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Abstract. Distance formulae from Bloch functions to some Mo6bius invariant
function spaces in the unit ball of C" such as Qs spaces, little Bloch space Bo
and Besov spaces B, are given.

1. Introduction

Let B be the unit ball of C* with boundary S, let dv denote the
Lebesgue measure on B such that v(B) = 1 and let do be the rotation
invariant positive normalized measure on S, i.e. o(S) = 1. Let dA(z) =
(1 — |2/2)~*Vdy(z). Then dX is Mdbius invariant. For o > —1, the
weighted Lebesgue measure dv, is defined by

dva(2) = ca(l — |2|2)¥dv(2),

where
_In+a+1)

Co ™ nll(a+ 1)
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is a normalizing constant such that dv, is a probability measure on B, i.e.
Vo(B) =1.

Let H(B) be the class of all holomorphic functions in the unit ball
B, and let Aut(B) be the group of biholomorphic automorphisms of B.
For a € B, let ¢, € Aut(B) denote the Mobius transformation of B
which satisfies ¢,(0) = a, @.(a) = 0 and ¢, o p, = I. Further,

1—|pa(2)|> = % for all z € B, where (z,a) is the usual inner
product on C™.
For f € H(B), Vf = (g—i,-~ ,(ri{L) is called its complex gradient,

Rf(z) = Ezj%(z) is called its radial derivative, and Vf(z) = V(f o
j J

©:)(0) is called its Mobius invariant gradient. It is known that (1 —
[2P)Rf(2)] < (1= 2|V f(2)] < [Vf(2)] (cf. [8, Lemma 2.14]).

The invariant Green’s function G(z,a) of the unit ball B is defined by
G(z,a) = g(pa(2)) (cf. [5]), where

nt1 ! 2\n—1;,—2
= 1 —¢2)n—tg=2n gy,
o) = 5= [a-#)

In [3], the holomorphic function spaces (s associated with the Green’s
function are introduced and studied. For s > 0, Q; is defined by

Q. = {f cH(B) s [ [FFPGE0) ) < oo} |

a€EB

and its subspace Qs is defined by

= : lim V(2)|2G(z,a)°d\(z) =0 ¢ .
Quo={reB): i, [ [F7)P6E0r 0 =0}

The Bloch space on B, denoted by B, is the class of all functions
f € H(B), which satisfy

I £llh = sup(1 — |2]*)|Rf(2)] < oo.
zEB

The little Bloch space By on B is a subspace of B, and f € By if and only
if

lim (1 - |2%)[Rf(2)| = 0.

|z|—1
Let

Ifll2 = sup(1 = [zP)V () I flls = sup V()]
z€EB z€B
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It is known that the above three semi-norms are equivalent (cf. [8]). Define
1£lls = 1F O+ {11l = [£(0)] + sup(1 - [2[*)IRf(2)]-
z

Then B is a Banach space with the norm || - ||5.
For @« > —1 and p > 0, the weighted Bergman space AP consists of
holomorphic functions f satisfying

o= ( [, |f<z>|pdua<z>)’l’ <o

For a multi-index m = (mj, ma,--- ,my,) with non-negative integers, we
will employ the notation

omf . omly

9zm 9™ -z

where |m| =mq1+ma+---+m,. For 0 < p < co, the Besov space B, (see
[8]) is the class of holomorphic functions f in B such that the functions

(1YY

(2), |m|=N

all belong to LP(B,d)\), where N is any integer satisfying pN > n.
For two real parameters o and ¢ with the property that neither n + «
[e.e]

nor n+ « +t is a negative integer, if f(z) = > fir(z) is the homogeneous

k=0
expansion of f, an invertible operator R*?! : H(B) — H(B) is defined in
[8] by

F'n+1l4+a)’(n+1+a+k+t)

R()ct
uc I‘n+1+a+t)F(n+1+a+k)

fr(2).

For ( € S and § > 0, let B(¢,0) ={z € B: |1 —(2,()] < d}. Fora
positive Borel measure p on B, if

sup{ (5@5)) CES(5>O}

we call p a p-Carleson measure; if

L aBC)
6—0 onp

for ¢ € S uniformly, we call u a vanishing p-Carleson measure.
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The purpose of this paper is to drive distance formulae from Bloch
functions to some Mobius invariant function spaces on the unit ball which
generalize the results of [7]. R. Zhao, in [7], takes advantage of the second
inequality in Lemma 2.5 [2] while we use the third inequality. In fact, the
second inequality is not feasible in our multidimensional case.

Throughout this paper, C denotes a positive constant and not necessarily
the same at each occurrence.

2. Some Lemmas

We need the following lemmas.

Lemma 1 ([2]). Let s > —1. If r,t > s+ n+1, then for all a,w € B,
we have

(1 —[2[*)*dv(z)
|1— (z,w)["[1 = (z,a)"
C n C
(1 = w)r=e 7 L= (g, w)|t (1= faf?) e L = (g, w)|”

Lemma 2 ([8, Theorem 1.12]). Suppose ¢ is real and t > —1. Then the

integrals
_ do(¢)
I“<Z)‘/s|1—<z,<>|"+c’ eh

and
(1= |w]?)*dv(w)
b L= (2, w[rFoeee”

Jc’t(Z) = z € B,

have the following asymptotic properties:

(1) If c< 0, then I. and J.4(z) are both bounded in B;
(2) If c=0, then

I(z) ~ Jet(z) ~

10g1—7|2;|2 as |Z| — ].,

(3) If ¢ >0, then
Io(2) ~ Jet(z) ~ (1 — |z|2)*C as |z| — 1.

Lemma 3 ([1,6]). p is an s-Carleson measure if and only if

sup/ <1_7|a|2>nsdﬂ(w) < 0o
acBJB |1 - <w7a>|2 ’
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and 1 is a vanishing s-Carleson measure if and only if

i 1—a|? )ns
lim / (7 du(w) = 0.
o o\ T wap) @

Lemma 4 ([1, Theorem 1,2]). Suppose n > 1 and "1 < s < 1, then
f € Qs if and only if |Rf(2)|>(1—|2]?)"**2d\(2) is an s-Carleson measure;
f € Qs if and only if |Rf(2)]2(1—|z|*)"T2d\(2) is a vanishing s-Carleson

measure.
Lemma 5 ([4, Proposition 5.1.2]). The triangle inequality
1= a0 < 1= (a,b)* +[1 = (b,)[*
holds for all a,b,c € B.

Lemma 6. If s >0 and t —ns >0 , and p is a vanishing s-Carleson
measure on B, then

fn [ (L=l = 2Py du(z)

= 0.
lal—1/p 11— (z,a)t*!

Proof. Because a vanishing s-Carleson measure must be an s-Carleson
measure, we have u(B((,r)) < Ar™*, A > 0, for (¢ € S and r > 0.
Meanwhile, for € > 0, there exists an ro € (0, 1) such that u(B(¢,r)) < er™s
for (e S and 0 <r <rg. For j =1,2,---, ( € S and r > 0, denote
Ejc(r) = B(C 2 H )\ B(C, 277).

Let a € B, r=1—|a|] <19/4 and ¢ = a/|a|. Then,

(2.1) 11— (a0 =1—a| =~

There exists a positive integer m such that 2m+lr < rq < 2m+2p It is
obvious that m > 1 and m — oo as |a| — 1. Then,

(2:2) nw(B(¢,2r)) < e(2r)™,
(2.3) | |
p(Bjc(r) <e(@lr)™ if j<m, u(Bjc(r) <A™ if j>m,

(24)  (1-|zP)<2(1—2)) <201 —(2,Q)| <4r if z€ B((2r),

(2.5) (1—12)%) <2(1—|z|) €211 = (2,0)| < 27T2r if z€ Ejc(r),
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and, by Lemma 5, the definition of Ej;(r) and (2.1),
(2.6) A A
1{z,a)F > 1, QP 1= (@, )| > @F-1)r 225 v if z € ().

Thus, by (2.2)- (2.6),

_a2 _22t7ns
JALS I e
B

1= (z,a)|"*

= + / +
/B<<72r> 2 Ej ¢(r)

=1

oo

[ ez,
j=m41” Bic(r) 1= (z,a)[**

2 (4r)) TS (20) e O 2p(20F 2 )t s (i L) ns
o 2r(@n)" e (2r) 'y ( ) )

- pt+l (29—4r)t+l
j=1
. , .
2 2]+27, t—mns 2j+17,. ns A
LS @
(27— 47)iH1
j=m+1
| A
<C E+A‘Z % =C<€+2—m).
j=m+1
Since m — oo as |a] — 1, we have
(1 —a)@ — J2[*)"
d <C
J, i e <
if |a| is close to 1 sufficiently. This completes the proof. O

Lemma 7 ([8, Theorem 2.2]). If a > —1 and f € AL, then

o= [ et

(- w)) e

for all z € B.

Lemma 8 ([8, Lemma 6.3]). Suppose 0 < p < 0o, n+a is not a negative
integer, N is a positive integer satisfying Np > n, and f is holomorphic in
B. Then f € B, if and only if the function

Fn(z) = (1= )Y R¥Yf(2)

belongs to LP(B,d\).
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3. Results and Proofs

Let A be a subspace of B and f € B. We denote the distance in B of
f to A by dg(f,A). For f € H(B) and € > 0, let Q.(f) = {z € B :
IRf(2)|(1—|z*) > €} and let xq_(y) be the characteristic function of the
set Q-(f). In these notations, our main result is formulated as follows.

Theorem 1. Let n >2, L < s<1,0<t < o0, and f € B. Then,

n
the following quantities are equivalent:

(1) dy = dB(fv Qs);
(i) do = inf{e : xq.(p)(2)(1 = |2|*)"5d\(2) is an s-Carleson measure} ;
(111) ds = inf{e : Slelg fﬂg(f) |Rf(z)|t(]_ — |z|2)t(]_ — |30a(z)|2)ned>\(z) <
oo}

(iv) dy = inf{e : sup Joip IREG)IH1 = [22)G (2, 0)*dA(2) < o0} ;
(v) ds = inf{e : sup Jo.n IVE@EQ = [22)G(z,a)*dA(2) < o0} ;
(vi) dg = inf{e : sup Joip IVF@)I'G(2,a)*dA(z) < o0}
(vii) d7 = inf{e : sup Joo i VI = [22)H(1 = |@a(2)[?)"*dA(2) <

o0}

(viii ) dg = inf{e: 2161;]; fﬂa(f) IV£(2)[H(1 = |@a(2)2)"dA(2) < 00} .

Proof. First we will prove that d; < Cdy. Let £ be a positive number
such that xq_(f)(2)(1—|2[*)"*dA(2) is an s-Carleson measure. Since f € B,
it is easy to see that Rf(z) € AL for any a > 0. Let a > 0 be given.
According to Lemma 7, we have

Rf(z):/B Rfw)dva(w) — p

(1= (z,w))rtire’

Since Rf(0) =0, we have

Rf(z)z/BRf(w)<(1_<Z7i}>)n+1+a —1) dvy(w), z€ B.

It follows that

1
1e-10- [ RIE) | RE@ILG w)va(w),
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where the kernel

e = [ (s 1) T

Let f(2) = fi(2) + f2(2), where

fi(2) = £(0) + / R f(w)L(z, w)dve (w)

Q.(f)
and
fa(z) = /B\Q " Rf(w)L(z,w)dv,(w).
Since
[P (n+ 1+ a)(zwhdt 1
RiGw) = [ = e
we have
Rfi(2)] = o Rf(w)RL(2, w)dvy (w)
1
= /m(f) [Rtw) (Il — (z, w)|rtite - 1) dva(w)
(1 = Jw/*)*~dv(w)
= ¢ </B 1= (o, wyeiee “)’
and
Rea) = [ gy RS WIRL W) @)

IN

([ e ).

Thus, using Lemma 2 with ¢ =1 we get

C Ce

Rfi1(2)] < o Rf2(2)| < -

and consequently, f1 € B and ||fz2llg = ||f2]l1 < Ce, since f2(0) = 0.
Further we want to prove that fi € Q.
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We have
Ha) = [ RAGPL- B [aEPa)
< Al [ RAGIA 120~ e dA)
B
1

< il [ (/Qam R (=g * 1) dua<w)>
<(1— )1~ [pa(2) )5 dA(2)

<

_ 2\ns—n _ 2\ns v
||f1||1||f||1/9(f)dya_1<w>/3<1 22" (1~ [af?)"*du(2)

1= Gyl el — (2, )P
(1= JaP)s (1 = |2 )"~ "dv(2)
Al AR | T
TANGBES AN

Since o« > 0, n > 2 and (n —1)/n < s < 1, we have ns —n > —1,
ns—1>0,n+1+a>ns—n+n+1and 2ns >ns—n+n+ 1. Thus,
by Lemma 2 and Lemma 1,

_ [ ey ) v z) 2
= /B |1 — (z,a)|nt1+(ns—n)+ns—1 < CO(1—|af%),

and

_ 2\ns _ 2\ns
hoe oof QRO
Q. (f) |1 — (a, w)[?"s

— lw®)* Ldv(w

a.(p) 11— (a,w)|rtite

Because xq, (f)(w)(1—|w[?*)"*dA\(w) is an s-Carleson measure, by Lemma
3, we have

sup/ (1_7|a|2>"5 (1 — |w*)™*d\(w) < oo
a€B JQ.(f) |1_<avw>|2 .

Using Lemma 2 we get

— w2 L dy(w
(1_|a|2)/9(f)(1 | |) d()<c

11— ({a, w)[r+1te =

So sup,ep I(f1,a) < 0o and, by Lemma 3, [Rf1(2)|?(1 — |2]?)"*+2dA(z) is
an s-Carleson measure. Consequently, by Lemma 4, f; € Q5. We have
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proved above that [[f2||s < Ce. Thus, ds(f,Qs) < ||f = fills = [[f2lls <
Ce. This shows that d; < Cds.

By Lemma 3, xq_(5)(2)(1 — |2|*)"*dA(2) is an s-Carleson measure if and
only if

(L= laf)"=(1 = |2*)"
sup/ (1—|pa(2)2)™dN\(2) = sup/ — dA(z) < 0.
aeBJa.(f) aeBJa.(f) 11— (2,a)>"*

Since
e <RFAIA—12P) < |Iflls, 2 € Q(f),
we obtain dy = d3. It is obvious that dz < dy, since (1 — |pa(2)]*)" <
CG(z,a). Tt follows from (1 — |2]2)|Rf(2)] < (1 — |2]2)|V(2)| < |Vf(2)|
that d4 S d5 § d6.
Now, we are going to prove that dg < dy. For € > d;, there exists a
function f. € Qs such that || f — fc|lz < (d1 +¢)/2. Then,

> [Rf(2)|(1 =21
> [REAIA = [2*) = [R(f = f) ()11 = |2
> 6—(d1+8)/2:(6—d1)/2, ZGQE(f)

IV fe(2)]

Thus,

sup / PRZCEORD

a€B

IA

I£15sup /Q @)

A [ EEPGE ) < .
Qe (f)

<
N (5 - d1)2 a€B

This shows that dg < e. Since € may be close to dj arbitrarily, we obtain
de < dj .
We have proved that di,ds,---,dg are equivalent. It follows from

(1= zP)Rf(2)] < (1= |2V F(2)] < [VF(2)]
and
(1= lpa(2)|*)" < CG(2,0)

that d3 < d7 < dg < dg. Thus, all of dy,ds,- - ,ds are equivalent. The
proof is complete. O

Corollary 1. Let n > 2, %<8§1 and 0 <t < oo. Let f € B.
Then the following conditions are equivalent:
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(i) f is in the closure of Qs in B;
(i) xa.(p) (L —|2[*)"d\(z) is an s-Carleson measure for every € > 0;
(1) sup [y [RFI(L = 220 = ()P "dA2) < o0 for every
e>0;
(iv) Zlelg fﬂa(f) IRf(2)H1 — |2]2) G (2,a)%d\(2) < oo for every € > 0;

(v) sup [, ) IVF(2)|H(1 = |2[2)!G(z,a)*d\(z) < 0o for every e > 0;
a€B ¢

(vi) sup [, ) IVF(2)['G(z,a)*d\(z) < 0o for every e > 0;
a€B ¢

(50) 5D fo g VS = )1 = a2V A2) < o0 for every
e>0;

(viii) sup [, ) IVF(2)|H(1 = |@a(2)]2)"dA(z) < 00 for every e > 0.
a€B °

In the little o-spaces By and Q)50 we have the following results.

Theorem 2. Let n > 2, %<s§1, 0<t< oo, and f € B. Then
the following quantities are equivalent:

(1) dll = dB(fv BO);
dl - dB(f7 QS,O) ;

)
(iii) dy = inf{e : xq_(5)(1—]2[*)"*d\(2) is a vanishing s-Carleson measure};
) d3 =inf{e: lim o5 IRFEIFA = [212) (1 = [@a(2)?)"*dA(2) =

0};
(v) dy =inf{e: li}rill fﬂs(f) IRF(2)|E1 — |22 G(2,a)*d\(z) = 0} ;

(vi) ds = inf{e: 1im1 fﬂg(f) V()P = |2]2)!G(z,a)%d\(z) = 0} ;

la]—

(vii) dg = inf{e : llilm1 Joip) IVF@)'G(2, a)*dA(z) = 0} ;

(Vi) dy = inf{e : Bm o () VA= [22)'(1 = fou(z) ) dA:) =
0};
(1) ds = inf{e s i Jy () [9FEI = oa(2))*dAE) =0}

Proof. Tt is known that the closure of polynomials in B is just By (cf.
[8]), and Qs contains all polynomials. So, By C Qs,0, Where Q¢ is the
closure of @, with respect to B. On the other hand, Qo C By, and so
Qs,0 C Bo. Thus Qs = By, which implies that d} and d; are equivalent.

We can show the equivalence of dy,ds,- -+ ,dg in a similar way as in the
proof of Theorem 1. The only point we have to explain is the proof of
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d; < Cdy. Note that

_ a2 ns s
10 <€ [ v @) = o) arw)

(1—la?)(1 - |w| et 2yns 2
e / X, ()(1 = )" dA) + C(1 — Jaf).
Now, since xq, (s (1 — |w|?)"*dA(w) is a vanishing s-Carleson measure, by
Lemma 3 and Lemma 6, we see that I(f1,a) — 0 as |a| — 1. Therefore,
by Lemma 3 and Lemma 4, f; € @s,0. The proof is complete. O

Corollary 2. Let n > 2, —<s<1 and let f € B. Then f € By if
and only if xa. (1 —|z|? )"gd)\( ) is a vanishing s-Carleson measure for
every € > 0.

Finally, we will discuss the distance formulae from Bloch functions to
Besov spaces on the unit ball.

Theorem 3. Let 1 < p < oo and f € B. Then the following quantities
are equivalent:

(1) dy = dB(fv BO) ;
(11) do = dB(fv Bl)) 5

(iii) ds = inf{e : M(Q(f)) < oo}, where A\(Q(f)) = fﬂa(f) dv(z)/(1 —
22y

Proof. Because B, C By, in a similar way to the proof of Theorem 2, it
is easy to get that d; is equivalent to ds.

In order to prove do < Cds, let fi(z), f2(z) be the same as in the proof
of Theorem 1. What we need to do is to show f; € B, for 1 <p < co. We
have

f1(z) = f£(0) + Rf(w)L(z, w)dva (w).
Q:(f)
Then

ROMHLE (2) = / Rf(w)RO™ Lz, w)dva (w),
Q-(f)

where

L 1 dt
oz,n—i—lL — —1) =
RO ) = ((1—t<z,w>>n+1+a+n+1 ) /

satisfying
C

R, <
| Bl < g

for all z and w in B.
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Thus we have
[0 By R )
B
</ | TRAGIRS ™ L ) )i

C
< C/ dVa—l(w)/ - <va>|n+1+a+ndy(z)
<C/ Vo n)+
() 1—|w| “
_ C/
o T

Using Lemma 8 with p =1 and N =n+1 we get f; € By C B, if
NQ:(f)) < 0.

The last matter is to prove that d3 < do. Since B, C B,,, where
1 < p1 < p2 < 00, we may assume n < p < co. For € > do, there exists a
function f. € B, such that ||f — f:||s < (d2 +¢)/2. Then

[RFE(A=121*) = [RF()IQ = [2*) = [R(f = f) ()1~ |2)
> e—(da+e)/2=(e—d2)/2, z€QA(f).

By [8, Exercise 6.8] and f. € B,,

[ a=LPPRLGIPAGE <00, n<p<oc
B

Thus

B dv(z)
e A

B P
(e —dg)P /Qa(f)(1 2]7)PIRfe(2)|PdA(2) < oo,

which shows that ds < e. Since € may be close to dy arbitrarily, we have
ds < ds. The proof is complete. O
Corollary 3. Let f € B. Then f € By if and only if A(Q:(f)) < co for

every € > 0.
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