)

G (𝑡) ≤ ℰ𝔉𝑠
𝑝,𝑞

G (𝑡) ≤ 𝑐3ℰ𝔅𝑠
𝑝,max(𝑝,𝑞)

G (𝑡) ≤ 𝑐4𝑡
− 1

𝑝 , 𝑡 → ∞,

which completes the proof. □
In terms of the Sobolev-type spaces introduced in Remark 2.12 the results

read as follows.

Corollary 3.12. Let 0 < 𝑝 < ∞ and 𝑠 > 0 .

(i) Let 𝑠 < 𝑛
𝑝 , then

𝔈G(ℌ
𝑠
𝑝(ℝ

𝑛)) =
(
𝑡−

1
𝑝+

𝑠
𝑛 , 𝑝
)
.

(ii) Let 𝑠 = 𝑛
𝑝 , 1 < 𝑝 < ∞ and 𝑝′ given by 1

𝑝 +
1
𝑝′ = 1 . Then

𝔈G(ℌ
𝑛/𝑝
𝑝 (ℝ𝑛)) =

(
∣ log 𝑡∣1/𝑝′ , 𝑝

)
.

(iii) We have

ℰℌ𝑠
𝑝

G (𝑡) ∼ 𝑡−
1
𝑝 for 𝑡 → ∞.

We derive the following results concerning the growth envelopes for the

spaces F𝑠
𝑝,𝑞 .

Proposition 3.13. Let 0 < 𝑝 < ∞ , 0 < 𝑞 ≤ ∞ and 𝑠 > 0 .

(i) Let 𝑠 < 𝑛
𝑝 , then

𝔈G(F
𝑠
𝑝,𝑞(ℝ

𝑛)) =
(
𝑡−

1
𝑝+

𝑠
𝑛 , 𝑢

F𝑠
𝑝,𝑞

G

)
with

{
𝑢
F𝑠

𝑝,𝑞

G = 𝑝 if 1
𝑞 < 𝑠

𝑛 +
1
𝑝 ,

𝑞 ≤ 𝑢
F𝑠

𝑝,𝑞

G ≤ 𝑝 if 1
𝑞 ≥ 𝑠

𝑛 +
1
𝑝 .

(ii) Let 𝑠 = 𝑛
𝑝 , 1 < 𝑝 < ∞ , 𝑝′ given by 1

𝑝 +
1
𝑝′ = 1 , and 𝑞 > 𝑝

2 . Then

𝔈G(F
𝑛/𝑝
𝑝,𝑞 (ℝ

𝑛)) =
(
∣ log 𝑡∣1/𝑝′ , 𝑝

)
.

(iii) We have

ℰF𝑠
𝑝,𝑞

G (𝑡) ∼ 𝑡−
1
𝑝 for 𝑡 → ∞.
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Proof. Note that (ii) is simply a consequence of Theorem 2.10(i) and

Proposition 3.11(ii).

The results for the growth envelope functions follow immediately from

Proposition 2.19(i),

(3.12) B𝑠
𝑝,min(𝑝,𝑞) ↪→ F𝑠

𝑝,𝑞 ↪→ B𝑠
𝑝,max(𝑝,𝑞),

together with Proposition 3.2(i) and previous results for the Besov spaces

B𝑠
𝑝,𝑞 as stated in Proposition 3.10(i),(iii).

As for the additional index note that for 𝑞 ≥ 𝑝 or 𝑞 < 𝑝 with 1
𝑞 < 𝑠

𝑛 +
1
𝑝

we have by Theorem 2.10(i)

F𝑠
𝑝,𝑞 = 𝔉𝑠𝑝,𝑞,

which gives 𝑢
F𝑠

𝑝,𝑞

G = 𝑝 , cf. Theorem 3.11(i). On the other hand, when 𝑞 < 𝑝

and 1
𝑞 ≥ 𝑠

𝑛 +
1
𝑝 , we see from (3.12) that

B𝑠
𝑝,𝑞 ↪→ F𝑠

𝑝,𝑞 ↪→ B𝑠
𝑝,𝑝,

leading to 𝑞 ≤ 𝑢
F𝑠

𝑝,𝑞

G ≤ 𝑝 in terms of Theorem 3.10(i) and

Proposition 3.2(iii). □

Remark 3.14. Compared to the other approaches associated to the

spaces 𝐹 𝑠
𝑝,𝑞 and 𝔉𝑠𝑝,𝑞 , our results for the spaces F𝑠

𝑝,𝑞 are not as complete.

The reason for this is mainly the lacking left-hand side of the Franke-Jawerth

embedding, as already mentioned in Remark 2.20. If (2.59) was true in

general, we immediately obtained for the additional index that

𝑢
F𝑠

𝑝,𝑞

G ≥ 𝑝, if 0 < 𝑞 < 𝑝 < ∞, 0 < 𝑠 <
𝑛

𝑝
,

as well as the embedding

F𝑠1
𝑝1,𝑞1 ↪→ F𝑠2

𝑝2,𝑞2

for parameters

𝑠1 − 𝑛

𝑝1
= 𝑠2 − 𝑛

𝑝2
, 𝑠1 > 𝑠2, 0 < 𝑞1, 𝑞2 ≤ ∞.

Furthermore we had similar assertions as in Proposition 3.5 for the spaces

F𝑠
𝑝,𝑞 . But this is not yet verified by our arguments.
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4. Applications

We briefly present two typical applications of the preceding envelope

results: sharp embedding criteria and Hardy-type inequalities.

4.1 Sharp embeddings.

Corollary 4.1. (i): Let 𝑠 > 𝜎 > 0 , 0 < 𝑝, 𝑟 < ∞ and 0 < 𝑞1, 𝑞2 ≤
∞ . Then

𝔉𝑠𝑝,𝑞1(ℝ
𝑛) ↪→ 𝔉𝜎𝑟,𝑞2(ℝ

𝑛)

if, and only if,

𝑠− 𝑛

𝑝
≥ 𝜎 − 𝑛

𝑟
, 𝑝 ≤ 𝑟.

(ii): Let 0 < 𝑝 < ∞ , 0 < 𝑠 < 𝑛
𝑝 , 0 < 𝑞, 𝑢 ≤ ∞ with 𝑠 − 𝑛

𝑝 = −𝑛
𝑟 .

Then

𝔉𝑠𝑝,𝑞(ℝ
𝑛) ↪→ 𝐿𝑟,𝑢(ℝ

𝑛)

if, and only if,

𝑝 ≤ 𝑢.

Proof. Step 1. We establish (i) and first assume that

𝑠− 𝑛

𝑝
≥ 𝜎 − 𝑛

𝑟
, 𝑝 ≤ 𝑟.

But then necessity follows immediately from Theorem 2.16(ii), (iii).

In order to show sufficiency we assume

(4.1) 𝔉𝑠𝑝,𝑞1 ↪→ 𝔉𝜎𝑟,𝑞2 .

The global behaviour of the growth envelope functions obtained in Theorem

3.11(iii) together with Proposition 3.2(i) yields

𝑡−
1
𝑝+

1
𝑟 ≤ 𝑐 as 𝑡 → ∞,

implying 𝑝 ≤ 𝑟 . Furthermore, applying the Franke-Jawerth embedding

(2.39) on both sides of (4.1) we obtain for 𝑠1 > 𝑠 > 𝜎 > 𝜎1 ,

𝑠1 − 𝑛

𝑝1
= 𝑠− 𝑛

𝑝
, and 𝜎1 − 𝑛

𝑟1
= 𝜎 − 𝑛

𝑟

the embedding,

𝔅𝑠1
𝑝1,𝑢 ↪→ 𝔉𝑠𝑝,𝑞1 ↪→ 𝔉𝜎𝑟,𝑞2 ↪→ 𝔅𝜎1

𝑟1,𝑣,



282 Spaces of Sobolev type with positive smoothness

where in particular, 𝑢 ≤ 𝑝 ≤ 𝑟 ≤ 𝑣 . But then [12, Cor. 3.1(i)] yields

𝑠− 𝑛

𝑝
= 𝑠1 − 𝑛

𝑝1
≥ 𝜎1 − 𝑛

𝑟1
= 𝜎 − 𝑛

𝑟
.

This completes the proof of (i).

Step 2. Now we turn our attention towards (ii). Assume that 𝑝 ≤ 𝑢 .

Using the embedding obtained in Theorem 2.16(iv) yields

𝔉𝑠𝑝,𝑞 ↪→ 𝐿𝑟,𝑝 ↪→ 𝐿𝑟,𝑢

where the second embedding is well-known for Lorentz spaces and can be

found in [2, Prop. 4.2.].

In order to prove sufficiency, again we gain from corresponding results for

Besov spaces. In [12] we proved that

𝔅𝑠
𝑝,𝑞 ↪→ 𝐿𝑟,𝑢

if, and only if, q≤ 𝑢 .

But then, using this together with (2.39) yields

𝔉𝑠𝑝,𝑞 ↪→ 𝔅𝑠1
𝑝1,𝑝 ↪→ 𝐿𝑟,𝑢,

for 𝑠1, 𝑝1 chosen such that

𝑠1 − 𝑛

𝑝1
= 𝑠− 𝑛

𝑝
, 0 < 𝑠1 < 𝑠.

This finally shows that 𝑝 ≤ 𝑢 . □
In terms of the spaces F𝑠

𝑝,𝑞 the sharp embedding results read as follows.

Corollary 4.2. Let 𝑠 > 𝜎 > 0 , 0 < 𝑝, 𝑟 < ∞ and 0 < 𝑞1, 𝑞2 ≤ ∞ .

(i): Let
(
𝜎
𝑛 +

1
𝑟

)−1
< 𝑞2 ≤ ∞ . If

𝑠− 𝑛

𝑝
≥ 𝜎 − 𝑛

𝑟
, 𝑝 ≤ 𝑟,

then

F𝑠
𝑝,𝑞1(ℝ

𝑛) ↪→ F𝜎
𝑟,𝑞2(ℝ

𝑛).

(ii): Let
(
𝑠
𝑛 +

1
𝑝

)−1

< 𝑞1 ≤ ∞ . If

F𝑠
𝑝,𝑞1(ℝ

𝑛) ↪→ F𝜎
𝑟,𝑞2(ℝ

𝑛),

then

𝑠− 𝑛

𝑝
≥ 𝜎 − 𝑛

𝑟
, 𝑝 ≤ 𝑟.
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Proof. Concerning (i) we use Theorem 2.10(i) and Corollary 4.1, which

give

F𝑠
𝑝,𝑞1 ↪→ F𝑠

𝑝,∞ = 𝔉𝑠𝑝,∞ ↪→ 𝔉𝜎𝑟,𝑞2 = F𝜎
𝑟,𝑞2 .

The proof of (ii) follows in a similar way from

𝔉𝑠𝑝,𝑞1 = F𝑠
𝑝,𝑞1 ↪→ F𝜎

𝑟,𝑞2 ↪→ F𝜎
𝑟,∞ = 𝔉𝜎𝑟,∞

and an application of Corollary 4.1. □

Remark 4.3. Observe that (3.7) and Theorem 3.11(i) imply

𝔈G

(
𝐿𝑟,𝑝

)
=
(
𝑡−

1
𝑟 , 𝑝

)
= 𝔈G

(
𝔉𝑠𝑝,𝑞

)
, 𝑠− 𝑛

𝑝
= −𝑛

𝑟
,

where 0 < 𝑝 < ∞ , 0 < 𝑞 ≤ ∞ , and 𝑠 > 0; that is, we have by (2.42)

the embedding 𝔉𝑠𝑝,𝑞 ↪→ 𝐿𝑟,𝑝 only, whereas the corresponding envelopes

even coincide. This can be interpreted as 𝐿𝑟,𝑝 being indeed the best

possible space within the Lorentz scale in which 𝔉𝑠𝑝,𝑞 can be embedded

continuously. On the other hand this can also be understood in the sense

that 𝐿𝑟,𝑝 is ‘as good as’ 𝔉𝑠𝑝,𝑞 – as far as only the growth of the unbounded

functions belonging to the spaces under consideration is concerned, whereas

(additional) smoothness features are obviously ‘ignored’.

Corollary 4.4. Let 𝑠0 > 𝑠 > 𝑠1 > 0 , 0 < 𝑝0 < 𝑝 < 𝑝1 < ∞ ,

0 < 𝑢, 𝑞, 𝑣 ≤ ∞ with

(4.2) 𝑠0 − 𝑛

𝑝0
= 𝑠− 𝑛

𝑝
= 𝑠1 − 𝑛

𝑝1
.

Then

(4.3) 𝔅𝑠0
𝑝0,𝑢(ℝ

𝑛) ↪→ 𝔉𝑠𝑝,𝑞(ℝ
𝑛) ↪→ 𝔅𝑠1

𝑝1,𝑣(ℝ
𝑛)

if, and only if,

(4.4) 0 < 𝑢 ≤ 𝑝 ≤ 𝑣 ≤ ∞.

Proof. Step 1. The necessity, i.e., that (4.4) implies (4.3) is covered

by Theorem 2.16(i). It remains to show the converse implication. This is

done in two steps: first we use our envelope results for small smoothness

parameters, that is, when 0 < 𝑠 < 𝑛
𝑝 ; secondly we combine Proposition

2.14(i),(iii) with the identity (2.25) in Theorem 2.10(i).

Step 2. First we assume 0 < 𝑠 < 𝑛
𝑝 . Hence by (4.2) also 0 < 𝑠𝑖 <

𝑛
𝑝𝑖

and all spaces in (4.3) possess non-trivial growth envelopes. Moreover,
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Proposition 3.10(i) and Theorem 3.11(i) together with (4.2) lead to

ℰ𝔅𝑠0
𝑝0,𝑢

G (𝑡) ∼ ℰ𝔉𝑠
𝑝,𝑞

G (𝑡) ∼ ℰ𝔅𝑠1
𝑝1,𝑣

G (𝑡) ∼ 𝑡−
1
𝑝+

𝑠
𝑛 , 0 < 𝑡 < 1,

such that (4.3) and Proposition 3.2(iii) give

𝑢
𝔅𝑠0

𝑝0,𝑢

G ≤ 𝑢
𝔉𝑠

𝑝,𝑞

G ≤ 𝑢
𝔅𝑠1

𝑝1,𝑣

G .

In view of Proposition 3.10(i) and Theorem 3.11(i) this is just (4.4).

Step 3. We now assume 𝑠 ≥ 𝑛
𝑝 , hence by (4.2) 𝑠𝑖 ≥ 𝑛

𝑝𝑖
, 𝑖 = 0, 1, too.

Since 𝔅𝑠
𝑝,𝑞 = 𝐵𝑠

𝑝,𝑞 whenever 𝑠 > 𝜎𝑝 , cf. [22, Prop. 9.14], we immediately

obtain

𝔅𝑠0
𝑝0,𝑢 = 𝐵𝑠0

𝑝0,𝑢, and 𝔅𝑠1
𝑝1,𝑣 = 𝐵𝑠1

𝑝1,𝑣.

One is tempted to use 𝔉𝑠𝑝,𝑞 = 𝐹 𝑠
𝑝,𝑞 in order to apply Proposition 2.14(i), but

this is not always true when 𝑠 ≥ 𝑛
𝑝 , e.g. when 𝑞 < min(𝑝, 1), recall Theorem

2.10(i). However, one can circumvent this difficulty in the following way.

Let us first deal with the left-hand embedding,

𝔅𝑠0
𝑝0,𝑢 ↪→ 𝔉𝑠𝑝,𝑞,

which implies

𝐵𝑠0
𝑝0,𝑢 =𝔅𝑠0

𝑝0,𝑢 ↪→ 𝔉𝑠𝑝,𝑞 ↪→ 𝔉𝑠𝑝,∞ = 𝐹 𝑠
𝑝,∞

in view of Theorems 2.10(i), 2.16(ii) and [22, Prop. 9.14]. Thus Proposition

2.14(i) yields 𝑢 ≤ 𝑝 as desired.

As far as the right-hand embedding is concerned, we proceed by

contradiction. Let us assume that 𝑣 < 𝑝 . Hence, there exists some 𝜀 > 0

such that 𝑣 < 𝑝− 𝜀 =: 𝑝𝜀 < 𝑝 and a number 𝜎𝜀 > 𝑠 with

𝜎𝜀 − 𝑛

𝑝𝜀
= 𝑠− 𝑛

𝑝
.

Using Theorem 2.16(iii), we obtain as a consequence of the right-hand

embedding that

𝔅𝜎𝜀
𝑝𝜀,𝑝𝜀 = 𝔉𝜎𝜀

𝑝𝜀,𝑝𝜀 ↪→ 𝔉𝑠𝑝,𝑞 ↪→ 𝔅𝑠1
𝑝1,𝑣.

Finally, we apply [12, Cor. 3.1(i)] to the limiting embedding of 𝔅-spaces

leading to 𝑝𝜀 ≤ 𝑣 in contrast to our assumption. □

4.2 Hardy-type inequalities. Our next application concerns Hardy-

type inequalities. This follows immediately from our above results together

with the monotonicity (3.3), the properties of 𝑓∗ and the fact that, given
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ϰ non-negative on (0, 𝜀] ,

sup
0<𝑡≤𝜀

ϰ(𝑡)
𝑓∗(𝑡)
ℰ𝑋G (𝑡)

≤ 𝑐

holds for some 𝑐 > 0 and all 𝑓 ∈ 𝑋 , ∥𝑓 ∣𝑋∥ ≤ 1, if, and only if, ϰ is

bounded, cf. [9, Prop. 3.4(v)].

Corollary 4.5. Let 𝑠 > 0 , 0 < 𝑞 ≤ ∞ , 0 < 𝑝 < ∞ , ϰ(𝑡) be a positive

monotonically decreasing function on (0, 𝜀] and 0 < 𝜈 ≤ ∞ .

(i): Let 𝑠 < 𝑛
𝑝 . Then

( ∫ 𝜀

0

[
ϰ(𝑡)𝑡

1
𝑝− 𝑠

𝑛 𝑓∗(𝑡)
]𝜈 d𝑡

𝑡

) 1
𝜈 ≤ 𝑐∥𝑓 ∣𝔉𝑠𝑝,𝑞(ℝ𝑛)∥,

for some 𝑐 > 0 and all 𝑓 ∈ 𝔉𝑠𝑝,𝑞(ℝ
𝑛) , if, and only if, ϰ is bounded

and 𝑝 ≤ 𝜈 ≤ ∞ , with the modification

(4.5) sup
𝑡∈(0,𝜀)

ϰ(𝑡)𝑡
1
𝑝− 𝑠

𝑛 𝑓∗(𝑡) ≤ 𝑐∥𝑓 ∣𝔉𝑠𝑝,𝑞(ℝ𝑛)∥,

if 𝜈 =∞ . In particular, if ϰ is an arbitrary non-negative function

on (0, 𝜀] , then (4.5) holds if, and only if, ϰ is bounded.

(ii): Let 𝑠 = 𝑛
𝑝 , 1 < 𝑝 < ∞ , and 𝑝′ given by 1

𝑝 +
1
𝑝′ = 1 . Then

( ∫ 𝜀

0

[
ϰ(𝑡) ⋅ ∣ log 𝑡∣−1/𝑝′𝑓∗(𝑡)

]𝜈 d𝑡
𝑡

) 1
𝜈 ≤ 𝑐∥𝑓 ∣𝔉𝑠𝑝,𝑞(ℝ𝑛)∥,

for some 𝑐 > 0 and all 𝑓 ∈ 𝔉𝑠𝑝,𝑞(ℝ
𝑛) , if, and only if, ϰ is bounded

and 𝑝 ≤ 𝜈 ≤ ∞ , with the modification

(4.6) sup
𝑡∈(0,𝜀)

ϰ(𝑡) ⋅ ∣ log 𝑡∣−1/𝑝′𝑓∗(𝑡) ≤ 𝑐∥𝑓 ∣𝔉𝑠𝑝,𝑞(ℝ𝑛)∥,

if 𝜈 =∞ . In particular, if ϰ is an arbitrary non-negative function

on (0, 𝜀] , then (4.6) holds if, and only if, ϰ is bounded.

Proof. In view of our preceding remarks this is an immediate consequence

of Theorem 3.11 since 𝔈G(𝔉
𝑠
𝑝,𝑞) =

(
𝑡−

1
𝑝+

𝑠
𝑛 , 𝑝
)
. □

Concerning the spaces F𝑠
𝑝,𝑞 the Hardy-type inequalities read as follows.

Corollary 4.6. Let 𝑠 > 0 , 0 < 𝑞 ≤ ∞ , 0 < 𝑝 < ∞ , ϰ(𝑡) be a positive

monotonically decreasing function on (0, 𝜀] and 0 < 𝜈 ≤ ∞ .
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(i): Let 𝑠 < 𝑛
𝑝 and

(
𝑠
𝑛 +

1
𝑝

)−1

< 𝑞 ≤ ∞ . Then

( ∫ 𝜀

0

[
ϰ(𝑡)𝑡

1
𝑝− 𝑠

𝑛 𝑓∗(𝑡)
]𝜈 d𝑡

𝑡

) 1
𝜈 ≤ 𝑐∥𝑓 ∣F𝑠

𝑝,𝑞(ℝ
𝑛)∥,

for some 𝑐 > 0 and all 𝑓 ∈ F𝑠
𝑝,𝑞(ℝ

𝑛) , if, and only if, ϰ is bounded

and 𝑝 ≤ 𝜈 ≤ ∞ , with the modification

(4.7) sup
𝑡∈(0,𝜀)

ϰ(𝑡)𝑡
1
𝑝− 𝑠

𝑛 𝑓∗(𝑡) ≤ 𝑐∥𝑓 ∣F𝑠
𝑝,𝑞(ℝ

𝑛)∥,

if 𝜈 =∞ . In particular, if ϰ is an arbitrary non-negative function

on (0, 𝜀] , then (4.7) holds if, and only if, ϰ is bounded.

(ii): Let 𝑠 = 𝑛
𝑝 , 𝑞 > 𝑝

2 , 1 < 𝑝 < ∞ , and 𝑝′ given by 1
𝑝 +

1
𝑝′ = 1 .

Then(∫ 𝜀

0

[
ϰ(𝑡) ⋅ ∣ log 𝑡∣−1/𝑝′𝑓∗(𝑡)

]𝜈 d𝑡
𝑡

) 1
𝜈 ≤ 𝑐∥𝑓 ∣F𝑠

𝑝,𝑞(ℝ
𝑛)∥,

for some 𝑐 > 0 and all 𝑓 ∈ F𝑠
𝑝,𝑞(ℝ

𝑛) , if, and only if, ϰ is bounded

and 𝑝 ≤ 𝜈 ≤ ∞ , with the modification

(4.8) sup
𝑡∈(0,𝜀)

ϰ(𝑡) ⋅ ∣ log 𝑡∣−1/𝑝′𝑓∗(𝑡) ≤ 𝑐∥𝑓 ∣F𝑠
𝑝,𝑞(ℝ

𝑛)∥,

if 𝜈 =∞ . In particular, if ϰ is an arbitrary non-negative function

on (0, 𝜀] , then (4.8) holds if, and only if, ϰ is bounded.

Proof. The proof follows immediately from Theorem 2.10 (i) and

Corollary 4.5 above. □
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