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Abstract. Superposition of Fourier transform with the Riemann - Liouville
operators is studied.

1. Introduction

Let R := (—o00,+00). We denote || fll, := ([ |f(x)|pdx)1/p for 1 <p<
0o and || flleo := esssup,cp|f(z)]. By LP(R) we denote the Lebesgue space
of all measurable functions on R such that ||f|, < oco. Similar notations
are applied for R := [0, +00).

For f € L'(R), the Fourier transform Ff is defined by

Ff(zx):= \/% /jo f(t)etdt.

In particular cases, when f is even or odd, the Fourier transforms are

Fuf(z) = \/g/ooo F(t) cosatdt
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and

1Fsf(z) = i\/g/ooo f(t) sinztdt,

respectively. F.f and Fsf are called the cosine and sine Fourier transforms
and may be independently defined for a function on R,. It is well known
[6, Theorem 74] that for f € LP(R),1 < p < 2, there exist Ff € L* (R)

such that lim,_,o ||Ff — Ffoll,y =0, where p’ = ]ﬁ and

Ff.(x):= \/%_ﬂ_ /_a et f(t)dt, a > 0.

Moreover, the Planscherel-Titchmarsh inequality

(1) I fllr < C@IF»

holds. The similar results are valid for the sine and cosine Fourier
transforms.
R. Bellman [1] stated and B. I. Golubov [3] proved the following equalities:

(2) PFcf:Fcha
if felP(R),1<p<2and
(3) QFcf:FcPfa

if feLP(R),1<p<2, where

and
Qf(x):= /Oo @ds

are the Hardy operators.

The aim of the paper is to prove the equalities similar to (2) and (3),
where the Hardy operators P and @ are replaced by the Riemann-Liouville
operators.

By C, we denote constants, which may be different in different
occurences.
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2. Main results

Let a > 0. The Riemann-Liouville operators are defined for a function
on the semiaxis Ry as follows:

Bof(e) = o [ o= fioy

and
®(t— )t

f@) = [ po
x

It is known [4, Theorem 329] that

(4) [Bafllp < Capll fllp

for 1 < p < oo and

(5) [1Hafllp < Capllfllp

for 1 <p < o0.

Theorem 1. Let 1 < p <2 and o > 1/p’ and suppose that f € LP(Ry).
Then

(6) Bal[Fefl(z) = Fe[Haf](z), aezeRy
and
(7) Bo[Fsf](z) = Fs[Haf](z), aexz€eRy.

Proof. We start with the proof of (6). Let 1 < p < 2 and f €
LP(Ry). Then F,f € LP (R,), where p' € [2,00). Applying (4) we find
B.[F.f] € LP' (Ry). Let a > 0 and f,(z) = IX(0,0)(), where x(0,q)(z) is
the characteristic function (indicator) of an interval (0,a). Then

Emmm=¢gfvmmwm.

First we show that if « > 1/p/, then
(8) Bu[F.f](z) = alingo Bo[Fo(fa)](x) forall x € R, .

Indeed, by Holder’s and Planscherel-Titchmarsh’s inequalities

|Ba[Fcf](x) - Ba[Fc(fa)](x” < xia /Om(x - y)a71|Fcf(y) - Fc(fa)(y)|dy
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< Ca VY| Fof — Fo(fo)lly =0, a— o0
and (8) follows. Next we show that

9) Ba[Fe(fo)l(x) = Fe[Ha(fa)l(x).

By the Fubini theorem and by change of variables we have

BulFu(f)](5) = / Y)* I Fu(fa) (y)dy

\/E y)a_ldy/ f(t) cosytdt
2 -1
/ f@) dt (x —y)* " cosytdy = {yt = zu}
= \/j dt/ (t —u)* ! cos zudu.
™ Jo te 0

On the other hand
2 oo
f | Hatt) @) cosayiy

\[/ Cosxydy oo(t_y) E=9"
\/j/ f—dt (t— “leog

- y)* 7 cos xydy
m™Jo 0

and (9) follows. Now, since f € LP(R;), p € (1,2], then by (5) we have
H.f € LP(R,) and F.[H,f](z) € L’ (R;). We show that

(10) lim [ Fe[Ho f] = Fe[Ha(fa)]llr = 0.

a— o0

Fe[Hao(fa)]()

Write

FlHo () = @ / " cosaydy / DTy

a ee} _ a—1
_\/g/o cosxydy/a (Gt ) i t?i) f(t)dt.
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Applying Minkowskii’s inequality

[Fe[Ho f] = FelHa(f)lll < Fe[Haf] = Fe[Haflallp

+ </0°° /Oacosa:ydy/aOO mf(t)dt

ta
By Planscherel-Titchmarsh’s inequality

p! 1/pl
dx) .

| Fe[Ha f] — FC[Haf]aHp’ < C)Haf - [Haf]aHp
o 1/p
= C(p) (/ |Haf(x)|pdx) =0, a—

and (10) follows if

p!

dr = 0.

oo

(11) lim

a— oo 0

t()é

‘ * (=gt
d = f(t)d
/0 cos Ty y/a f)de

By Planscherel-Titchmarsh’s and Holder’s inequalities we find

(/000 /Oacosacydy/aOO (t_t%_lf(t)dt pldm) 1/p
§C</Oa /:0(1—%)(a1)@dtpdy)l/p
< C(/“( B %)p(a—l) dy)l/p /oo @dt}
0 a

chal/p/ @dt

e 1/p
< Oy </ |f(t)|pdt) -0, a—o0

since 0<1-4<1-%<1, 0<y<a<t<oo, and (11) is proved.
Observe that (10) implies the existence of a subsequence {ay},ar — oo
such that

Fe[Hafl(z) = klggo FelHa(fa)l(z) ae z€Ry.

Now (6) follows from this, (8) and (9). The proof of (7) is analogous. O
Theorem 2. Let f € LP(Ry), where 1 <p <2 and let o > 1/p'. Then

(12) Ha[Fcf](x) :Fc[Baf](x)a a.e. v € Ry



294 On Bellman-Golubov theorems

and

(13) Ho[F,f](z) = Fy[Baf](z), ae. z€R,.

Proof. Applying Planscherel-Titchmarsh’s inequality and (4) we have
H,[F.f](x) € L” (R} ). For A >z > 0 by Fubini’s theorem we write
(14)

A _ a-1 a a A Na—1
/m %dy/0 f@) cosytcltz/0 f(t)dt/x %cosytdy.

Let us show that if a — 400, then the equality
(15)

A _ _ a—1
/ (y )" y)dy = \/7 / ft)de % cos ytdy
x y* Y

holds. Indeed, for the left hand side of (14) we have

\f / ly—o)™ / £(t) cos ytdt = LA%#FCUCL)@)@

and by Lebesgue’s theorem on dominated convergence

A 1
lim 7@ z)
a—» 00 z y

a—1

A — X
(fa)(y)dy=/ %Fcf(y)dy-

It implies that the right hand side of (14) is convergent for ¢ — oo and
(15) holds with the first integral on the right in the Riemann sense. Now,

by Holder’s inequality
o — gl 0o —r (a=1)p 1/p
[ mrwn] < im0 )
ClFefllpz

IN

ya

< 00.

Therefore, by Lebesgue’s theorem on dominated convergence there exist a
finite limit of the left hand side of (15)
A _ \a—1
fm [ WO
A—=+oo [, y*

Fwy = [ h %Fcf(ym@/.

Hence,

16)  HalFof)(x) = @ | s [ % cosytdy
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for all x € Ry with both the integrals on the right in the Riemann sense.

To justify (16) with both the integrals on the right in the Lebesgue sense,
we consider the function from the right hand side of (15)

@

A _ a—1
ha a(t) ::/ %cosytdy,

when ¢ — +0 and t — 4o0. If ¢ — +0, then

At —1
— )
hy a(t) = / %coszdz
xt z
Au/x _ . \a—1
= / wcoszdz
u Za

(A/e=Du a1
= /0 Groe cos (s + u)ds := W(u)

To estimate W (u), we shall use the asymptotic formulae from [2, Chapter
1, Section 4]. Let 8 € R, 8> 0, ¢(t) € C[0,a] and let § + § = N, where
N is a non-negative integer. Then

(17) /Oa Pt + ) (t, e)dt

i\f: n+ N\ 0"p(t,e)
6 otn

n>max[0,—N]

"N In(1/¢) + Z bpe™,
t=0 n=0

for e = 0,if e € S5 :={0 < |e|] < |arge| < w—40]} C C, b, are constants
and p(t,e) € C*°([0,a] x [e: |e| < r]).
If we take ¢(s,u) := cos(s+u), f:=a, 6 := —a, sothat 6+8 =N =0,
then by (17), we find
W(u) ~ cosuln(l/u), u— 40.
Hence,

(18) he,a(t) = O(In(1/2t)), t— +0.

For the case t — +o0o0 we write

A —1 A—zx —1
(y — ) y*
hI’A(t) = A T COs ytdy = o m COs t(y + x)dy

A—zx [e%S)
= %ei”/o g(y)d (—/ ualei“tdu) = ReD, (1),
y
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where ¢g(y) = (y + =)~ *. Integrating by parts, we obtain
oo

o0
O, (t) = g(O)/ u* et du — g(A — m)/ u® et dy
0 A—x

A—zx o0
+/ </ ualei“tdu) g (y)dy.
0 y

Put u —y = pe'? and u = re", then p < r,0 <6 < 5. If |u| >y, then
|u|*~! < y2~1 so that

S ) oo
/ ualezutdu‘ < yafl / e*tpdp — F(l)yafltfl.
Y 0

/OAI (/yoo “al@mdU> ' (y)dy = O(t™1).

/ u* et du = Ot )
A—zx

Hence,

Analogously,

and also it is known that
/OOO u et dy = ™3O0 ().
Therefore,
(19) hya(t) =0(t"%), t— +oo.
Thus, it follows from (18) and (19) that there exist a function

G(t) = [F(O){x[0,1/21 ()| In(L/2t)| + X[1/2,00) (£)E*} € L(0,00)

such that
|f(t)haa(t)] < G(2).

By Lebesgue’s theorem on dominated convergence

0 0 _ o\a—1 o0
/0 f(t)dt/m %Cosytdy = )gnwA F(&)hg,a(t)dt.

It implies

(20) HalFufl(a) = @ / Y O ha (bt



P. T. Zung 297

By change of variables we find
oo _ a—1
haoo(t) = / % cosytdy = {yt — v}
xr

® (v —at) !

= / —————cosvdv = {v — xy}
x ’Ua

t

0 _ f\a—1
_ / % cos xydy = hy oo ().
t

It follows from this and (20) that

—t a—1
\/> / £ dt u cos zydy.
ya
Now we show that

a a _ \a—1
(21)  Hu|F.f)(z) = lim \/g/o f(t)dt/t %cosyxdy.

a—r 00
We have
[ee} _ \a—1
/ =1 cosxydy}
a Y
1 —t a—1 o0 00 _ ) 1
= — =1 sin zy —/ sinxyd<(y ) >‘
x y* a a y*
_ \a—1 00 _ \a—1 _ Na—1
LR Y (= i [ CEL i
a®x T J, Yy« a®“x
then

a 0o [, pya—1 a a (. pa—1
/Of(t)dt/t %cosyxdy—/o f(t)dt/t %cosyxdy’

a 0o _ fa—1 a _ fa—1
[ swar | %ydy\s PR

X

and by Holder’s inequality

a 2(@ _ t)()c—l ) a()c—l/p
_ <
F(Bldt < lim 20(0,p)

lim
a—oo [q a®x

Ifllz» = 0.

Again applying Holder’s inequality

0o 0o [, pya—1 a 0 [, pya—1
/0 f(t)dt/t %cosyxdy—/o f(t)dt/t %cosyxdy
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00 00 1/ 00 1/p’
/ F()ha a(t)dt gC(/ |f|”dt> p(/ t—(w'dt> ’ —0, a— 0

and (21) follows. Changing the order of integrals on the right hand side of
(21), we find

(22) H[Fefl(z) = ah_{go Fe[Bofla()
Since
(23) ah—>nolo ”Fc[Bozf] - Fc[Baf]aHp’ =0,

then there exist a sequence ax such that ar — 0o, £ — oo and
(24) F.[B,f] = lim F.[Bafla,(z), ae. x € Ry
k— o0

and (12) follows from (22), (23) and (24). The proof of (13) is analogous.
O
For the case p =1 we have the following analog of Theorems 1 and 3.

Theorem 3. If f € L'(Ry) and o > 0, then for all x € Ry the
equalities

(25) BalFefl(z) = Fe[Haf(z), BalFsfl(z) = Fs[Haf](z)

hold.
Proof. By Fubini theorem we write

BalFfi) = = [ o= Fs )y

% 0
= %a:io‘/o (x—y)* ! {/0 f(t)cosytdt}dy.

- 2L [ ro{ [ -t eospran} an

Changing ty = zu, we have x —y = @, dy = Fdu and

Bu[F.f](z) = \/g/ooo {/Ot(t —u)*" ! cos xudu} dt.

f®)
ta
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On the other hand again by Fubini’s theorem

\/g/ooo Ho f(y) cos zydy
\/2/0“’ xy{/m D fayar ay
_ \/g/ow% {/Ot(t—y)alcosxydy} dt

and for all z > 0 the equality

Fe[Ha f(x)

Ba[Fef|(z) = Fe[Haf]()

follows. If z = 0 then

N OB EE: | s =250

and for a continuous f at x =0 we have

B (0) = limy B fe) = limy — [ (o =07 @)t = - 1(0)

x—0 %

Therefore, if f € L'(R,), then F,f(z) is continuous and

Ba[Ff](0) = lim BalFof)(r) = ~F.f(0).

Now we extend the operators B, and H, on R as follows.

xia /Ox(a: O (), w0
0

a—1
o / (| — 0> f(t)de, =<0
and
[e’e} a—1
/ %f(t)dt, >0
Haf(x) = z y a—
/ %ﬂﬂdt, 2 <0.

299

It is easy to see, that for even or odd functions f(x), the images B, f(x)
and H, f(x) are even or odd too. As a consequence of Theorems 1 and 2,

we obtain the following result.
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Theorem 4. If 1 <p <2 and a > 1/p’, then
B,[Ff](z) = F[Haf](z), aexz€eR

and
H,[Ff](x) = F[Baf](z), aexz€eR
for any f € LP(R).
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