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Abstract. We prove a Beurling-Helson type theorem on modulation spaces.

More precisely, we show that the only C1 changes of variables that leave invariant

the modulation spaces Mp,q(Rd) are affine functions on R
d . A special case of our

result involving the Sjöstrand algebra was considered earlier by A. Boulkhemair.

1. Introduction

Given a function φ defined from the torus T to itself, let φ∗ be the
change of variables defined by

(1) φ∗(u) = u ◦ φ

for any function u defined on T .
In 1953, A. Beurling and H. Helson proved that if φ is continuous from

T into itself and if φ∗ is a bounded linear operator on the Fourier algebra
A(T) = A1(T) of absolutely convergent Fourier series, then necessarily
φ(t) = kt + φ(0) for some k ∈ Z [1]. The proof of this result involved
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some nontrivial arithmetical considerations. A different proof was given by
J.-P. Kahane [15]. The Beurling-Helson theorem was later extended to the
higher dimensional setting by W. M. Self [17]. More recently, V. Lebedev
and A. Olevskǐı [16] further extended and generalized the Beurling-Helson
theorem. In particular, for d ≥ 1 and 1 ≤ p < ∞ let Ap(Rd) = FLp(Rd)
equipped with the norm ‖f‖Ap = ‖f̂‖Lp where F is the Fourier transform
defined by Ff(ω) = f̂(ω) =

∫
Rd f(t) e−2πit·ω dt. It was proved in [16] that if

φ : R
d → R

d is C1 , and if φ∗ maps Ap(Rd) into itself for some 1 ≤ p < ∞ ,
p 	= 2, then φ(x) = Ax+φ(0) where A is a real invertible d× d matrix. In
this higher dimensional setting, the case p = 1 was already proved in [17].
Observe that since A2(Rd) = FL2(Rd) = L2(Rd), the class of functions φ

such that φ∗ is bounded on A2(Rd) is quite large. For instance, for any
homeomorphism φ on T such that φ−1 satisfies the Lipschitz condition, φ∗

is bounded on A2(T), and a transference argument can be used to prove
similar result for A2(Rd).

In this note, we shall characterize the C1 changes of variables that leave
invariant the modulation spaces (to be defined below). In particular, our
result applies to a special subspace of the Fourier algebra called Feichtinger
algebra. This space denoted S0 was introduced by H. Feichtinger [5] and
is the smallest Banach algebra that is invariant under both the translation
and the modulation operators. Moreover, the Feichtinger algebra is an
example of a modulation space and plays an important role in the theory
Gabor frames [11]. In fact, the modulation spaces have also been playing
an increasing role in the analysis of pseudodifferential operators [12, 13, 20].
Furthermore, a Banach algebra of pseudodifferential operators known as the
Sjöstrand algebra, denoted Sω , and which contains the Hörmander class
S0

0,0 , was introduced independently by Feichtinger [6] and J. Sjöstrand [18].
This space is yet another example of a modulation space. We refer to [7]
for an updated version of [6] which contains some historical perspectives on
the modulation spaces. In 1997, A. Boulkhemair [4] proved that if φ is a
C1 mapping on R

d such that φ∗ maps Sω into itself, then φ must be an
affine function: This is a Beurling-Helson type theorem for the Sjöstrand
algebra. It is therefore natural to seek a characterization of the changes
of variables that leave invariant modulation spaces. The goal of this note
is to extend and generalize this Beurling-Helson type theorem to all the
modulation spaces. The main argument in the proof of our result is the
fact that the intersection of a modulation space with the space of functions
with compact support coincides with the subspace of compactly supported
functions in Ap(Rd) = FLp(Rd). The proof of this fact as well as the
definition of the modulation spaces will be given in Section 2. Finally, in
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Section 3 we shall prove our main result. In the sequel, we shall denote by
|A| the Lebesgue measure of a measurable subset A of R

d.

2. Preliminaries

2.1 Modulation spaces. The Short-Time Fourier Transform (STFT)
of a function f with respect to a window g is

Vgf(x, y) =
∫

R

f(t) g(t − x) e−2πiyt dt,

whenever the integral makes sense. This definition can be extended to
f ∈ S′(Rd) and g ∈ S(Rd) and yields a continuous function Vgf , see [11].

Definition 1. Given 1 ≤ p, q ≤ ∞ , and given a window function
0 	= g ∈ S , the modulation space Mp,q = Mp,q(Rd) is the space of all
distributions f ∈ S ′

for which the following norm is finite:

(2) ‖f‖Mp,q =
(∫

Rd

(∫
Rd

|Vgf(x, y)|p dx

)q/p

dy

)1/q

,

with the usual modifications if p and/or q are infinite.

Remark 1. The definition is independent of the choice of the window g

in the sense of equivalent norms.
The modulation spaces were originally introduced by Feichtinger [6]. We

refer to [11] and the references therein for more details about modulation
spaces.

The Feichtinger algebra S0 which coincides with the modulation space
M1,1(Rd) is a Banach algebra under both pointwise multiplication and
convolution. Furthermore, M1,1(Rd) like Mp,p(Rd) 1 ≤ p ≤ ∞ is invariant
under the Fourier transform [5, 8, 9].

While the Beurling-Helson theorem completely classifies the changes of
variables that operate in A1(T) (and also on A1(R)) it was still unknown
what changes of variables operate on the Feichtinger algebra and more
generally on the modulation spaces. This question will be completely settled
below.

2.2 Local modulation spaces. The theory of modulation can be
defined in the general setting of locally compact Abelian groups [7]. In
particular, it can be shown that for G = Z

d (or any discrete group),
Mp,q(G) = �p(G). Similarly, if G = T

d (or any compact group),
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Mp,q(G) = FLq(G). Here we focus on functions that are locally in a
modulation space.

In the sequel we shall denote by Mp,q
comp(R

d) the subspace of Mp,q(Rd)
consisting of compactly supported functions, and by Mp,q

loc(R
d) the space

of functions that are locally in Mp,q(Rd). In particular, u ∈ Mp,q
loc(R

d) if
and only if for each g ∈ C∞

0 (Rd) with supp(g) ⊂ K where K is a compact
subset of R

d, we have uK = g u ∈ Mp,q(Rd), i.e., uK ∈ Mp,q
comp(Rd).

(FLq)comp(Rd) and (FLq)loc(Rd) are defined similarly.
The next result contains the key argument in the proof of our main result.

We wish to point out that some special cases of the result are already known.
For instance, the result was proved for M∞,1(Rd) in [4, Theorem 5.1],
while [9] dealt with Mp,p(Rd) 1 ≤ p < ∞ . Furthermore, an independent
and different proof of part b. of Lemma 1 using convolution relations on
generalized amalgam spaces was indicated to us by H. Feichtinger [10].

Lemma 1. Let 1 ≤ p, q ≤ ∞ . Then the following statements hold

a. Mp,q
comp(Rd) = (FLq)comp(Rd).

b. Mp,q
loc(R

d) = (FLq)loc(Rd).

Proof. We shall only prove part a. of the result as part b. follows from
the definition of Mp,q

loc(R
d). Furthermore, to prove a. it suffices to show

that given a compact subset K of R
d Mp,q(Rd)|K = FLq(Rd)|K . Note

that this last equation holds not only as set equality, but also as equality of
Banach spaces with equivalent norms.

Let R > 0 be given and let u ∈ FLq(Rd) such that supp(u) ⊂ BR(0).
Let g ∈ C∞

c (Rd) with supp(g) ⊂ BR(0). Then, for each ω ∈ R
d ,

Vgu(·, ω) is supported in B2R(0). Thus, using the fact that |Vgu(x, ω)| =
|Vĝû(ω,−x)| = |F−1(û · Tω ĝ)(x)| we have the following estimates

‖Vgu(·, ω)‖Lp ≤ |B2R(0)|1/p‖Vgu(·, ω)‖L∞

= |B2R(0)|1/p‖F−1(û · Tωĝ)‖L∞

≤ |B2R(0)|1/p‖û · Tω ĝ‖L1

≤ |B2R(0)|1/p|û| ∗ |ĝ|(ω).

Consequently, ‖Vgu‖Lp,q(R2d) ≤ |B2R(0)|1/p‖û‖Lq(Rd)‖ĝ‖L1(Rd), that is

‖u‖Mp,q(Rd)|BR(0)
≤ C(R, p, q, d) ‖u‖FLq(Rd)|BR(0)

.

Thus,

FLq(Rd)|BR(0) ⊂ Mp,q(Rd)|BR(0).
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For the converse, let R > 0 be given and u ∈ Mp,q(Rd) such that
supp(u) ⊂ BR(0). Let g ∈ C∞

0 (Rd) such that g ≡ 1 on B2R(0). It is
trivially seen that for all x ∈ BR(0) and for all t ∈ BR(0), g(t − x) = 1.
Thus, for all ω ∈ R

d and for x ∈ BR(0),

û(ω)χBR(0)(x) = χBR(0)(x)Vgu(x, ω)

= χBR(0)(x)
∫

BR(0)

u(t) e−2πit·ω g(t − x) dt.

Therefore,

|BR(0)|1/p|û(ω)| = ‖χBR(0)(·)Vgu(·, ω)‖Lp .

Hence, ‖û‖Lq ≤ |BR(0)|−1/p‖Vgu‖Lp,q , that is

‖u‖FLq(Rd)|BR(0)
≤ C(R, p, q, d) ‖u‖Mp,q(Rd)|BR(0)

.

Therefore, Mp,q(Rd)|BR(0) ⊂ FLq(Rd)|BR(0). We can now conclude that

Mp,q(Rd)|BR(0) = FLq(Rd)|BR(0).

�

3. Main results

Before stating our main result, we wish to indicate that it is trivially
seen that all the modulation spaces are invariant under affine changes of
variables. That is, let 1 ≤ p, q ≤ ∞ and φ : R

d → R
d be an affine mapping,

i.e., φ(x) = Ax + b where A is a d × d real invertible matrix and b ∈ R
d .

Then the linear operator φ∗ given by (1) maps Mp,q(Rd) into itself, that
is

φ∗(Mp,q(Rd)) ⊂ Mp,q(Rd).

Indeed, let g ∈ S and u ∈ Mp,q(Rd), and g̃ = g ◦ A−1 where A−1 is the
inverse of A . The result follows from

Vgφ
∗(u)(x, ω) = 1

|detA|e
−2πiω·A−1b Vg̃u(Ax + b, (A∗)−1ω)

where A∗ denote the conjugate of A .
If we restrict our attention to the modulation spaces Mp,p(Rd) 1 < p <

∞ the following stronger result can be proved. For Proposition 1 we assume
that R

d = ∪N
k=1Qk where for each k, Qk is a (possible infinite) “cube”
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with sides parallel to the coordinates axis. Moreover, we assume that for
k = 1, . . . , N the Qk s have disjoint interiors.

Proposition 1. Let φ be a continuous on R
d such that for k = 1, . . . , N ,

the restriction φk of φ to Qk is an affine function given by φk(x) = Akx+bk

where Ak is a real invertible d × d matrix and bk ∈ R
d . Then the linear

operator φ∗ given by (1) maps Mp,p(Rd) into itself, that is

φ∗(Mp,p(Rd)) ⊂ Mp,p(Rd).

Proof. It is evident from the definition of the modulation spaces that
Mp,p is invariant under the Fourier transform, see [8, 9]. Let u ∈ Mp,p(Rd),
then

φ∗(u) = u ◦ φ =
N∑

k=1

χQk
· (u ◦ φ) =

N∑
k=1

χQk
· (u ◦ φk),

and so

‖φ∗(u)‖Mp,p ≤
N∑

k=1

‖χQk
· (u ◦ φk)‖Mp,p .

As indicated above, u ◦ φk ∈ Mp,p . Hence, vk = F−1(u ◦ φk) ∈ Mp,p(Rd)
as well. Moreover, note that χQk

is a bounded Fourier multiplier on all
Mp,p(Rd): this follows from [2, Theorem 1] in the case d = 1, and from [3,
Theorem 6] when d > 1. Consequently, using the invariance of Mp,p(Rd)
under the Fourier transform, we conclude that there exists ck > 0 such that

‖χQk
· (u ◦ φk)‖Mp,p = ‖F−1(χQk

· v̂k)‖Mp,p ≤ ck ‖u‖Mp,p,

from which the proof follows. �

Remark 2. The conclusion of Proposition 1 holds if we used an infinite
decomposition of R

d , that is if we assume that R
d = ∪∞

k=1Qk where
the cubes Qk still have sides parallel to the coordinate axis and disjoint
interiors. In this case, the extra assumption needed to prove the previous
result is that the constants ck appearing in the above proof, are uniformly
bounded, i.e., supk ck < ∞.

We are now ready to state and prove our main result.

Theorem 1. Let φ : R
d → R

d be a C1 function. Assume that the
operator φ∗ defined by (1) maps Mp,q(Rd) into itself, i.e., φ∗(Mp,q(Rd)) ⊂
Mp,q(Rd) for some 1 ≤ p, q ≤ ∞ , with 2 	= q < ∞ . Then φ is an affine
mapping, that is φ(x) = Ax+φ(0) for some real invertible d×d matrix A .

In particular, the Feichtinger algebra M1,1(Rd) is preserved by, and only
by affine changes of variables.
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Proof. Because φ∗(Mp,q(Rd)) ⊂ Mp,q(Rd) and φ∗(u) = u ◦
φ is compactly supported whenever u is, Lemma 1 implies that φ∗

maps Mp,q
comp(R

d) = (FLq)comp(Rd) into itself as well as Mp,q
loc(R

d) =
(FLq)loc(Rd) into itself. Therefore,

when d = 1 and q = 1, the Beurling-Helson Theorem [1, pp. 84-86],
implies that φ(x) = ax + φ(0);

when d = 1 and 1 < q < ∞ , q 	= 2, it follows from [16, Theorem 3] that
φ(x) = ax + φ(0);

when d > 1 and q = 1, it follows from [17, Corollary 1] that φ(x) =
Ax + φ(0), where A is a real invertible d × d matrix;

when d > 1 and 1 < q < ∞ , q 	= 2, it follows from [16, Theorem 6] that
φ(x) = Ax + φ(0), where A is a real invertible d × d matrix. �

Remark 3. The fact that q 	= 2 in Theorem 1 was justified in
the Introduction. Moreover, we restricted to q < ∞ , because the key
ingredients in the proof of our main result are [16, Theorem 3, Theorem
6] whose proofs are based on a density argument. It is not clear to us if
Theorem 1 holds for q = ∞ .

Remark 4. Using Lemma 1 and [16, pp. 214], it follows that if φ :
R

d → R
d is nonlinear and C2 , then φ∗ is not bounded on Mp,q . This fact

together with Proposition 1, show that the C1 condition in Theorem 1 is
the only nontrivial smoothness condition to impose on φ .

For the Sjöstrand algebra Sω which coincides with the modulation space
M∞,1(Rd), Theorem 1 was proved in under a weaker assumption on φ .
More specifically, it was proved in [4, Theorem 5.1] that if φ is a proper
mapping, i.e., φ is continuous on R

d and φ−1(K) is a compact set for
any compact subset K of R

d , and if φ∗(M∞,1(Rd)) ⊂ M∞,1(Rd) then
φ(x) = Ax+ φ(0). It is also straightforward to prove Theorem 1 under this
weaker assumption on φ .

Finally, we wish to conclude this paper by pointing out the connection
of our main result to certain Fourier multipliers. More precisely, let σ be
a function defined on R

d . The Fourier multiplier with symbol σ is the
operator Hσ initially defined on S by

Hσf(x) =
∫

Rd

σ(ξ) f̂(ξ) e2πiξ·x dξ.

We refer to [19] for more on Fourier multipliers. As mentioned above,
there is a strong connection between the Lp -continuity of the Fourier
multipliers and the Beurling-Helson theorem. In particular, the family
of homomorphisms eiφ(ξ) on the space of Lp -Fourier multipliers was
investigated by Hörmander in [14, Section 1.3]. It is easily seen that
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σ0(ξ) = eiξ , then Hσ0 is bounded on all Lp(Rd) for 1 ≤ p ≤ ∞
and d ≥ 1. Hörmander proved that if φ : R

d → R
d is C2 and if

φ∗(σ0)(ξ) = σ0(φ(ξ)) = eiφ(ξ) is a bounded Fourier multiplier on Lp(Rd)
for some 1 < p < ∞ and p 	= 2, then φ is an affine function [14,
Theorem 1.15]. It is interesting to note that there exist nonlinear (non-
affine) functions φ on R

d such that the Fourier multipliers with symbols
φ∗(σ0)(ξ) = σ0(φ(ξ)) = eiφ(ξ) are bounded on all modulation spaces [3].
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