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Abstract. In connection with application to various problems of operator
theory, we study almost monotonic functions w(x, r) depending on a parameter
x which runs a metric measure space X , and the so called index numbers
m(w,x), M(w, x) of such functions, and consider some generalized Zygmund,
Bary, Lozinskii and Stechkin conditions. The main results contain necessary
and sufficient conditions, in terms of lower and upper bounds of indices m(w, x)
and M(w, x) , for the uniform belongness of functions w(·, r) to Zygmund-Bary-
Stechkin classes.

We give also applications to local dimensions in metric measure spaces
and characterization of some integral inequalities involving radial weights and
measures of balls in such spaces.

1. Introduction

Last decades there was observed an increasing interest to the study of
function spaces whose characteristics may vary from point to point. A well
known typical example is the generalized Lebesgue space Lp(·) with variable
exponent, see for instance the surveying papers [2], [11], [25] on harmonic
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analysis in such spaces. Another example is a generalized Hölder space
with a given dominant of continuity modulus, which may vary from point
to point. Hölder spaces of variable order λ(x), and more general variable
generalized Hölder spaces, were studied in [9], [16], [28], [29], [30], [32], [31].
The generalized Hölder classes were there defined as spaces of functions
whose continuity modulus at a point x has a dominant (characteristic)
w(x, r), where r ∈ [0, �], 0 < � < ∞ and x runs a certain set X ⊆ Rn

(typically an interval in R1 , or either a domain or a unit sphere in Rn ).
This characteristic belongs to this or other Zygmund-Bary-Stechkin class
Φαβ in the variable r ∈ R1

+ for every x ∈ Rn and one needs to have some
properties of these functions uniform with respect to x .

But the main reason for this study lies in some problems in the theory
of metric measure spaces with variable dimensions. As is known, the one-
dimensional Muckenhoupt condition (or the multi-dimensional one in the
case of radial weights), includes integral constructions similar to those which
are involved in the Zygmund integral condition. When such Muckenhoupt
conditions are used within the frameworks of metric measure spaces X

where μB(x, r) depends on the point x , one arrives at a similar problem
of dependence of a function in the Zygmund-Bary-Stechkin class Φαβ on a
parameter x running a metric measure space, see [12]. These facts led us
to the study of Zygmund-Bary-Stechkin functions w(x, r) depending on a
parameter x belonging in general to an arbitrary metric measure space X ,
which is undertaken in this paper.

The paper is organized as follows. In Section 2 we give necessary
preliminaries. In Subsection (2.1), we deal with the so called indices m(w, x)
and M(w, x) of functions w(x, r) almost monotonic in r ∈ R1

+ . We refer
to papers [10], [18], [17], [21], [22], [20], [19], [24], [23] for properties of
such indices in the case w = w(r) and their usage in the study of the
Fredholmness of singular integral operators in weighted generalized Hölder
spaces (see also [15] for Fredholmness in the case of usual Hölder spaces).
In Subsection (2.1), we consider the index numbers m(w, x),M(w, x) of
Zygmund-Bary-Stechkin functions in dependence on a point x . We study,
in particular, their lower and upper bounds when x runs X . In Subsections
(2.3) and (2.4), we deal with some generalized Zygmund, Bary, Lozinskii and
Stechkin conditions.

Section 3 contains results on the characterization of the uniform
belongness of functions to Zygmund-Bary-Stechkin classes in terms of lower
and upper bounds of indices m(w, x) and M(w, x). In the proofs we follow
some ideas developed earlier in [1] and [10].

In Section 4 we consider applications to some questions in measure
metric spaces. We suggest a new approach to define local lower and
upper dimensions. In terms of some bounds of these local dimensions we
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give a new characterization of the validity of some Zygmund-type integral
inequalities involving measures μB(x, r) of balls. Such inequalities arise in
Muckehhoupt conditions for radial monotonic weights.

2. Preliminaries

2.1. Indices m(w),m∗(w),m∗∗(w) and M(w),M∗(w),M∗∗(w) of
functions w ∈ W depending on parameter. Let X be a metric space
with a positive measure μ (not necessarily satisfying the doubling condition)
and Ω a bounded open set in X with � = diamΩ, 0 < � <∞ .

We will deal with functions w(x, r) defined on Ω× [0, �] which are almost
increasing in variable r , and we will be interested in properties related to
this almost monotonicity, uniform with respect to x .

We recall that a non-negative function f on [0, �] is said to be almost
increasing (or almost decreasing ) if there exists a constant C ≥ 1 such that
f(r1) ≤ Cf(r2) for all 0 ≤ r1 ≤ r2 ≤ � (or � ≥ r1 ≥ r2 ≥ 0, respectively).

Definition 2.1. By W = W(Ω × [0, �]) we denote the class of functions
w with the properties

1) w ∈ L∞(Ω × [0, �]) ;

2) w(x, r) is continuous in r ∈ [0, �] for any fixed x ∈ Ω;

3) w(x, 0) = 0, but

(2.1) ess inf
x∈Ω

w(x, r) := d0(r) > 0 for every r > 0,

where ess inf
x∈Ω

w(x, r) is considered with respect to the measure μ on

X ;

4) for any fixed x ∈ X the function w(x, r) is almost increasing in r

with the uniform coefficient 1 ≤ Cw <∞ not depending on x :

(2.2) w(x, r1) ≤ Cww(x, r2), 0 ≤ r1 ≤ r2 ≤ �.

In future for brevity we say that a function w(x, r) is uniformly almost
increasing in r meaning that property (4) holds with Cw not depending
on x . When it is admitted that w(x, r) is almost increasing at every point
x ∈ Ω with Cw which may depend on x, we say that w(x, r) is pointwise
almost increasing in r . Similar notions for almost decreasing functions are
defined.
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Whenever necessary we always assume that w(x, r) is defined as

(2.3) w(x, r) = w(x, �) for r ≥ �.

We also introduce the wider class

W̃(X × [0, �]) =
{
w(x, r) : ∃ a = a(w) ∈ R

1

such that taw(x, t) ∈ W(X × [0, �])
}
.(2.4)

Definition 2.2. Let w ∈ W . The numbers

(2.5) m(w, x) = sup
r>1

ln
(

lim
h→0

w(x,rh)
w(x,h)

)
ln r

,

(2.6) M(w, x) = inf
r>1

ln
(

lim
h→0

w(x,rh)
w(x,h)

)
ln r

will be referred to as the lower and upper Matuszewska-Orlicz indices of a
function w ∈ W with respect to r .

We refer to [14], p. 20, [18], [10] for the Matuszewska-Orlicz indices
m(w),M(w) in the case where w = w(r). The function

(2.7) W (x, r) = lim
h→0

w(x, rh)
w(x, h)

, 0 < r <∞,

involved in (2.5) and (2.6), is submultiplicative. Recall that a non-
negative everywhere finite function f(t) defined on (0,∞), is called
submultiplicative, if f(t1t2) ≤ f(t1)f(t2) for all t1, t1 ∈ (0,∞). Following
[13], Ch.II, formula (1.16) we call the function W (x, r) a dilation of w(x, r)
(note that in [13] such a dilation was defined with suph>0 instead of
limh→0 ).

The lower index may be also written in terms of the dilation of w(x, r):

(2.8) m(w, x) = sup
0<r<1

lnW (x, r)
ln r

= lim
r→0

lnW (x, r)
ln r

,

which may be obtained by means of properties of submultiplicative
functions. The following fact is known (see [13],Theorem 1.3).
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Lemma 2.3. If a function f(r), 0 < r < ∞, is submultiplicative, then
there exist lim

r→0

ln f(r)
ln r and lim

r→∞
ln f(r)

ln r and

(2.9) lim
r→0

ln f(r)
ln r

= sup
0<r<1

ln f(r)
ln r

, lim
r→∞

ln f(r)
ln r

= inf
r>1

ln f(r)
ln r

.

The change of variables r → 1
r in (2.5) and Lemma 2.3 provide the

coincidence of (2.5) with (2.8).
From (2.8) there also follows that

(2.10) m(w, x) = lim
r→∞

ln
(

lim
h→0

w(x,rh)
w(x,h)

)
ln r

, M(w, x) = lim
r→∞

ln W (x, r)
ln r

.

For w ∈ W we have 0 ≤ m(w, x) ≤M(w, x) ≤ ∞ .
For the study of the Zygmund-Bary-Stechkin classes of functions

depending on the parameter x , with the Zygmund condition uniform in
x , the following numbers may be introduced
(2.11)

m(w) = sup
r>1

ln
(

lim
h→0

ess inf
x∈Ω

w(x,rh)
w(x,h)

)
ln r

, M(w) = inf
r>1

ln
(

lim
h→0

ess sup
x∈Ω

w(x,rh)
w(x,h)

)
ln r

.

and the following their modifications which differ from (2.11) by the order
of operations sup

r>1
and ess inf

x∈Ω
:

(2.12) m∗(w) = sup
r>1

⎛⎜⎜⎝ess inf
x∈Ω

ln
(

lim
h→0

w(x,rh)
w(x,h)

)
ln r

⎞⎟⎟⎠ ,

(2.13)

M∗(w) = inf
r>1

(
ess sup
x∈Ω

ln W (x, r)
ln r

)
= inf

r>1

⎛⎜⎜⎝ess sup
x∈Ω

ln
(

lim
h→0

w(x,rh)
w(x,h)

)
ln r

⎞⎟⎟⎠ ,

and

(2.14) m∗∗(w) : = ess inf
x∈Ω

m(w, x) = ess inf
x∈Ω

(
lim
r→0

lnW (x, r)
ln r

)
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and

(2.15) M∗∗(w) : = ess sup
x∈Ω

M(w, x) = ess sup
x∈Ω

(
lim
r→∞

lnW (x, r)
ln r

)
Since always sup

r
ess inf

x
≤ ess inf

x
sup
r

, and lim inf
h→0

ess inf
x∈Ω

≤ ess inf
x∈Ω

lim inf
h→0

,

we have

(2.16) m(w) ≤ m∗(w) ≤ m∗∗(w) and M∗∗(w) ≤M∗(w) ≤M(w).

We will mainly deal with the numbers m(w),M(w) and in the sequel give
sufficient conditions on w for the coincidences m(w) = m∗(w) = m∗∗(w)
and M(w) = M∗(w) = M∗∗(w).

Remark 2.4. The number m(w) and m∗(w) may be also represented
as
(2.17)

m(w) = sup
0<r<1

⎛⎜⎜⎝ ln
(

lim
h→0

ess sup
x∈Ω

w(x,rh)
w(x,h)

)
ln r

⎞⎟⎟⎠ = lim
r→0

⎛⎜⎜⎝ ln
(

lim
h→0

ess sup
x∈Ω

w(x,rh)
w(x,h)

)
ln r

⎞⎟⎟⎠ ,

(2.18)

m∗(w) = lim
r→0

⎛⎜⎜⎝ ln
(

ess sup
x∈Ω

lim
h→0

w(x,rh)
w(x,h)

)
ln r

⎞⎟⎟⎠ = lim
r→0

⎛⎜⎜⎝ess inf
x∈Ω

ln
(

lim
h→0

w(x,rh)
w(x,h)

)
ln r

⎞⎟⎟⎠ .

Proof. Indeed, we transform m∗(w) as follows:

m∗(w) = sup
r>1

⎛⎜⎜⎝ ln
(

ess inf
x∈Ω

lim
h→0

w(x,h)
w(x,h/r)

)
ln r

⎞⎟⎟⎠ = sup
0<r<1

⎛⎜⎜⎝ ln
(

ess inf
x∈Ω

lim
h→0

w(x,h)
w(x,rh)

)
ln 1/r

⎞⎟⎟⎠

= sup
0<r<1

⎛⎜⎜⎝ ln
(

ess sup
x∈Ω

lim
h→0

w(x,rh)
w(x,h)

)
ln r

⎞⎟⎟⎠ .

The function ess sup
x∈Ω

lim
h→0

w(x,rh)
w(x,h) is obviously submultiplicative. Hence by

Lemma 2.3 we arrive at (2.18). The arguments for m(w) are similar. �
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2.2. On the coincidence m(w) = m∗(w) = m∗∗(w). In Theorem 3.1
characterizing the generalized Bary-Stechkin class, we use only the numbers
m(w) and m∗(w). However, in applications of these numbers to measuring
lower and upper dimensions of metric measure spaces (see Section 4) the
usage of the number m∗∗(w) seems to be more natural as the lower bound
for local lower dimensions. So there arises an interest for sufficient conditions
on w(x, r) for the coincidence m(w) = m∗(w) = m∗∗(w).

We introduce the following definition.

Definition 2.5. A function w ∈ W(Ω × [0, �]) will be said to satisfy
condition (A), if there exists an ε > 0 such that

(2.19) lim
h→0

ess sup
x∈Ω

w(x, rh)
w(x, h)

= ess sup
x∈Ω

lim
h→0

w(x, rh)
w(x, h)

for all 0 < r < ε and its dilation (2.7) satisfies a similar assumption

(2.20) ess inf
x∈Ω

lim
r→0

lnW (x, r)
ln r

= lim
r→0

ess inf
x∈Ω

lnW (x, r)
ln r

(note that (2.19) and (2.20) always hold with ≥ instead of =).

Lemma 2.6. If a function w(x, r) satisfies condition (A), then m(w) =
m∗(w) = m∗∗(w) .

Proof. In view of (2.19), from (2.17) and (2.18) it follows that
m(w) ≥ m∗(w). Then m(w) = m∗(w) by (2.16). Similarly, by (2.20)
we obtain that m∗(w) = m∗∗(w). �

Of course, conditions (2.19)-(2.20) of Definition 2.5 are nothing else but
just a reformulation of the fact that m(w) = m∗(w) = m∗∗(w). So we
are interested in some easy to check sufficient conditions for w to satisfy
condition (A).

The conditions of the next two lemmas are aimed , in particular, to the
case where w(x, r) = μB(x, r) may be a measure of balls in metric measure
spaces.

Lemma 2.7. Let w(x, r) have a form

w(x, r) = A(x)rψ(x,r),

where A ∈ L∞(Ω) , ess inf |A(x)| > 0 and the function ψ ∈ L∞(Ω × [0, �]) ,
continuous for small 0 < r < δ , satisfies the uniform decay condition

|ψ(x, r) − ψ(x, 0)| ≤ Crε
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for some small ε > 0 . Then m(w, x) = M(w, x) = ψ(x, 0) . If ψ satisfies
also the condition

(2.21) ess inf
x∈Ω

lim
r→0

ψ(x, r) = lim
r→0

ess inf
x∈Ω

ψ(x, r),

then m(w) = m∗(w) = m∗∗(w) = ess inf
x∈Ω

ψ(x, 0) .

Proof. The proof is direct. Indeed,

w(x, rh)
w(x, h)

= rψ(x,rh)hψ(x,rh)−ψ(x,h).

From the uniform decay condition on ψ(x, r) we easily obtain that

(2.22) ess sup
x∈Ω

lim
h→0

hψ(x,rh)−ψ(x,h) = lim
h→0

ess sup
x∈Ω

hψ(x,rh)−ψ(x,h) = 1.

Hence the formulas m(w, x) = M(w, x) = ψ(x, 0) follow.
To check the validity of (2.19), in view of (2.22) it is sufficient to verify

that

lim
h→0

ess sup
x∈Ω

rψ(x,rh) ≤ ess sup
x∈Ω

lim
h→0

rψ(x,rh)

for small r , which holds by (2.21). The validity of (2.20) is obvious since
the dilation W (x, r)of the function w(x, r) = A(x)rψ(x,r) has the form
W (x, r) = rψ(x,0) �

The following lemma provides sufficient conditions when m(w, x) may
be different from M(w, x), which is important in those applications where
lower and upper lower dimensions in measure metric spaces may be different.

Lemma 2.8. Let w(x, r) have a form

w(x, r) = A(x)[ϕ(r)]a(x) ,

where A ∈ L∞(Ω) , ess inf |A(x)| > 0 , ϕ ∈ W([0, �]) and a ∈ L∞(Ω) ,
ess inf a(x) ≥ 0 . Then

(2.23) m(w, x) = a(x)m(ϕ), M(w, x) = a(x)M(ϕ)

and m(w) = m∗(w) = m∗∗(w).

Proof. We have w(x,rh)
w(x,h) =

(
ϕ(rh)
ϕ(h)

)a(x)
. Then

W (x, r) = [Φ(r)]a(x),
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where Φ(r) = lim
h→0

ϕ(rh)
ϕ(h) is the dilation of the function ϕ . Hence the formulas

(2.23) follow. By direct verification it is also easy to check that w(x, r)
satisfies condition (A). Then m(w) = m∗(w) = m∗∗(w) by Lemma 2.6. �

We refer to [20], where there are given various non-trivial examples of
functions ϕ(r) with non-coinciding local indices m(ϕ),M(ϕ).

2.3. On a generalized Zygmund-Bary-Stechkin class Φβγ .

Definition 2.9. ([1], [5]) We say that a function w(x, r) ∈ W belongs to
Zygmund-Bary-Stechkin class Φ in r uniformly with respect to x ∈ Ω, if

(2.24)

r∫
0

w(x, t)
t

dt ≤ cw(x, r) and

�∫
r

w(x, t)
t2

dt ≤ c
w(x, r)
r

where c = c(w) > 0 does not depend on r ∈ (0, �] and x ∈ Ω.
The class Φ of functions w = w(r) was introduced in [1], where conditions

(2.24) were imposed on monotonous functions in W ; we deal with almost
monotonous functions. In the case where functions w do not depend on x ,
the following statement characterizing the class Φ in terms of the indices
m(w) and M(w), was proved in [18], p. 125.

Theorem 2.10. A function w(r) ∈ W([0, �]) is in the Zygmund-Bary-
Stechkin class Φ if and only if

(2.25) 0 < m(w) ≤M(w) < 1,

and for w ∈ Φ and any ε > 0 there exist constants c1 = c1(w, ε) > 0 and
c2 = c2(w, ε) > 0 such that

(2.26) c1r
M(w)+ε ≤ w(r) ≤ c2r

m(w)−ε, 0 ≤ r ≤ �.

Besides this, condition m(w) > 0 is equivalent to the first inequality in
(2.24), while condition M(w) < 1 is equivalent to the second one.

We will obtain a similar statement for the general case treated in this
paper and for the generalized Zygmund-Bary-Stechkin class Φβγ .

Let β ≥ 0, γ > 0. The following classes Φβγ , considered in [27] and [26],
p. 253, generalize the class Φ0

γ , introduced in [1].

Definition 2.11. By Zβ = Zβ(Ω × [0, �]) , we denote the class of
functions w(x, r) ∈ W satisfying the condition
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r∫
0

w(x, t)
t1+β

dt ≤ A
w(x, r)
rβ

, 0 < r ≤ � (Zβ)

and by Zγ the class of functions w(x, r) ∈ W satisfying the condition

�∫
r

w(x, t)
t1+γ

dt ≤ A
w(x, r)
rγ

, 0 < r ≤ � (Zγ)

where A = A(w) > 0 does not depend on r ∈ (0, �] and x ∈ Ω. We denote
Φβγ = Zβ ∩ Zγ .

In the sequel we refer to the above conditions as (Zβ )- and (Zγ )-
conditions.

The class Φβγ is nonempty if and only if β < γ , see Corollary 3.4 below.

Similarly to (2.25), we shall show that the condition β < m(w) ≤M(w) <
γ, with numbers m(w) and M(w) introduced in (2.11) is a characterization
of the ”uniform” class Φβγ(Ω × [0, �]) , see Theorem 3.5.

2.4. Generalized Bary, Lozinskii and Stechkin conditions. Let
β, γ ∈ R

1 . For functions w ∈ W(Ω × [0, �]) we consider the following well
known conditions (see [1], where such conditions were treated for β = 0
and in the case of increasing functions w = w(r) belonging to W([0, �])):

1) Bary type conditions:

∞∑
k=n+1

kβ−1w

(
x,

1
k

)
≤ Anβw

(
x,

1
n

)
, (Bβ)

n∑
k=1

kγ−1w

(
x,

1
k

)
≤ Anγw

(
x,

1
n

)
, (Bγ)

where A = A(w) > 0 does not depend on n ∈ N+ and x ∈ Ω ,

2) Lozinskii type conditions:
there exists C > 1 not depending on x such that

ess inf
x∈Ω

lim
r→0

w(x,Cr)
Cβw(x, r)

> 1, (Lβ)

there exists C > 1 not depending on x such that

ess sup
x∈Ω

lim
r→0

w(x,Cr)
Cγw(x, r)

< 1, (Lγ)
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2a) strong Lozinskii type conditions:
there exists C > 1 and ε > 0 not depending on x such that

ess inf
x∈Ω

inf
0<r<ε

w(x,Cr)
Cβw(x, r)

> 1, (sLβ)

there exists C > 1 and ε > 0 not depending on x such that

ess sup
x∈Ω

sup
0<r<ε

w(x,Cr)
Cγw(x, r)

< 1, (sLγ);

3) Stechkin type conditions:

there exists a δ > 0 such that
w(x, r)
rβ+δ

is uniformly a.i., (Sβ),

there exists a δ > 0 such that
w(x, r)
rγ−δ

is uniformly a.d., (Sγ),

4) P − conditions :
for any θ ∈ (0, 1) there exists an integer p = p(θ) not depending
on x ∈ Ω such that

pβw

(
x,

�

pn

)
< θw

(
x,
�

n

)
, (Pβ)

for any θ ∈ (0, 1) there exists an integer p = p(θ) not depending
on x ∈ Ω such that

θpγw

(
x,

�

pn

)
> w

(
x,
�

n

)
. (Pγ)

3. Characterization of functions w ∈ Φβ
γ (Ω × [0, �]) in terms

of the indices m(w) and M(w)

Theorem 3.1. Let w ∈ W̃(Ω × [0, �]) . Then
I) condition (Lβ) is equivalent to the inequality m∗(w) > β and

condition (sLβ) to the inequality m(w) > β ;

II) conditions (Bβ) , (sLβ) , (Zβ) , (Sβ) , (Pβ) are equivalent to each
other: from the validity of one of them there follows the validity of
all the others;

III) the statement in condition (Sβ) holds with every δ < m(w) − β .
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Proof. We may assume that β ≥ 0, the case of negative β being reduced
to the case of positive β by passing to the function w1(x, t) = taw(x, t) with
a > −β .

I) According to (2.12) we have

m∗(w) > β ⇐⇒ ∃C > 1 :
ln
(

ess inf
x∈Ω

lim inf
h→0

w(x,Ch)
w(x,h)

)
ln C

> β

⇐⇒ ess inf
x∈Ω

lim inf
h→0

w(x,Ch)
w(x, h)

> Cβ ⇐⇒ (Lβ).

Similarly, by (2.11) we obtain

m(w) > β ⇐⇒ ∃C > 1 :
ln
(

lim inf
h→0

ess inf
x∈Ω

w(x,Ch)
w(x,h)

)
ln C

> β

⇐⇒ lim inf
h→0

ess inf
x∈Ω

w(x,Ch)
w(x, h)

> Cβ ⇐⇒ ∃ ε > 0 such that

ess inf
x∈Ω

w(x,Ch)
w(x, h)

> Cβ for 0 < h < ε ⇐⇒ (sLβ).

For part II) we prove the following chain

(Bβ) =⇒ (Zβ) =⇒ (sLβ) =⇒ (Sβ) =⇒ (Pβ) =⇒ (Bβ).

We suppose that β > 0, modifications for the case β = 0 are easy:
power functions should be replaced by the logarithmic function under the
corresponding integration. We take � = 1 without loosing generality.

The implication (Bβ) =⇒ (Zβ). Let n =
(

1
r

)
, 1
n+1 < r ≤ 1

n where
r ∈ (0, 1]. The inequality is valid

(3.1)

r∫
0

w(x, t)
t1+β

dt ≤ Cw

(
c(β)

∞∑
k=n+2

kβ−1w

(
x,

1
k

)
+ d(β)r1−βw(x, r)

)
,

where c(β) = 1 when β ≤ 1 and c(β) = 2β−1
β when β ≥ 1, and d(β) = 2

when β ≤ 1 and d(β) = 2 · 3β−1 when β ≥ 1. Indeed,

r∫
0

w(x, t)
t1+β

dt =
∞∑

k=n+2

1
k∫

1
k+1

w(x, t)
t1+β

dt +

r∫
1

n+2

w(x, t)
t1+β

dt
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≤ Cw

∞∑
k=n+2

w

(
x,

1
k

)
(k + 1)β − kβ

β
+ Cww(x, r)

(n+ 2)β − r−β

β
.

Since (k + 1)β − kβ ≤ ckβ−1 , where c = β when β ≤ 1 and c = 2β − 1
when β ≥ 1, and (n+ 2)β ≤ (1 + 2r)βr−β , we obtain (3.1).

From (3.1) we get

rβ

w(x, r)

r∫
0

w(x, t)
t1+β

dt ≤ Cw

(
c(β)

rβ

w (r)

∞∑
k=n+2

kβ−1w

(
1
k

)
+ d(β)r1−β

)

(3.2) ≤ Cw

⎛⎝c(β)
2βCw

(n+ 1)βw
(

1
n+1

) ∞∑
k=n+2

kβ−1w

(
1
k

)
+ d(β)r

⎞⎠
whence the validity of (Zβ) follows by the validity of (Bβ).

The implication (Zβ) =⇒ (sLβ). Given (Zβ), that is,

(3.3)

r∫
0

w(x, t) dt
t1+β

≤ A
w(x, r)
rβ

, 0 < r ≤ 1,

we shall show that condition (sLβ), that is, the condition

(3.4) ess inf
x∈Ω

inf
0<r<ε0

w(x,Cr)
w(x, r)

> Cβ

holds with C = 2e2AM (> 2) and ε0 = 1
2e

−2AM , where M = β2βACw

2β−1 .
First we shall show that

(3.5)
w(x, ξ)
ξβ

≤M
w(x, r)
rβ

,

for all ξ ∈ (0, 1), r ∈ (0, 1) such that ξ
r ≤ 1

2 (”ersatz” of the almost

monotonicity). Indeed, from (3.3) it follows that
r∫
ξ

w(x,t)dt
t1+β ≤ Aw(x,r)

rβ

whence w(x,ξ)
Cw

r∫
ξ

dt
t1+β ≤ Aw(x,r)

rβ . Hence w(x,ξ)
ξβ · 1−( ξ

r )β

β ≤ ACw
w(x,r)
rβ which

yields (3.5) since ξ
r ≤ 1

2 .
Now the key moment is that we repeat the same idea once more. For all

ξ > 2η from (3.3) we obtain
ξ∫

2η

w(x,t) dt
t1+β ≤ Aw(x,ξ)

ξβ . Then 1
M

w(x,η)
ηβ

ξ∫
2η

dt
t ≤
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Aw(x,ξ)
ξβ by (3.5) or

(3.6)
w(x, η)
ηβ

≤ AM

ln ξ
2η

· w(x, ξ)
ξβ

.

We choose now a relation between η and ξ in the following way: ξ
η = C =

2e2AM . Then AM

ln ξ
2η

= 1
2 and from (3.6) we obtain w(x,η)

ηβ ≤ 1
2
w(x,Cη)
(Cη)β

for η sufficiently small (0 < η < 1
2e

−2AM ) and all x . Therefore,
w(x,Cη) ≥ 2Cβw(x, η). Hence lim inf

η→0
ess inf
x∈Ω

w(x,Cη)
w(x,η) ≥ 2Cβ > Cβ , that

is, (sLβ ) has been obtained.

The implication (sLβ) =⇒ (Sβ). Let (sLβ) be valid: there exists a
C > 1 such that

(3.7) ν = ν(C, ε) := ess inf
x∈Ω

inf
0<r<ε

w(x,Cr)
Cβw(x, r)

> 1.

We shall show that the function w(x,r)
rβ+δ with every

(3.8) δ < m(w)

is uniformly a.i. in r .
Let 0 < ε1 < ν − 1. From (3.7) it follows that for every such ε there

exists an r1 not depending on x such that

(3.9)
w(x,Cr)
Cβw(x, r)

≥ ν − ε1 (> 1) for 0 < r ≤ r1.

We choose δ = δ(C, ε, ε1) = ln (ν−ε1)
ln C > 0 and show that w(x)

xβ+δ is almost
increasing under this choice of δ . With this δ , inequality (3.9) takes the
form

(3.10)
w(x, r)
rβ+δ

≤ w(x,Cr)
(Cr)β+δ

, 0 < r ≤ r1.

Now, for arbitrary 0 < ρ < r ≤ r1 we choose an integer N by the condition
CNρ ≤ r < CN+1ρ

(
N =

(
logC

r
ρ

))
. Then by (3.10) we get

w(x, ρ)
ρβ+δ

≤ w(x,Cρ)
(Cρ)β+δ

≤ · · · ≤ w(x,CNρ)
(CNρ)β+δ

.
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Since w(x, r) is a.i., we obtain
(3.11)
w(x, ρ)
ρβ+δ

≤ CwC
β+δ w(x, r)

(CN+1ρ)β+δ
≤ CwC

β+δw(x, r)
rβ+δ

= CwC
β(ν − ε)

w(x, r)
rβ+δ

.

Thus w(x,r)
rβ+δ is almost increasing in r on [0, r1] . Since any positive function

bounded from below is a.i, from condition (2.1) it follows that w(x,r)
rβ+δ is

almost increasing on [0, �] . This fact has been proved for any δ such that

(3.12) 0 < δ =
ln (ν − ε1)

ln C
=

ln ν
ln C

− ε2

with an arbitrarily small ε2 . This means that one may take any δ satisfying
(3.12) with an arbitrary C > 1 such that the inequality ν = ν(C, ε) > 1 in
(3.7) is valid, that is,

(3.13) δ < sup
C>1

ln ν(C, ε)
ln C

= sup
C>1

ln
(

ess inf
x∈Ω

inf
0<r<ε

w(x,Cr)
Cβw(x,r)

)
ln C

.

Since ε > 0 is arbitrarily small, the right hand side in (3.13) may be
arbitrarily close to m(w) in case m(w) <∞ . If m(w) = ∞, then δ may be
taken arbitrarily large. In both cases one may take an arbitrary δ < m(w).

The implication (Sβ) =⇒ (Pβ). Let w(x,r)
rβ+δ be almost increasing for

some δ > 0: w(x,r)
rβ+δ ≤ Bw(x,ρ)

ρβ+δ for 0 < r ≤ ρ ≤ 1. We here choose r = 1
pn

and ρ = 1
n and obtain pβ+δw

(
1
pn

)
≤ Bw

(
1
n

)
, n = 1, 2, 3, ... where

the integer p is to be chosen. Given an arbitrary θ ∈ (0, 1), we choose

p = p(θ) >
(
B
θ

) 1
δ so that pδ > B

θ and then pβw
(

1
pn

)
< θw

(
1
n

)
.

The implication (Pβ) =⇒ (Bβ). We have

∞∑
k=n+1

kβ−1w

(
x,

1
k

)
=

∞∑
s=0

ps+1n∑
k=psn+1

kβ−1w

(
x,

1
k

)

for any choice of the integer p . Since the function w(x, r) is almost
increasing in r , we then get

∞∑
k=n+1

kβ−1w

(
x,

1
k

)
≤ Cw

∞∑
s=0

w

(
x,

1
psn

) ps+1n∑
k=psn+1

kβ−1.
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Obviously,
n∑

k=m

kβ−1 =
n∑

k=m

kβ−1
k∫

k−1

dx ≤ c
n∑

k=m

k∫
k−1

xβ−1 dx with some

constant c > 0 for all k ≥ 2 (c = 1 when β ≤ 1). Therefore,
n∑

k=m

kβ−1 ≤ c
∫ n
m−1 x

β−1 = cn
β−(m−1)β

β and then

∞∑
k=n+1

kβ−1w

(
x,

1
k

)
≤ cCw

nβ(pβ − 1)
β

∞∑
s=0

pβsw

(
x,

1
psn

)
.

By condition (Pβ), for any θ ∈ (0, 1) we can choose an integer p such

that w
(
x, 1

psn

)
≤
(
θ
pβ

)s
w
(
x, 1

n

)
. Consequently,

∞∑
k=n+1

kβ−1w

(
x,

1
k

)
≤ c1n

βw

(
x,

1
n

) ∞∑
s=0

θs,

with c1 = Cw

β (pβ − 1), that is, (Bβ) holds.

III). This part was already proved under the passage (sLβ) =⇒ (Sβ),
see (3.8). �

Theorem 3.2. Let w ∈ W̃(Ω × [0, �]) . Then

I) condition (Lγ) is equivalent to the inequality M∗(w) < γ and
condition (sLγ) to the inequality M(w) < γ ;

II) conditions (Bγ) , (sLγ) , (Zγ) , (Sγ) , (Pγ) are equivalent to each
other: from the validity of one of them there follows the validity of
all the others;

III) the statement in condition (Sγ) holds with every δ < γ −M(w) .

The proof of Theorem 3.2 is symmetrical to that of Theorem 3.1 and
thereby is omitted.

Remark 3.3. Statement II) of Theorems 3.1 and 3.2 was proved in
[1] in the case when β = 0 and functions w = w(r) were monotonous.
A modification of the proof from [1] adjusted for the case of β ≥ 0 and
almost increasing functions w(r) was given in [10]. For the case of functions
w(x, r) depending on a parameter x belonging to a metric measure space,
we followed mainly the arguments of the proof in [10], with modifications
everywhere, where the uniformness of various estimates with respect to x

was needed. Theorems 3.1 and 3.2 for almost increasing functions w = w(r)
were earlier proved for β = 0 and γ = 1 in [18].
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Corollary 3.4. The class Φβγ = Φβγ(Ω×[0, �]) , β ≥ 0, γ > 0 is non-empty
if and only if β < γ .

Proof. Indeed, from statements I)-II) of Theorems 3.1 and 3.2 it follows
that if w ∈ Φβγ , then m(w) > β and M(w) < γ . But m(w) ≤ M(w), so
that β < γ . Inversely, if β < γ , then the power function w = ra with
β < a < γ obviously belongs to Φβγ . �

Theorem 3.5. Let w ∈ W and 0 ≤ β < γ <∞ . Then

(3.14) w ∈ Φβγ (Ω × [0, �]) ⇐⇒ β < m(w) ≤M(w) < γ

and for w ∈ Φβγ and any ε > 0 there exist constants c1 = c1(ε) > 0 and
c2 = c2(ε) > 0 not depending on x ∈ Ω such that

(3.15) c1r
M(w)+ε ≤ w(x, r) ≤ c2r

m(w)−ε, 0 ≤ r ≤ �.

Proof. Indeed, the equivalence in (3.14) follows from statement III) and
I) of Theorems 3.1 and 3.2.

To get at inequalities (3.15), it suffices to observe that the functions

w(x, r)
rm(w)−ε and

w(x, r)
rM(w)+ε

are uniformly almost increasing and decreasing, respectively, for any ε > 0
according to statement III) of Theorems 3.1 and 3.2, and any uniformly
almost increasing or almost decreasing function is uniformly bounded from
above or from below, respectively. �

The following theorem characterizes the conditions (Sβ) and (Sγ) in
terms of the indices m(w) and M(w).

Theorem 3.6. For any function w ∈ Zβ its lower index bound m(w)
may be calculated by the formula

(3.16) m(w) = sup
{
δ > β :

w(x, r)
rδ

is uniformly a.i.
}
,

while for any w ∈ Zγ its upper index bound M(w) is calculated by the
formula

(3.17) M(w) = inf
{
δ ∈ (0, γ) :

w(x, r)
rδ

is uniformly a.d.
}
.
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Proof. Let a = sup
{
δ > β : w(x,r)

rδ is a.i.
}

. By statement III) of
Theorem 3.1, m(w) ≤ a . We have to prove that m(w) = a . Suppose
to the contrary that m(w) < a . Then the function w1(x, r) = w(x,r)

rm(w)

is also almost increasing and w1(x, 0) = 0 since the function w(x,r)
rm(w)+δ is

also uniformly almost increasing with 0 < δ < a − m(w). Therefore,
w1 ∈ W(Ω× [0, �]) . The function w1(x, r) satisfies condition S

0 = S
β
∣∣
β=0

.
Then, by statement I) of Theorem 3.1, m(w1) > 0, which is impossible
since m(w1) = m(w) −m(w) = 0.

Similarly, formula (3.17) is obtained. �

4. Applications

The results presented in Section 3 may be used in the study of the
mapping properties of singular and potential operators in the generalized
Hölder spaces Hω(x,·)(X), with variable characteristic, where X in general
may be a metric measure space, defined by the norm

‖f‖Hω(x,·)(X) = ‖f‖C(X) + sup
x∈X

sup
0<h<�

ω(f, x, h)
ω(x, h)

, � = diamX,

where by

(4.1) ω(f, x, h) = sup
y∈X:

|x−y|<h
|f(x) − f(y)|

we denote the local continuity modulus of a function f at the point x , and
ω(x, h) stands for the dominant of these moduli, defining the Hölder space
(without fear of confusion we use the same letter ω for this dominant). Note
that such generalized Hölder spaces with variable dominant of the modulus
of continuity were studied in the case where X = Sn−1 in [30], [31].

We do not consider such applications in this paper, but dwell on
applications of the indices depending on parameter to the problem of
measuring local dimensions in metric measure spaces and to characterization
of some integral inequalities involving measures of balls in metric measure
spaces. Note that in what follows metric measure spaces are not assumed
to satisfy the doubling condition.

4.1. Local variable dimensions. Let (X, d, μ) be a metric measure space
with quasidistance d : X ×X → R1 satisfying the standard assumptions:

d(x, y) ≥ 0, d(x, y) = 0 ⇐⇒ x = y, d(x, y) = d(y, x),
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(4.2) d(x, y) ≤ a[d(x, z) + d(z, y)], a ≥ 1,

and a non-negative measure μ , and let B(x, r) = {y ∈ X : d(x, y) < r} .
We refer to [8], [4] for basics on metric measure spaces. In the particular
case where for every point x ∈ X there exists a positive number s = s(x)
such that

(4.3) C1r
s(x)+ε ≤ μB(x, r) ≤ C2r

s(x)−ε,

for every positive ε > 0, where the constants C1 > 0, C2 > 0 in general
depend on x and ε , then the space X may be said to have a local dimension
at a point x calculated by the formula

dimX(x) = lim
r→0

lnμB(x, r)
ln r

.

In the general case, the lower and upper local dimensions

(4.4) dimX(x) = lim
r→0

lnμB(x, r)
ln r

, dimX(x) = lim
r→0

lnμB(x, r)
ln r

may be attributed to a point x . We refer to [3] (p. 25), [6], [7], where such
local dimensions were introduced and/or used. Formulas (4.4) reflect the
case where instead of (4.3) one has

(4.5) C1r
dimX (x)+ε ≤ μB(x, r) ≤ C2r

dimX (x)−ε as r → 0,

for arbitrary ε > 0 (with C1 and C2 in general depending not only on x ,
but on ε as well).

Comparison with property (3.15) of almost monotonic functions allows
us to suggest new formulas for local lower and upper dimensions of metric
measure spaces, based the technique of the lower and upper indices adjusted
for nonnegative monotonic (or almost monotonic) functions and presented
in Section 2-3. Namely, the lower and upper local dimensions at a point x
may be introduced as lower and upper indices m(μB(x, r)), M(μB(x, r))
of the measure of the ball B(x, r). In the case when X is bounded we
introduce the local lower and upper dimensions in the form

(4.6) dimX(x) := m(μBx) = sup
r>1

ln
(

lim
t→0

μB(x,rt)
μB(x,t)

)
ln r

,
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(4.7) dimX(x) := M(μBx) = inf
r>1

ln
(
lim
t→0

μB(x,rt)
μB(x,t)

)
ln r

,

According to (2.8) and Lemma 2.3, we can also write the dimensions
dimX(x) and dimX(x) in the form

(4.8) dimX(x) = sup
0<r<1

ln M(x, r)
ln r

= lim
r→0

ln M(x, r)
ln r

and

(4.9) dimX(x) = inf
r>1

ln M(x, r)
ln r

= lim
r→∞

ln M(x, r)
ln r

,

where M(x, r) = lim
t→0

μB(x,rt)
μB(x,t) is a submultiplicative function: M(x, r1r2) ≤

M(x, r1)M(x, r2).
An advantage of the usage of these local dimensions in comparison

with dimensions (4.4) is in the fact that just in terms of the dimensions
dimX(x) and dimX(x) it is possible to characterize some integral inequalities
involving the measures μB(x, r), which appear when one considers the
Muckenhoupt type Ap -condition on metric measure spaces, see Theorem
4.2.

The following statement is obvious.

Lemma 4.1. The condition

lim
t→0

μB(x, rt)
μB(x, t)

≤ μB(x, r)

at a point x ∈ X for 0 < r < ε with some ε > 0 implies dimX(x) ≤
dimX(x) and the inverse inequality implies dimX(x) ≥ dimX(x) and
a similar statement with lim

t→0
replaced by lim

t→0
holds for dimX(x) and

dimX(x) .

4.2. On lower and upper dimensions of a measure metric space.
Basing on the numbers introduced in (2.11),(2.12) and (2.14), we may define
the following versions for the notion of the lower dimension of the space
(X, d, μ):
(4.10)

dim(X) = sup
r>1

ln
(

lim
h→0

ess inf
x∈Ω

μB(x,rh)
μB(x,h)

)
ln r

= lim
r→0

⎛⎜⎜⎝ ln
(

lim
h→0

ess sup
x∈Ω

μB(x,rh)
μB(x,h)

)
ln r

⎞⎟⎟⎠ ,
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(4.11)

dim∗(X) = sup
r>1

⎛⎜⎜⎝ess inf
x∈Ω

ln
(

lim
h→0

μB(x,rh)
μB(x,h)

)
ln r

⎞⎟⎟⎠ = lim
r→0

⎛⎜⎜⎝ess inf
x∈Ω

ln
(

lim
h→0

μB(x,rh)
μB(x,h)

)
ln r

⎞⎟⎟⎠ ,

(4.12) dim∗∗(X) = ess inf
x∈X

dimX(x) = ess inf
x∈Ω

sup
r>1

ln
(

lim
h→0

μB(x,rh)
μB(x,h)

)
ln r

.

Similarly one may write down a similar version for the upper dimensions:

(4.13) dim(X) := inf
r>1

ln
(

lim
t→0

ess inf
x∈Ω

μB(x,rt)
μB(x,t)

)
ln r

and analogously for dim ∗(X) and dim ∗∗(X) = ess inf
x∈X

dimX(x), basing on

definitions in (2.11), (2.13) and (2.15).

4.3. On some integral inequalities involving the measure μB(x, r).
In the most of the statements in the sequel we assume that the measure μ
satisfies the following assumptions:
i) μ is non-atomic;
ii) the measures μB(x, r) of balls are continuous in r for every x ∈ X ,
iii) the condition

(4.14) ess inf
x∈X

μB(x, r) > 0 for every r > 0

is fulfilled.
As is known, condition (4.14) is always fulfilled when X is bounded and

the measure μ is doubling, which follows from the property

(4.15)
μB(x,R)
μB(x, r)

≤ C

(
R

r

)log2 Cμ

, 0 < r ≤ R <∞

of doubling measures, where Cμ is the constant from the doubling condition.
From items I)-II) of Theorems 3.1 and 3.2 we derive the following

statement.

Theorem 4.2. Let 0 < � <∞ , β ≥ 0, γ > 0 and the measure μ satisfy
assumptions i)-iii). The inequalities
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h∫
0

μB(x, r)
r1+β

dr ≤ C
μB(x, h)

hβ
,

�∫
h

μB(x, r)
r1+γ

dt ≤ C
μB(x, h)

hγ
, 0 < h ≤ �,

with constants C1 > 0, C2 > 0 not depending on h and x hold if and only
if

dim(X) > β and dim(X) < γ,

respectively.
In applications to weighted estimations of maximal, singular and potential

operators on metric measure spaces the following more general integral
inequalities for radial weights w[d(x, x0)] and measures μB(x, r)

(4.16)

h∫
0

μB(x, r)u(r)
r

dr ≤ Cu(h)μB(x, h),

(4.17)

h∫
0

μB(x, r)
rv(r)

dr ≤ C
μB(x, h)
v(h)

are of importance, where u, v are almost increasing functions and 0 < h ≤
� < ∞ . (For simplicity, we do not take functions u and v depending on
the parameter x). The next theorem provides sufficient conditions for their
validity in terms of the indices of the weight and the lower dimension of the
space.

Theorem 4.3. Let u, v ∈ W̃([0, �]) . Under assumptions i)-iii), the
conditions

(4.18) m(u) > −dim(X) and M(v) < dim(X)

are sufficient for inequalities (4.16)-(4.17) to hold, respectively.
Proof. It suffices to apply Theorem 3.1 and make use of the following

properties of the index numbers

(4.19) m(w1w2) ≥ m(w1) +m(w2), m

(
1
v

)
= −M(v)

of functions w1, w2, v ∈ W̃ . �
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4.4. The case of unbounded metric measure spaces. When X is
unbounded, conditions (4.18) with � = ∞ do not guarantee the validity of
inequalities (4.16)-(4.17): an information about the behavior of functions
u, v and the measures μB(x, r) as r → ∞ , is also needed. Characteristic of
the measures μB(x, r), required for this goal, may be introduced in terms
similar to the above introduced dimensions:

(4.20) dimX(∞) = sup
0<r<1

ln M∞(x, r)
ln r

= lim
r→0

ln M∞(x, r)
ln r

,

and

(4.21) dimX(∞) = inf
r>1

ln M∞(x, r)
ln r

= lim
r→∞

ln M∞(x, r)
ln r

,

where

M∞(x, r) = lim
t→∞

μB(x, rt)
μB(x, t)

.

The numbers dimX(∞), dimX(∞) as introduced in (4.20)-(4.21) do
not depend on x ∈ X , which is proved in the following lemma. Note that
they are not limits of dimensions dimX(x) and dimX(x) or dimensions
dimX(x), dimX(x) as x → ∞ : simple examples show that these limits
may not exist, while dimX(∞), dimX(∞) always exist as finite or infinite
number, and when those limits exist they do not necessarily coincide with
dimX(∞),dimX(∞).

Lemma 4.4. Let (X, d, μ) be an unbounded metric measure space. Then
the functions

lim
r→∞

ln M∞(x, r)
ln r

, lim
r→0

ln M∞(x, r)
ln r

do not depend on x. In the case where the measure μ satisfies also
assumption ii) and d(x, y) is a distance, that is, a = 1 in (4.2), then
even the function M∞(x, r) does not depend on x.

Proof. Let x, y be arbitrary points of X and let t > ad(x, y). By the
triangle inequality (4.2) we have

B(x, r) ⊂ B(y, ar + ad(x, y))

and

B(x, t) ⊃ B

(
y,
t

a
− d(x, y)

)
, t > ad(x, y).

Then
μB(x, rt)
μB(x, t)

≤ μB(y, art+ ad(x, y))
μB
(
y, ta − d(x, y)

) for t > ad(x, y)
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and consequently

lim
t→∞

μB(x, rt)
μB(x, t)

≤ lim
τ→∞

μB(y, a2rτ + k)
μB(y, τ)

, τ =
t

a
− d(x, y),

where k = a(ar + 1)d(x, y). For every r > 0 and an arbitrary positive
number ε > 0 we have a2rτ + k < a2r(1 + ε)τ for large τ > ra+1

arε d(x, y).
Therefore

lim
t→∞

μB(x, rt)
μB(x, t)

≤ lim
τ→∞

μB(y, (r + ε)τ)
μB(y, τ)

,

that is,

(4.22) M(x, r) ≤ M(y, a2r(1 + ε)).

Hence

lim
r→∞

ln M∞(x, r)
ln r

≤ lim
r→∞

ln M∞(y, a2r(1 + ε))
ln r

= lim
r→∞

ln M∞(y, r)
ln r − ln(a2(1 + ε))

,

whence

lim
r→∞

ln M∞(x, r)
ln r

≤ lim
r→∞

ln M∞(y, r)
ln r

and then lim
r→∞

ln M∞(x,r)
ln r = lim

r→∞
ln M∞(y,r)

ln r by the arbitrariness of x and
y . Similarly, the coincidence of the limits as r → 0 is proved.

In the case where a = 1 and the measures μB(x, r) are continuous in r ,
the last statement of the lemma follows from (4.22). �

We dwell on an extension of Theorem 4.3 to unbounded spaces X for the
case of inequality (4.17). To this end, we introduce one more characteristic
of the space X at infinity:

(4.23) dim′
X(∞) = sup

0<r<1

ln
(

lim
t→∞ ess sup

x∈Ω

μB(x,rt)
μB(x,t)

)
ln r

Since lim
t→∞ ess sup

x∈Ω
≥ ess sup

x∈Ω
lim
t→∞ , we have

dim′
X(∞) ≤ dimX(∞).

For many ”good” metric measure spaces one has

dim′
X(∞) = dimX(∞)
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for instance, for spaces with the measures of balls μB(x, r) behaving as
r → ∞ similarly to functions w(x, r) in Lemmas 2.7 and 2.8 as r → 0.

We also introduce the indices for functions w on an infinite interval,
similarly to (2.5)-(2.8), (2.10); for simplicity, in this case we take functions
w not depending on a parameter x ∈ X :

(4.24) m∞(w) = sup
r>1

ln
(

lim
t→∞

w(rt)
w(t)

)
ln r

= lim
r→0

ln
(

lim
t→∞

w(rt)
w(t)

)
ln r

,

(4.25) M∞(w) = inf
r>1

ln
(

lim
t→∞

w(rt)
w(t)

)
ln r

= lim
r→∞

ln
(

lim
t→∞

w(rt)
w(t)

)
ln r

.

The following theorem provides sufficient conditions for the validity of
inequality (4.17), in terms of the indices (they are necessary in the case
where v(r) is a power function).

Theorem 4.5. Let v ∈ W̃([0,∞)) . Under assumptions i)-iii), the
conditions

(4.26) M(v) < dim(X) and M∞(v) < dim′
X(∞),

are sufficient for the validity of (4.17).
Proof. By Theorem 4.3 and the first condition in (4.26), inequality (4.17)

holds for any finite interval 0 < r < N . To guarantee that the constant
C in (4.17) does not depend on N , we have to use properties of v(r) and
μB(x, r) at infinity. We may consider the values r ≥ 2. It suffices to prove
that

(4.27)

r∫
1

μB(x, t)
tv(t)

dt ≤ C
μB(x, r)
v(r)

as r → ∞ . With the change of variables t → 1
t , ρ = 1

r , inequality (4.27)
takes the form

1∫
r

μB
(
x, 1

t

)
tv
(

1
t

) dt ≤ C
μB
(
x, 1

r

)
v
(

1
r

) .

By Theorem 3.2, the validity of the latter inequality with the uniform
constant C not depending on x and r , is equivalent to the numerical

inequality M(w) < 0 for the index (2.11) of the function w(x, r) =
μB(x, 1r )
v( 1

r ) .
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After easy calculations, this numerical inequality takes the form

(4.28) inf
r>1

ln
(

lim
t→∞ ess sup

x∈Ω

μB(x, t
r )

μB(x,t)
v(t)

v( t
r )

)
ln r

< 0,

this being a necessary and sufficient condition for the validity of (4.27).
Since lim

t→∞f(t)g(t) ≤ lim
t→∞f(t) lim

t→∞g(t), we obtain that the inequality

inf
r>1

ln
(

lim
t→∞ ess sup

x∈Ω

μB(x, t
r )

μB(x,t)

)
ln r

+M∞(v) < 0,

is sufficient for the validity of (4.28). It is easy to see that the last inequality
is nothing else but the inequality M∞(v) < dim′

X(∞), which holds by the
assumption. �
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Theory, 56 (2006), 257–283.

[16] B. Ross and S.G. Samko, Fractional integration operator of variable
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Birkhäuser, Proc. of the conference IWOTA, Newcastle, July 2004,
171 (2006), 323–347.

[24] N.G. Samko, Singular integral operators in weighted spaces of
continuous functions with non-equilibrated continuity modulus, Math.
Nachr., 279 (2006), 1359–1375.

[25] S.G. Samko, On a progress in the theory of Lebesgue spaces with
variable exponent: maximal and singular operators, Integr. Transf. and
Spec. Funct., 16 (2005), 461–482.

[26] S.G. Samko, A.A. Kilbas, and O.I. Marichev, Fractional Integrals
and Derivatives. Theory and Applications. London-New-York: Gordon
& Breach. Sci. Publ., (Russian edition - Fractional Integrals and
Derivatives and some of their Applications, Minsk: Nauka i Tekhnika,
1987.), 1993.

[27] S.G. Samko and Kh.M. Murdaev, Weighted Zygmund estimates for
fractional differentiation and integration, and their applications, Trudy
Matem. Inst. Steklov, 180 (1987), 197–198. translated in Proc. Steklov
Inst. Math., AMS (1989), 233–235.

[28] B.G. Vakulov, Spherical operators of potential type in weighted Hölder
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