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Abstract. In this paper a modular version of the classical Korovkin theorem

in multivariate modular function spaces is obtained and applications to some

multivariate discrete and integral operators, acting in Orlicz spaces, are given.

1. Introduction

The class of modular function spaces was introduced, for the first time,
by H. Nakano [29] and then extensively studied by J. Musielak [27] who
developed a theory of approximation in this general frame for classes of
linear and nonlinear operators ([28]). An abstract approach to the theory
of approximation was given in its definite form in [4]. This book represents
the first attempt at a comprehensive treatment of approximation theory in
modular spaces for nets of nonlinear operators. The interest in working in
such general spaces is mainly to ensure an unifying approach which includes,
by a unique method, several results in various functional spaces. Indeed
modular function spaces include Lp -spaces, Orlicz spaces, Musielak-Orlicz
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spaces, the spaces of functions with bounded variation, Orlicz-Sobolev
spaces and more ([27], [23], [4]).

One of the most interesting results in classical approximation theory is
certainly given by the Korovkin theorem ([21], [22], [7]). The classical
Korovkin theorem states the uniform convergence in C([a, b]), the space
of the continuous real functions defined on [a, b], of a sequence of positive
linear operators, by stating the convergence only on three test functions
{1, x, x2}. The work of Korovkin was inspired by the Bernstein proof of
the Weierstrass theorem ([6]). Here the author established the uniform
convergence of the Bernstein polynomials of the function f by stating it
only on the functions {1, x, x2}. There is also a trigonometric version of
the Korovkin theorem, using the test functions {1, cosx, sin x}, see [22],
[9]. Later on several extensions of the Korovkin theorem were obtained
in various settings. We quote here the books [12], [24], [13], [1] and
the extensive survey [16], which contains a wide list of references. Other
interesting generalizations were obtained in [18], [31].

Recently, versions of the Korovkin theorem were obtained in different
functional spaces, namely Lp -spaces or abstract Lebesgue spaces (see, e.g.,
[5], [19], [26], [20], [14],[15], [8], [30], [32]. For more references on this topic
see [1], Appendix D).

In [3], we obtained an extension of the Korovkin theorem in the abstract
setting of the modular function spaces for real functions defined on a
compact interval [a, b] , using the classical test set {1, x, x2} and its
elementary properties. In the present paper, we give a modular version
of the Korovkin theorem in multivariate modular function spaces. We start
with a generalized version of the Korovkin theorem for functions defined
on open precompact sets in a Hausdorff locally compact topological space,
provided with a regular measure defined on the Borel sets, in which a general
test set is used satisfying suitable assumptions. This general approach is
quite different from the classical one. Here we use a modification, suitable
for modular function spaces, of a technique employed in [24] (see also [31]).
Note that for certain function spaces, as for example Lp -spaces, in general
it is not possible to get the convergence in Lp of a sequence of positive linear
operators for all the LP functions, but it is necessary to consider suitable
subspaces, depending on the form of the operators involved. Given a finite
class of functions {ei} and a sequence T = (Tn) of positive linear operators
such that (Tnei) converges to ei, with respect to the Luxemburg norm in
the modular space, we determine a subspace XT such that (Tn) converges
with respect to the modular topology on every function of this subspace.
Key tools for this result are a density property of the space of the continuous
functions in the modular space (see [25]) and a kind of ”approximate”
modular continuity assumption on the sequence (Tn)n∈IN over the class. In
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particular we obtain, as a special case, a version of the Korovkin theorem in
Lp spaces and in Orlicz or Musielak-Orlicz spaces. In Section 4, we apply
our general theory to some kind of discrete operators acting on multivariate
functions defined on nonempty bounded subsets of IRn. Then in Section
5 we consider the case of Mellin type integral operators (see [10]) for one
dimensional Mellin convolution operators. Our result can be applied to
various classical operators like multivariate Bernstein operators ([24]) and
multivariate moment operators ([11] and [17]).

2. Notations and definitions

Let A be a nonempty open set in a Hausdorff locally compact topological
space H provided with a regular measure μ defined on the Borel sets of
H. We will assume that A is compact. We will denote by X(A) the space
of all real-valued Borel measurable functions f : A → IR provided with
equality μ-a.e., by C(A) the space of all continuous and bounded real
functions defined on A and by Cu(A) the subset of C(A) whose elements
have a continuous extension to A. A functional � : X(A) → IR+

0 is said to
be a modular on X(A) if

i) �[f ] = 0 ⇔ f = 0, a.e. in A,
ii) �[−f ] = �[f ], for every f ∈ X(A),
iii) �[αf +βg] ≤ �[f ]+�[g], for every f, g ∈ X(A), α, β ≥ 0, α+β = 1.

We will say that a modular � is Q-quasi convex if there is constant
Q ≥ 1 such that

�[αf + βg] ≤ Qα�[Qf ] + Qβ�[Qg],

for every f, g ∈ X(A), α, β ≥ 0, α + β = 1. If Q = 1 we will say that � is
convex. By means of the functional �, we introduce the vector subspace of
X(A), denoted by L�(A), defined by

L�(A) = {f ∈ X(A) : lim
λ→0+

�[λf ] = 0}.

The subspace L�(A) is called the modular space generated by �. It is easy
to see that when � is Q -quasi-convex we have the following characterization
of the modular space L�(A) :

L�(A) = {f ∈ X(A) : �[λf ] < +∞ for some λ > 0},

see for example [27] and [4]. The subspace of L�(A) defined by

E�(A) = {f ∈ L�(A) : �[λf ] < +∞ for all λ > 0}
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is called the space of the finite elements of L�(A), see [27]. The following
assumptions on modulars will be used

a) � is monotone, i.e. for f, g ∈ X(A) and |f | ≤ |g| then �[f ] ≤ �[g].
b) � is finite, i.e. denoting by e0 the function e0(t) = 1 for every

t ∈ A, e0 ∈ L�(A). Note that clearly e0 ∈ Cu(A).
c) � is absolutely finite, i.e. � is finite and for every ε > 0, λ >

0 there is δ > 0 such that �[λχB ] < ε for any measurable subset
B ⊂ A with μ(B) < δ. Here χB denotes the characteristic function
of the set B.

d) � is strongly finite, i.e. e0 ∈ E�(A).
e) � is absolutely continuous, i.e. there exists α > 0 such that for

every f ∈ X(A), with �[f ] < +∞, the following condition is
satisfied: for every ε > 0 there is δ > 0 such that �[αfχB ] < ε, for
every measurable subset B ⊂ A with μ(B) < δ.

For the above notions see, [27], [28] and [4]. Note that, since μ(A) <

+∞, if � is strongly finite and absolutely continuous then it is also
absolutely finite (see [2]).

Classical examples of modular spaces are given by the Orlicz spaces
generated by a ϕ− function ϕ or, more generally, by any Musielak-Orlicz
space generated by a ϕ-function ϕ depending on a parameter, satisfying
some growth condition with respect to the parameter (see [27], [23], [4] in
some special cases). The modular functionals generating the above spaces
satisfy all the previous assumptions.

We say that a sequence of functions (fn)n∈IN ⊂ L�(A) is modularly
convergent to a function f ∈ L�(A), if there exists λ > 0 such that

lim
n→+∞ �[λ(fn − f)] = 0.

This notion extends the norm-convergence in Lp−spaces. Moreover it is
weaker than the F-norm-convergence induced by the Luxemburg F-norm
generated by � and defined by

‖f‖ρ ≡ inf{u > 0 : �[f/u] ≤ u}.

We recall that a sequence of functions (fn)n∈IN is F-norm-convergent (or
strongly convergent) to f iff

lim
n→+∞ �[λ(fn − f)] = 0

for every λ > 0. The two notions of convergence are equivalent if and
only if the modular satisfies a Δ2−condition, i.e. there exists a constant
M > 0 such that �[2f ] ≤ M�[f ], for every f ∈ X(A), see [27]. For
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example, this happens for every Lp -spaces and Orlicz spaces generated
by ϕ-functions with the Δ2 -regularity condition (see [27], [4]). The
modular convergence induces a topology on L�(A), called modular topology.
Given a subset B ⊂ L�(A), we will denote by B the closure of B with
respect to the modular topology. Then f ∈ B if there is a sequence
(fn)n∈IN ⊂ B such that fn is modularly convergent to f. Let us remark
that C(A) ⊂ L�(A) whenever � is monotone and finite. Indeed, for
λ > 0 we have �[λf ] ≤ �[λ‖f‖∞e0], and so, since e0 ∈ L�(A), we have
limλ→0+ �[λf ] = 0, that is f ∈ L�(A). Analogously, if � is monotone and
strongly finite, then C(A) ⊂ E�(A).
We have the following (see [25] and [4]).

Proposition 1. Let � be a monotone, absolutely finite and absolutely
continuous modular on X(A). Then Cu(A) = L�(A).

3. A Korovkin theorem in modular function spaces

Let e1, . . . em be m functions in Cu(A) such that the following property
(P) holds: there exist continuous functions ai ∈ Cu(A), i = 1, . . .m such
that the function

Ps(t) =
m∑

i=1

ai(s)ei(t), s, t ∈ A(1)

is positive and equal to zero if and only if s = t.

Let T = (Tn)n∈IN be a family of positive linear operators
Tn : D → X(A) , where Cu(A) ⊂ D ⊂ X(A). Here D is the domain of
the operators Tn. We will assume that the family (Tn)n∈IN satisfies the
following property

(∗) : there exists a subset XT ⊂ D ∩ L�(A) with Cu(A) ⊂ XT and
a constant R > 0 such that for every function f ∈ XT we have Tnf ∈
L�(A) and

lim sup
n→+∞

�[λ(Tnf)] ≤ R�[λf ]

for every λ > 0.

Note that if Tn : D → X(A) are equi-continuous operators in L�(A), i.e.
�[λTnf ] ≤ R�[λf ] for an absolute constant R > 0 for every λ > 0 and
for every f ∈ D ∩ L�(A), then clearly we can take XT = L�(A) ∩ D. We
will provide an example of Tn for which property (∗) holds for a suitable
subspace XT 
= L�(A) ∩ D but it is not continuous in L�(A).
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In what follows, we will assume that

lim
n→+∞Tnei = ei, i = 1, . . .m modularly in L�(A).(2)

Lemma 1. Let � be a monotone modular. Let the assumption (2) be
satisfied and let us consider the function

P (t) =
m∑

i=1

aiei(t), t ∈ A,

where ai are constants. Then limn→+∞ TnP = P modularly in L�(A).

Proof. From (2) we can find a constant λ > 0 such that

lim
n→+∞ �[λ(Tnei − ei)] = 0, i = 1, . . . m.

Let M be such that |ai| ≤ M for every i = 1, . . .m and let α > 0 be such
that αmM ≤ λ. Then, using the property of the modular, we get

�[α(TnP − P )] ≤
m∑

i=1

�[αmM(Tnei − ei)] ≤
m∑

i=1

�[λ(Tnei − ei)]

and so the assertion follows. �

Lemma 2. Let � be a monotone modular. Let the assumptions (P)
and (2) be satisfied. Then for the function Ps(t) in (1) there holds
limn→+∞(TnP(·))(·) = 0 modularly in L�(A).

Proof. Let M > 0 be so large that |ai(s)| ≤ M for every i = 1, . . . , m and
for every s ∈ A. From (2) we can find a constant λ > 0 such that

lim
n→+∞ �[λ(Tnei − ei)] = 0, i = 1, . . . m.

Let α > 0 be such that αmM ≤ λ. Then

�[α(TnP(·))(·)] = �[α((TnP(·))(·) − P(·)(·))]

≤
m∑

i=1

�[αmM(Tnei − ei)] ≤
m∑

i=1

�[λ(Tnei − ei)]

and so the assertion follows. �

Lemma 3. Let � be a finite, monotone and Q-quasi-convex modular.
Let the assumptions (P) and (2) be satisfied. Let fs ∈ Cu(A), s ∈ A, be
a family of functions such that fs(t) is a continuous function of (t, s) ∈
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A × A and fs(s) = 0 for every s ∈ A. Then limn→+∞(Tnf(·))(·) =
0 modularly in L�(A).

Proof. Firstly, note that there exists a function P̃ of the form P̃ (t) =∑m
i=1 aiei(t), such that P̃ (t) > 0 for all t ∈ A. Indeed, given two points

s1 
= s2 of A we can take P̃ = Ps1 + Ps2 . Let us consider the diagonal
B = {(s, s) : s ∈ A}. For a given 0 < ε < 1, each point of B has
an open neighbourhood U in A × A for which |fs(t)| < ε for every
(t, s) ∈ U. We put G =

⋃
U and F = (A × A) \ G. Then F is compact.

Let θ = min(t,s)∈F Ps(t) > 0, Θ = max(t,s)∈F |fs(t)|. Clearly for every
(t, s) ∈ A×A we have |fs(t)| ≤ ε + Θ

θ Ps(t). Applying the operators Tn we
have

|(Tnfs)(s)| ≤ ε(Tne0)(s) +
Θ
θ

(TnPs)(s).

Then, for γ > 0 we have

�[γ(Tnf(·))(·)] ≤ �[2γε(Tne0)(·)] + �[2γ
Θ
θ

(TnP(·))(·)]

≤ Qε�[2γQ(Tne0)(·)] + �[2γ
Θ
θ

(TnP(·))(·)] = I1 + I2

Let us consider I1. We can choose a positive constant a > 0 such that
1 = e0(t) ≤ aP̃ (t), t ∈ A. So applying the modular we have

�[2γQ(Tne0)(·)] ≤ �[2γQa(TnP̃ )(·)]
≤ �[4γQa((TnP̃ )(·) − P̃ (·))] + �[4γQaP̃ (·)]
= I1,1 + I1,2.

Let us consider I1,1. By Lemma 1, there exists α > 0 such that

�[α((TnP̃ )(·) − P̃ (·))] < 1

for sufficiently large n. For I1,2 since the functions e1, . . . , em ∈
L�(A), there exists ν > 0 such that �[νei] < +∞ for every i =
1, . . . , m. Now, putting M = maxi=1,...m |ai| and taking γ such that
4γQamM < ν and 4γQa < α, we have

I1,2 = �[4γQaP̃ ] = �[4γQa

m∑
i=1

aiei] ≤
m∑

i=1

�[4γQamMei] ≤
m∑

i=1

�[νei].

Thus we get I1 ≤ εW, for an absolute constant W > 0. For I2, by Lemma 2,
we can take γ such that limn→+∞ I2 = 0 modularly. Thus, for sufficiently
small γ > 0 we get limn→+∞ �[γ((Tnf(·))(·))] = 0. �
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Lemma 4. Let � be a finite, monotone and Q-quasi-convex modular.
Let the assumptions (P) and (2) be satisfied. Then for every f ∈ Cu(A) we
have

lim
n→+∞ Tnf = f modularly in L�(A).

Proof. Let f ∈ Cu(A) be fixed. Let us take

fs(t) = f(t) − f(s)

P̃ (s)
P̃ (t),

where the function P̃ is strictly positive in A. By Lemma 3 there exists
γ > 0 such that limn→+∞ �[γ(Tnf(·))(·)] = 0 and this means that

lim
n→+∞ �[γ((Tnf)(·) − f(·)

P̃ (·) (TnP̃ )(·))] = 0.

For a constant δ > 0 we have

�[δ(Tnf − f)] ≤
≤ �

[
2δ((Tnf)(·) − f(·)

P̃ (·) (TnP̃ )(·))
]

+ �
[
2δ(

f(·)
P̃ (·) (TnP̃ )(·) − f(·))

]

= �
[
2δ((Tnf)(·) − f(·)

P̃ (·) (TnP̃ )(·))
]

+ �
[
2δ

f(·)
P̃ (·) ((TnP̃ )(·) − P̃ (·))

]
= J1 + J2.

For J1 , if 2δ < γ we have limn→+∞ J1 = 0. Moreover let Γ :=
maxs∈A | f(s)

P̃ (s)
|, then J2 ≤ �[2δΓ(TnP̃ − P̃ )] and so for sufficiently small

δ > 0 we get limn→+∞ J2 = 0 and so the assertion follows. �
Remark 1. We remark that if assumption (2) holds in strong sense

in L�(A) then using exactly the same proof as before we can show that
limn→+∞ Tnf = f strongly in L�(A) for every f ∈ Cu(A).

The main theorem of this section is the following

Theorem 1. Let � be a monotone, absolutely finite, absolutely
continuous and Q-quasi-convex modular on X(A). Let T = (Tn)n∈IN be
a sequence of positive linear operators satisfying property (∗). Let the
assumption (P) be satisfied. Then if

lim
n→+∞Tnei = ei i = 1, . . . , m, strongly in L�(A),

then limn→+∞ Tnf = f, modularly in L�(A) for each f ∈ L�(A)∩D such
that f − Cu(A) ⊂ XT.
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Proof. Let f ∈ L�(A) ∩ D be a function such that f − Cu(A) ⊂ XT. By
Proposition 1, there is a λ > 0 and a sequence (fk)k∈IN ⊂ Cu(A) such that
�[3λf ] < +∞ and limn→+∞ �[3λ(fk − f)] = 0. Let ε > 0 be fixed and let
k be such that for every k ≥ k, �[3λ(fk −f)] < ε. Fix now k, then we have

�[λ(Tnf − f)] ≤ �[3λTn(f − fk)] + �[3λ(Tnfk − fk)] + �[3λ(fk − f)].

Passing to limsup, taking into account Remark 1 and property (∗), we
obtain lim supn→+∞ �[λ(Tnf − f)] ≤ ε(R + 1) and the assertion follows
from the arbitrariness of ε > 0. �

Remark 2. Note that a similar result holds true in the case when A is
compact replacing of course Cu(A) with C(A). The proof is exactly the
same.

4. Application to discrete operators

Let A ⊂ IRN be a bounded open set and let (r(n))n∈IN be an increasing
sequence of natural numbers.

For every fixed n ∈ IN, by Γn = (νn,k)k=0,1,...,r(n) ⊂ A, νn,k =
(ν1

n,k, . . . , νN
n,k), we denote a finite sequence of points such that

⋃
Γn = A.

Let us consider a sequence S = (Sn)n∈IN of positive operators of the form

(Snf)(s) =
r(n)∑
k=0

Kn(s, νn,k)f(νn,k), n ∈ IN, s ∈ A(3)

where (Kn)n∈IN , Kn : A×Γn → IR is a sequence of nonnegative measurable
functions such that

r(n)∑
k=0

Kn(s, νn,k) = 1 for every n ∈ IN, s ∈ A.

Note that the domain of the operator (3) contains the space X(A), due
to the nature of the operator. Here X(A) is the space of all real valued
measurable functions which are everywhere defined on A (i.e. we distinguish
two equivalent but different functions).
For every j = 1, . . . , N and s = (s1, . . . , sN ) we put

mj(Kn, s) :=
r(n)∑
k=0

Kn(s, νn,k)(νj
n,k−sj), M2(Kn, s) :=

r(n)∑
k=0

Kn(s, νn,k)|νn,k−s|2.
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We put e0(t) = 1, ei(t) = ti for i = 1, . . . , N and eN+1(t) = |t|2, t =
(t1, . . . , tN ) ∈ A. Note that these functions satisfy property (1) taking

Ps(t) = |t − s|2, (t, s) ∈ A × A.

According to the above assumptions we have immediately Sne0 = e0 =
1, for every n ∈ IN. We have the following

Proposition 2. Let � be a finite and monotone modular on X(A). Then
a necessary and sufficient condition that

lim
n→+∞ mj(Kn, ·) = 0, j = 1, . . . , N, lim

n→+∞M2(Kn, ·) = 0(4)

modularly (strongly) in L�(A) is that limn→+∞ Snej = ej, j=1,. . . , N+1,
modularly (strongly) in L�(A).

Proof. We prove the proposition in case of strongly convergence. We can
assume λ = 1. First we prove the necessary condition. It is obvious that
(Snej)(s) − ej(s) = mj(Kn, s), j = 1, . . . , N. Moreover

(SneN+1)(s) − eN+1(s) = M2(Kn, s) + 2
N∑

j=1

ej(s)mj(Kn, s).

Passing to the modular we have �[Snej − ej ] = �[mj(Kn, ·)], j =
1, . . . , N and

�[SneN+1 − eN+1] ≤ �[2M2(Kn, ·)] +
N∑

j=1

�[4N‖ej‖∞mj(Kn, ·)],

that is the assertion. For the sufficient condition, note that

M2(Kn, s) = (SneN+1)(s) − eN+1(s) − 2
N∑

j=1

ej(s)((Snej)(s) − ej(s))

and so applying the modular, as before, we obtain the assertion. �
We have the following corollary

Corollary 1. Let � be a monotone, strongly finite, absolutely
continuous and Q-quasi-convex modular on X(A). Assume that the family
(Sn)n∈IN satisfies property (∗) and (4) holds in the strong sense. Then
limn→+∞ Snf = f, modularly in L�(A) for each f ∈ L�(A) such that
f − Cu(A) ⊂ XS, where XS is the corresponding class given in property
(∗).
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Here we will describe the class XS in some particular case. Let Φ be
the class of all functions ϕ : IR+

0 → IR+
0 such that ϕ is a convex function,

ϕ(0) = 0, ϕ(u) > 0 for u > 0 and limu→+∞ ϕ(u) = +∞.

For ϕ ∈ Φ, we define for every f ∈ X(A), the functional

�ϕ[f ] =
∫

A

ϕ(|f(s)|)ds.

As it is well known, �ϕ is a convex modular on X(A) and the subspace

Lϕ(A) = {f ∈ X(A) : �ϕ[λf ] < +∞ for some λ > 0}

is the Orlicz space generated by ϕ, (see [27]). The subspace of
Lϕ(A), defined by

Eϕ(A) = {f ∈ X(A) : �ϕ[λf ] < +∞ for every λ > 0},

is called the space of finite elements of Lϕ(A). For example every bounded
function belongs to Eϕ(A). Note that this modular satisfies all the
assumptions listed in Section 2.

Let us consider the sequence of operator (3) and let us assume that∫
A

Kn(s, νn,k)ds ≤ ξn

where ξn is a bounded sequence of positive numbers. For every n ∈ IN, we
define

�ϕ
n [f ] =

r(n)∑
k=0

ϕ(|f(νn,k)|), f ∈ X(A).

Now, let us denote by Aϕ the class of all functions in Lϕ(A) such that

lim sup
n→+∞

ξn�ϕ
n [λf ] ≤ R�ϕ[λf ],

for every λ > 0 and an absolute constant R > 0 independent of f and
λ. We have the following

Proposition 3. Aϕ ⊂ XS.

Proof. Let λ > 0 be fixed. Using the Jensen inequality and the
assumptions on the kernel (Kn)n∈IN , we get

�ϕ[λSnf ] ≤ ξn

r(n)∑
k=0

ϕ(λ|f(νn,k)|) = ξn�ϕ
n [λf ]
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and so, passing to the limsup, we obtain immediately

lim sup
n→+∞

�ϕ[λSnf ] ≤ R�ϕ[λf ].

�
Example 1. Let A = [0, 1]N . Let n ∈ IN be fixed and let ri(n), a finite

sequence of positive integers, i = 1, . . .N. Let us consider a multi-index h =
(h1, . . . , hN) ∈ INN , such that 0 ≤ hi ≤ ri(n), for every i = 1, . . . , N. For
any choice of h we consider the vector νn,h = (ν1

n,h1
, . . . , νN

n,hN
), where

for every i = 1, . . . , N, (νi
n,hi

), i = 0, . . . ri(n), is a finite partition of the
interval I = [0, 1] of the i-axis. Putting

Δn
h :=

N∏
i=1

(νi
n,hi

− νi
n,hi−1),

let us assume that there exist two sequences (an), (bn) of positive real
numbers, such that 0 < an ≤ Δn

h ≤ bn, for every h ∈ INN and n ∈ IN, and
bn → 0, n → +∞. By a renumbering of the vectors νn,h into a sequence
ν̃n,k, k = 0, 1, . . . r̃(n), let us consider a kernel Kn(s, ν̃n,k), satisfying
the above assumptions and let ξn be the corresponding sequences of
numbers which dominate the integrals over A. Finally, let us assume that
0 ≤ ξn/an ≤ M, for a fixed constant M > 0 and any n ∈ IN. Thus, in this
instance, the class Aϕ contains all the Riemann integrable functions over
A. Indeed, we have, for λ = 1

lim sup
n→+∞

ξn

r1(n)∑
h1=0

· · ·
rN (n)∑
hN=0

ϕ(|f(νn,h)|)

≤ lim sup
n→+∞

ξn

an

r1(n)∑
h1=0

· · ·
rN (n)∑
hN=0

ϕ(|f(νn,h)|)Δn
h

≤ M lim sup
n→+∞

r1(n)∑
h1=0

· · ·
rN (n)∑
hN =0

ϕ(|f(νn,h)|)Δn
h .

The last sum is a Riemann sum of the function ϕ ◦ |f | and so, if f is
Riemann integrable, then the above limsup is dominated by the integral
M

∫
A

ϕ(|f(s)|)ds and from this the assertion follows. �
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5. Application to Mellin-type operators

Let us consider A = [0, 1]N and for any vectors t = (t1, . . . , tN), s =
(s1, . . . , sN) ∈ A, we put ts = (t1s1, . . . , tNsN ). Let (Kn)n∈IN be a
sequence of kernel functions Kn : A → IR+

0 such that∫
A

Kn(t)dt = 1 and
∫

A

Kn(t)
t1 · · · tN dt ≤ W

for every n ∈ IN and W is an absolute constant. Here, for a sake of
simplicity, we consider an Orlicz space. Let ϕ ∈ Φ be fixed and let Lϕ(A) be
the corresponding Orlicz space. For any function f ∈ Lϕ(A) we define the
positive linear operator

(Tnf)(s) =
∫

A

Kn(t)f(ts)dt, s ∈ A.

In this instance we can show that Lϕ(A) ⊂ D = DomT =
⋂

n∈IN DomTn,

where DomTn is the subset of X(A) on which Tnf is well defined as a
measurable function of s ∈ A. A first result on these operators is given by
the following proposition.

Proposition 4. Tnf ∈ Lϕ(A) whenever f ∈ Lϕ(A) and

�ϕ[Tnf ] ≤ W�ϕ[f ].

Proof. By the Jensen inequality and the Fubini-Tonelli theorem, we have

�ϕ[Tnf ] ≤
∫

A

Kn(t)
[∫

A

ϕ(|f(ts)|)ds

]
dt

≤
∫

A

Kn(t)
t1 . . . tN

�ϕ[f ]dt ≤ W�ϕ[f ].

�
As a consequence of the above proposition we get XT = Lϕ(A). We

define the integral moments mi(Kn, s) and mi,2(Kn, s) on putting, for
i = 1, . . . , N,

mi(Kn, s) = si

∫
A

Kn(t)(ti − 1)dt, mi,2(Kn, s) = s2
i

∫
A

Kn(t)(ti − 1)2dt.

As in discrete case, according to the above assumptions, we have
immediately Tne0 = e0 = 1 for every n ∈ IN. Moreover we have
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Proposition 5. A necessary and sufficient condition that

lim
n→+∞ mi(Kn, ·) = 0, and lim

n→+∞mi,2(Kn, ·) = 0, i = 1, . . . , N,

modularly (strongly) in Lϕ(A) is that

lim
n→+∞Tnei = ei, and lim

n→+∞Tne2
i = e2

i , i = 1, . . . , N,

modularly (strongly) in Lϕ(A), where ei(t) = ti, i = 1, . . . , N.

Proof. The proof follows from the identities, mi(Kn, s) = (Tnei − ei)(s)
and mi,2(Kn, s) = (Tne2

i − e2
i )(s) − 2si mi(Kn, s), for i = 1, . . . , N. �

As a consequence we get the following corollary

Corollary 2. If the moments mi(Kn, ·) and mi,2(Kn, ·), i =
1, . . . , N, are strongly convergent to zero then limn→+∞ Tnf = f, modularly
in Lϕ(A) for each f ∈ Lϕ(A).

Proof. We only remark that, putting eN+1(t) = |t|2, we have also
limn→+∞ TneN+1 = eN+1 strongly in Lϕ(A). �

Remark 3 Note that the above results hold also in abstract modular
function spaces. In this instance, besides the above assumptions on the
generating modular �, (monotonicity, absolute finiteness and absolute
continuity), we have to assume some generalized Jensen convexity, in
integral form and a notion of subboundedness (see e.g. [4]). In particular we
have to assume an inequality of the form �[f(t·)] ≤ F (t)�[f(·)] where F is
a measurable function such that

∫
A

Kn(t)F (t)dt ≤ W for every n ∈ IN and
an absolute constant W > 0. These assumptions are automatically satisfied
in Orlicz spaces and are fundamental in order to obtain the modular
continuity of the operators Tn (Proposition 4).
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in una o piú variabili , Atti Sem. Mat. Fis. Univ. Modena, 30 (1981),
299–321.

[12] R.A. DeVore, The Approximation of Continuous Functions by Positive
Linear Operators, Lecture notes in Math., 293, Springer-Verlag, 1972.

[13] R.A. DeVore and G.G. Lorentz, Constructive Approximation, Grund.
Math. Wiss. 303, Springer Verlag, 1993.

[14] K. Donner, Korovkin theorems in Lp -spaces, J. Funct. Anal., 42 (1981),
12–28.

[15] K. Donner, Extension of Positive Operators and Korovkin Theo-
rems, Lecture Notes in Math., 904, Springer-Verlag, Berlin, 1982.

[16] S.M. Eisenberg, Korovkin’s theorem, Bull. Malaysian Math. Soc., 2
(1979), 13–29.

[17] C. Fiocchi, Two-dimensional moment kernels and convergence in area,
Atti Sem. Mat. Fis. Univ. Modena, 33 (1986), 291–311.

[18] M.W. Grossman, Note on a generalized Bohman-Korovkin theorem, J.
Math. Anal. Appl., 45 (1974), 43–46.



120 Korovkin theorem in multivariate modular function spaces

[19] R.L. James, The extension and convergence of positive operators, J.
Approx. Theory, 7 (1973), 186–197.

[20] W. Kitto and D.E. Wulbert, Korovkin approximations in Lp -spaces,
Pacific J. Math., 63 (1976), 153–167.

[21] P.P. Korovkin, On convergence of linear positive operators in the spaces
of continuous functions (Russian), Doklady Akad. Nauk. S.S.S.R., 90
(1953), 961–964.

[22] P.P. Korovkin, Linear Operators and Approximation Theory, Hindus-
tan, Delhi, 1960.

[23] W.M. Kozlowski, Modular Function Spaces, Pure Appl. Math., Marcel
Dekker, New York and Basel, 1988.

[24] G.G. Lorentz, Approximation of Functions, Chelsea Publ. Comp. New
York, 1986.

[25] I. Mantellini, Generalized sampling operators in modular spaces,
Commentationes Math., 38, (1998), 77–92.

[26] M.J. Marsden and S.D. Riemenschneider, Korovkin theorems for
integral operators with kernels of finite oscillation, Canad. J. Math., 26
(1974), 1390–1404.

[27] J. Musielak, Orlicz Spaces and Modular Spaces, Springer-Verlag,
Lecture Notes in Math., 1034 (1983).

[28] J. Musielak, Nonlinear approximation in some modular function spaces
I, Math. Japon., 38, (1993), 83–90.

[29] H. Nakano, Modulared Semi-Ordered Linear Spaces, Maruzen Co., Ltd,
Tokyo, 1950.

[30] P. Renaud, A Korovkin theorem for abstract Lebesgue spaces, J.
Approx. Theory, 102, (2000), 13–20.
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