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Themain object of this paper is to find necessary and sufficient conditions for generalized Bessel functions of first kind 𝑧𝑢𝑝(𝑧) to be
in the classes SP𝑝(𝛼, 𝛽) andUCSP(𝛼, 𝛽) of uniformly spiral-like functions and also give necessary and sufficient conditions for𝑧(2−𝑢𝑝(𝑧)) to be in the above classes. Furthermore, we give necessary and sufficient conditions forI(𝜅, 𝑐)𝑓 to be inUCSPT(𝛼, 𝛽)
provided that the function𝑓 is in the classR𝜏(𝐴, 𝐵). Finally, we give conditions for the integral operatorG(𝜅, 𝑐, 𝑧) = ∫𝑧

0
(2−𝑢𝑝(𝑡))𝑑𝑡

to be in the classUCSPT(𝛼, 𝛽). Several corollaries and consequences of the main results are also considered.

1. Introduction and Definitions

LetAdenote the class of the normalized functions of the form

𝑓 (𝑧) = 𝑧 + ∞∑
𝑛=2

𝑎𝑛𝑧𝑛, (1)

which are analytic in the open unit diskU = {𝑧 ∈ C : |𝑧| < 1}.
Further, letT be a subclass ofA consisting of functions of the
form,

𝑓 (𝑧) = 𝑧 − ∞∑
𝑛=2

󵄨󵄨󵄨󵄨𝑎𝑛󵄨󵄨󵄨󵄨 𝑧𝑛, 𝑧 ∈ U. (2)

A function 𝑓 ∈ A is spiral-like if

R(𝑒−𝑖𝛼 𝑧𝑓󸀠 (𝑧)𝑓 (𝑧) ) > 0, (3)

for some 𝛼 with |𝛼| < 𝜋/2 and for all 𝑧 ∈ U. Also 𝑓(𝑧) is
convex spiral-like if 𝑧𝑓󸀠(𝑧) is spiral-like.

In [1], Selvaraj and Geetha introduced the following
subclasses of uniformly spiral-like and convex spiral-like
functions.

Definition 1. A function 𝑓 of the form (1) is said to be in the
class SP𝑝(𝛼, 𝛽) if it satisfies the following condition:
R{𝑒−𝑖𝛼 (𝑧𝑓󸀠 (𝑧)

𝑓 (𝑧) )} > 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑧𝑓󸀠 (𝑧)
𝑓󸀠 (𝑧) − 1󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 + 𝛽

(𝑧 ∈ U; |𝛼| < 𝜋
2 ; 0 ≤ 𝛽 < 1)

(4)

and 𝑓 ∈ UCSP(𝛼, 𝛽) if and only if 𝑧𝑓󸀠(𝑧) ∈ SP𝑝(𝛼, 𝛽).
We write

SP𝑝T (𝛼, 𝛽) = SP𝑝 (𝛼, 𝛽) ∩ T,
UCSPT (𝛼, 𝛽) = UCSP (𝛼, 𝛽) ∩ T. (5)

In particular, we note that SP𝑝(𝛼, 0) = SP𝑝(𝛼) and
UCSP(𝛼, 0) = UCSP(𝛼), the classes of uniformly spiral-
like and uniformly convex spiral-like were introduced by
Ravichandran et al. [2]. For 𝛼 = 0, the classesUCSP(𝛼) and
SP𝑝(𝛼), respectively, reduce to the classes UCV and SP
introduced and studied by Ronning [3].

For more interesting developments of some related sub-
classes of uniformly spiral-like and uniformly convex spiral-
like, the readers may be referred to the works of Frasin [4, 5],
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Goodman [6, 7], Tariq Al-Hawary and Frasin [8], Kanas and
Wisniowska [9, 10] and Ronning [3, 11].

A function 𝑓 ∈ A is said to be in the class R𝜏(𝐴, 𝐵),𝜏 ∈
C \ {0}, −1 ≤ 𝐵 < 𝐴 ≤ 1, if it satisfies the inequality

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑓󸀠 (𝑧) − 1

(𝐴 − 𝐵) 𝜏 − 𝐵 [𝑓󸀠 (𝑧) − 1]
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 < 1, 𝑧 ∈ U. (6)

This class was introduced by Dixit and Pal [12].
The generalized Bessel function 𝑤𝑝 (see, [13]) is defined

as a particular solution of the linear differential equation

𝑧𝑤󸀠󸀠 (𝑧) + 𝑏𝑧𝑤󸀠 (𝑧) + [𝑐𝑧2 − 𝑝2 + (1 − 𝑏) 𝑝]𝑤 (𝑧) = 0, (7)

where 𝑏, 𝑝, 𝑐 ∈ C. The analytic function 𝑤𝑝 has the form
𝑤𝑝 (𝑧) = ∞∑

𝑛=0

(−1)𝑛 (𝑐)𝑛
𝑛!Γ (𝑝 + 𝑛 + (𝑏 + 1) /2) . (

𝑧
2)2𝑛+𝑝 ,

𝑧 ∈ C.
(8)

Now, the generalized and normalized Bessel function 𝑢𝑝 is
defined with the transformation

𝑢𝑝 (𝑧) = 2𝑝Γ(𝑝 + 𝑛 + 𝑏 + 1
2 ) 𝑧−𝑝/2𝑤𝑝 (𝑧1/2)

= ∞∑
𝑛=0

(−𝑐/4)𝑛
(𝜅)𝑛 𝑛! 𝑧𝑛,

(9)

where 𝜅 = 𝑝 + (𝑏 + 1)/2 ̸= 0, −1, −2, . . . and (𝑎)𝑛 is the well-
known Pochhammer (or Appell) symbol, defined in terms of
the Euler Gamma function for 𝑎 ̸= 0, −1, −2, . . . by

(𝑎)𝑛 = Γ (𝑎 + 𝑛)
Γ (𝑎)

= {{{
1, if 𝑛 = 0
𝑎 (𝑎 + 1) (𝑎 + 2) . . . (𝑎 + 𝑛 − 1) , if 𝑛 ∈ N.

(10)

The function 𝑢𝑝 is analytic on C and satisfies the second-
order linear differential equation

4𝑧2𝑢󸀠󸀠 (𝑧) + 2 (2𝑝 + 𝑏 + 1) 𝑧𝑢󸀠 (𝑧) + 𝑐𝑧𝑢 (𝑧) = 0. (11)

Using the Hadamard product, we now considered a linear
operatorI(𝜅, 𝑐) : A 󳨀→ A defined by

I (𝜅, 𝑐) 𝑓 = 𝑧𝑢𝑝 (𝑧) ∗ 𝑓 (𝑧)
= 𝑧 + ∞∑

𝑛=2

(−𝑐/4)𝑛−1
(𝜅)𝑛−1 (𝑛 − 1)!𝑎𝑛𝑧𝑛,

(12)

where ∗ denote the convolution or Hadamard product of two
series.

The study of the generalized Bessel function is a recent
interesting topic in geometric function theory. We refer, in
this connection, to the works of [13–15] and others.

Motivated by results on connections between various sub-
classes of analytic univalent functions by using hypergeomet-
ric functions (see, for example, [16–20])), and the work done

in [21–24], we determine necessary and sufficient conditions
for 𝑧𝑢𝑝(𝑧) to be in SP𝑝(𝛼, 𝛽) and UCSP(𝛼, 𝛽) and also
give necessary and sufficient conditions for 𝑧(2 − 𝑢𝑝(𝑧)) to
be in the function classes SP𝑝T(𝛼, 𝛽) andUCSPT(𝛼, 𝛽).
Furthermore, we give necessary and sufficient conditions for
I(𝜅, 𝑐)𝑓 to be inUCSPT(𝛼, 𝛽) provided that the function𝑓 is in the classR𝜏(𝐴, 𝐵). Finally, we give conditions for the
integral operatorG(𝜅, 𝑐, 𝑧) = ∫𝑧

0
(2−𝑢𝑝(𝑡))𝑑𝑡 to be in the class

UCSPT(𝛼, 𝛽).
To establish our main results, we need the following

Lemmas.

Lemma 2 (see [1]). (i) A sufficient condition for a function 𝑓
of the form (1) to be in the class SP𝑝(𝛼, 𝛽) is that
∞∑
𝑛=2

(2𝑛 − cos𝛼 − 𝛽) 󵄨󵄨󵄨󵄨𝑎𝑛󵄨󵄨󵄨󵄨 ≤ cos𝛼 − 𝛽
(|𝛼| < 𝜋/2; 0 ≤ 𝛽 < 1)

(13)

and a necessary and sufficient condition for a function 𝑓 of the
form (2) to be in the class SP𝑝T(𝛼, 𝛽) is that condition (13)
is satisfied. In particular, when 𝛽 = 0, we obtain a sufficient
condition for a function 𝑓 of the form (1) to be in the class
SP𝑝(𝛼) is that

∞∑
𝑛=2

(2𝑛 − cos𝛼) 󵄨󵄨󵄨󵄨𝑎𝑛󵄨󵄨󵄨󵄨 ≤ cos𝛼 (|𝛼| < 𝜋
2 ) (14)

and a necessary and sufficient condition for a function 𝑓 of the
form (2) to be in the class SP𝑝T(𝛼) is that condition (14) is
satisfied.

(ii) A sufficient condition for a function 𝑓 of the form (1) to
be in the classUCSP(𝛼, 𝛽) is that
∞∑
𝑛=2

𝑛 (2𝑛 − cos𝛼 − 𝛽) 󵄨󵄨󵄨󵄨𝑎𝑛󵄨󵄨󵄨󵄨 ≤ cos𝛼 − 𝛽

(|𝛼| < 𝜋
2 ; 0 ≤ 𝛽 < 1)

(15)

and a necessary and sufficient condition for a function 𝑓 of the
form (2) to be in the classUCSPT(𝛼, 𝛽) is that condition (15)
is satisfied. In particular, when 𝛽 = 0, we obtain a sufficient
condition for a function 𝑓 of the form (1) to be in the class
UCSP(𝛼) is that

∞∑
𝑛=2

𝑛 (2𝑛 − cos𝛼) 󵄨󵄨󵄨󵄨𝑎𝑛󵄨󵄨󵄨󵄨 ≤ cos𝛼 (|𝛼| < 𝜋
2 ) (16)

and a necessary and sufficient condition for a function 𝑓 of the
form (2) to be in the class UCSPT(𝛼) is that condition (16)
is satisfied.

Lemma 3 (see [12]). If 𝑓 ∈ R𝜏(𝐴, 𝐵) is of the form (1), then

󵄨󵄨󵄨󵄨𝑎𝑛󵄨󵄨󵄨󵄨 ≤ (𝐴 − 𝐵) |𝜏|
𝑛 , 𝑛 ∈ N − {1} . (17)
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The result is sharp for the function

𝑓 (𝑧) = ∫𝑧
0

(1 + (𝐴 − 𝐵) 𝜏𝑡𝑛−1
1 + 𝐵𝑡𝑛−1)𝑑𝑡,

(𝑧 ∈ U; 𝑛 ∈ N − {1}) .
(18)

Lemma 4 (see [15]). If 𝑏, 𝑝, 𝑐 ∈ C and 𝜅 ̸= 0, −1, −2, . . .,
then the function 𝑢𝑝 satisfies the recursive relations

𝑢󸀠𝑝 (𝑧) = (−𝑐/4)
𝜅 𝑢𝑝+1 (𝑧) ,

𝑢󸀠󸀠𝑝 (𝑧) = (−𝑐/4)2
𝜅 (𝜅 + 1)𝑢𝑝+2 (𝑧) ,

(19)

for all 𝑧 ∈ C.

2. The Necessary and Sufficient Conditions

Unless otherwise mentioned, we shall assume in this paper
that |𝛼| < 𝜋/2 and 0 ≤ 𝛽 < 1.

First we obtain the necessary condition for 𝑧𝑢𝑝 to be in
SP𝑝(𝛼, 𝛽).
Theorem 5. If 𝑐 < 0, 𝜅 > 0 (𝜅 ̸= 0, −1, −2, . . .), then 𝑧𝑢𝑝 is in
SP𝑝(𝛼, 𝛽) if

2𝑢󸀠𝑝 (1) + (2 − cos𝛼 − 𝛽) (𝑢𝑝 (1) − 1) ≤ cos𝛼 − 𝛽. (20)

Proof. Since

𝑧𝑢𝑃 (𝑧) = 𝑧 + ∞∑
𝑛=2

(−𝑐/4)𝑛−1
(𝜅)𝑛−1 (𝑛 − 1)!𝑧𝑛, (21)

according to (13), we must show that

∞∑
𝑛=2

(2𝑛 − cos𝛼 − 𝛽) (−𝑐/4)𝑛−1
(𝜅)𝑛−1 (𝑛 − 1)! ≤ cos𝛼 − 𝛽. (22)

Writing

𝑛 = (𝑛 − 1) + 1, (23)

we have

∞∑
𝑛=2

(2𝑛 − cos𝛼 − 𝛽) (−𝑐/4)𝑛−1
(𝜅)𝑛−1 (𝑛 − 1)!

= 2∞∑
𝑛=2

(𝑛 − 1) (−𝑐/4)𝑛−1
(𝜅)𝑛−1 (𝑛 − 1)!

+ ∞∑
𝑛=2

(2 − cos𝛼 − 𝛽) (−𝑐/4)𝑛−1
(𝜅)𝑛−1 (𝑛 − 1)!

= 2∞∑
𝑛=2

(−𝑐/4)𝑛−1
(𝜅)𝑛−1 (𝑛 − 2)!

+ ∞∑
𝑛=2

(2 − cos𝛼 − 𝛽) (−𝑐/4)𝑛−1
(𝜅)𝑛−1 (𝑛 − 1)!

= 2∞∑
𝑛=0

(−𝑐/4)𝑛+1
(𝜅)𝑛+1 𝑛!

+ (2 − cos𝛼 − 𝛽) ∞∑
𝑛=0

(−𝑐/4)𝑛+1
(𝜅)𝑛+1 (𝑛 + 1)!

= 2 (−𝑐/4)
𝜅
∞∑
𝑛=0

(−𝑐/4)𝑛
(𝜅 + 1)𝑛 𝑛!

+ (2 − cos𝛼 − 𝛽) ∞∑
𝑛=0

(−𝑐/4)𝑛+1
(𝜅)𝑛+1 (𝑛 + 1)!

= 2 (−𝑐/4)
𝜅 𝑢𝑝+1 (1) + (2 − cos𝛼 − 𝛽) (𝑢𝑝 (1) − 1)

= 2𝑢󸀠𝑝 (1) + (2 − cos𝛼 − 𝛽) (𝑢𝑝 (1) − 1) .
(24)

But this last expression is bounded above by cos𝛼 − 𝛽 if (20)
holds.

Corollary 6. If 𝑐 < 0, 𝜅 > 0 (𝜅 ̸= 0, −1, −2, . . .), then 𝑧(2 −𝑢𝑝(𝑧)) is in SP𝑝T(𝛼, 𝛽) if and only if the condition (20) is
satisfied.

Proof. Since

𝑧 (2 − 𝑢𝑝 (𝑧)) = 𝑧 − ∞∑
𝑛=2

(−𝑐/4)𝑛−1
(𝜅)𝑛−1 (𝑛 − 1)!𝑧𝑛. (25)

By using the same techniques given in the proof of
Theorem 5, we have Corollary 6.

Theorem 7. If 𝑐 < 0, 𝜅 > 0 (𝜅 ̸= 0, −1, −2, . . .), then 𝑧𝑢𝑝 is in
SP𝑝(𝛼, 𝛽) if

𝑒(−𝑐/4𝜅) [−𝑐
2𝜅 + (2 − cos𝛼 − 𝛽) (1 − 𝑒(𝑐/4𝜅))]

≤ cos𝛼 − 𝛽.
(26)

Proof. We note that (𝜅)𝑛−1 = 𝜅(𝜅 + 1)(𝜅 + 2) ⋅ ⋅ ⋅ (𝜅 + 𝑛 − 2) ≥𝜅(𝜅 + 1)𝑛−2 ≥ 𝜅𝑛−1, (𝑛 ∈ N). From (24), we get
∞∑
𝑛=2

(2𝑛 − cos𝛼 − 𝛽) (−𝑐/4)𝑛−1
(𝜅)𝑛−1 (𝑛 − 1)!

≤ 2∞∑
𝑛=2

(𝑛 − 1) (− 𝑐
4𝜅)𝑛−1

(𝑛 − 1)!
+ (2 − cos𝛼 − 𝛽) ∞∑

𝑛=2

(−𝑐/4𝜅)𝑛−1
(𝑛 − 1)!

= (− 𝑐
2𝜅) 𝑒−𝑐/4𝜅 + (2 − cos𝛼 − 𝛽) (𝑒−𝑐/4𝜅 − 1) .

(27)

Therefore, we see that the last expression is bounded
above by cos𝛼 − 𝛽 if (26) is satisfied.



4 Journal of Function Spaces

Corollary 8. If 𝑐 < 0, 𝜅 > 0 (𝜅 ̸= 0, −1, −2, . . .), then 𝑧(2 −𝑢𝑝(𝑧)) is in SP𝑝T(𝛼, 𝛽) if and only if the condition (26) is
satisfied.

Theorem 9. If 𝑐 < 0, 𝜅 > 0(𝜅 ̸= 0, −1, −2, . . .), then 𝑧𝑢𝑝(𝑧) is
inUCSP(𝛼, 𝛽) if

2𝑢󸀠󸀠𝑝 (1) + (6 − cos𝛼 − 𝛽) 𝑢󸀠𝑝 (1)
+ (2 − cos𝛼 − 𝛽) (𝑢𝑝 (1) − 1) ≤ cos𝛼 − 𝛽. (28)

Proof. In view of (15), we must show that
∞∑
𝑛=2

𝑛 (2𝑛 − cos𝛼 − 𝛽) (−𝑐/4)𝑛−1
(𝜅)𝑛−1 (𝑛 − 1)! ≤ cos𝛼 − 𝛽. (29)

Writing

𝑛 = (𝑛 − 1) + 1,
𝑛2 = (𝑛 − 1) (𝑛 − 2) + 3 (𝑛 − 1) + 1. (30)

Thus, we have
∞∑
𝑛=2

𝑛 (2𝑛 − cos𝛼 − 𝛽) (−𝑐/4)𝑛−1
(𝜅)𝑛−1 (𝑛 − 1)!

= 2∞∑
𝑛=2

(𝑛 − 1) (𝑛 − 2) (−𝑐/4)𝑛−1
(𝜅)𝑛−1 (𝑛 − 1)!

+ (6 − cos𝛼 − 𝛽) ∞∑
𝑛=2

(𝑛 − 1) (−𝑐/4)𝑛−1
(𝜅)𝑛−1 (𝑛 − 1)!

+ (2 − cos𝛼 − 𝛽) ∞∑
𝑛=2

(−𝑐/4)𝑛−1
(𝜅)𝑛−1 (𝑛 − 1)! .

= 2∞∑
𝑛=3

(−𝑐/4)𝑛−1
(𝜅)𝑛−1 (𝑛 − 3)!

+ (6 − cos𝛼 − 𝛽) ∞∑
𝑛=2

(−𝑐/4)𝑛−1
(𝜅)𝑛−1 (𝑛 − 2)!

+ (2 − cos𝛼 − 𝛽) ∞∑
𝑛=2

(−𝑐/4)𝑛−1
(𝜅)𝑛−1 (𝑛 − 1)! .

= 2 (−𝑐/4)2
𝜅 (𝜅 + 1)

∞∑
𝑛=0

(−𝑐/4)𝑛
(𝜅 + 2)𝑛 𝑛!

+ (6 − cos𝛼 − 𝛽) (−𝑐/4)
𝜅
∞∑
𝑛=0

(−𝑐/4)𝑛
(𝜅 + 1)𝑛 𝑛!

+ (2 − cos𝛼 − 𝛽) ∞∑
𝑛=0

(−𝑐/4)𝑛+1
(𝜅)𝑛+1 (𝑛 + 1)!

= 2𝑢󸀠󸀠𝑝 (1) + (6 − cos𝛼 − 𝛽) 𝑢󸀠𝑝 (1)
+ (2 − cos𝛼 − 𝛽) (𝑢𝑝 (1) − 1) .

(31)

But this last expression is bounded above by cos𝛼 − 𝛽 if (28)
holds.

By using a similar method as in the proof of Corollary 6,
we have the following result.

Corollary 10. If 𝑐 < 0, 𝜅 > 0 (𝜅 ̸= 0, −1, −2, . . .), then 𝑧(2 −𝑢𝑝(𝑧)) is inUCSPT(𝛼, 𝛽) if and only if the condition (28) is
satisfied.

The proof of Theorem 11 (below) is much akin to that of
Theorem 7, and so the details may be omitted.

Theorem 11. If 𝑐 < 0, 𝜅 > 0 (𝜅 ̸= 0, −1, −2, . . .), then 𝑧(2 −𝑢𝑝(𝑧)) is inUCSPT(𝛼, 𝛽) if and only if
𝑒(−𝑐/4𝜅) [ 𝑐2

8𝜅 + (6 − cos𝛼 − 𝛽) (−𝑐
4𝜅)

+ (2 − cos𝛼 − 𝛽) (1 − 𝑒(𝑐/4𝜅))] ≤ cos𝛼 − 𝛽.
(32)

3. Inclusion Properties

Making use of Lemma 3, we will study the action of the Bessel
function on the classUCSPT(𝛼, 𝛽).
Theorem 12. Let 𝑐 < 0, 𝜅 > 0 (𝜅 ̸= 0, −1, −2, . . .). If 𝑓 ∈
R𝜏(𝐴, 𝐵), thenI(𝜅, 𝑐)𝑓 is inUCSPT(𝛼, 𝛽) if and only if

(𝐴 − 𝐵) |𝜏| [2𝑢󸀠𝑝 (1) + (2 − cos𝛼 − 𝛽) (𝑢𝑝 (1) − 1)]
≤ cos𝛼 − 𝛽. (33)

Proof. In view of (15), it suffices to show that
∞∑
𝑛=2

𝑛 (2𝑛 − cos𝛼 − 𝛽) (−𝑐/4)𝑛−1
(𝜅)𝑛−1 (𝑛 − 1)! 󵄨󵄨󵄨󵄨𝑎𝑛󵄨󵄨󵄨󵄨 ≤ cos𝛼 − 𝛽. (34)

Since 𝑓 ∈ R𝜏(𝐴, 𝐵), then by Lemma 3, we get

󵄨󵄨󵄨󵄨𝑎𝑛󵄨󵄨󵄨󵄨 ≤ (𝐴 − 𝐵) |𝜏|
𝑛 . (35)

Thus, we must show that
∞∑
𝑛=2

𝑛 (2𝑛 − cos𝛼 − 𝛽) (−𝑐/4)𝑛−1
(𝜅)𝑛−1 (𝑛 − 1)! 󵄨󵄨󵄨󵄨𝑎𝑛󵄨󵄨󵄨󵄨

≤ (𝐴 − 𝐵) |𝜏| [∞∑
𝑛=2

(2𝑛 − cos𝛼 − 𝛽) (−𝑐/4)𝑛−1
(𝜅)𝑛−1 (𝑛 − 1)!] .

(36)

The remaining part of the proof of Theorem 12 is similar
to that of Theorem 5, and so we omit the details.

4. An Integral Operator

In this section, we obtain the necessary and sufficient condi-
tions for the integral operatorG(𝜅, 𝑐, 𝑧) defined by

G (𝜅, 𝑐, 𝑧) = ∫𝑧
0

(2 − 𝑢𝑝 (𝑡)) 𝑑𝑡 (37)

to be inUCSPT(𝛼, 𝛽).
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Theorem 13. If < 0, 𝜅 > 0 (𝜅 ̸= 0, −1, −2, . . .), then the
integral operator G(𝜅, 𝑐, 𝑧) is in UCSPT(𝛼, 𝛽) if and only
if the condition (20) is satisfied.

Proof. Since

G (𝜅, 𝑐, 𝑧) = 𝑧 − ∞∑
𝑛=2

(−𝑐/4)𝑛−1
(𝜅)𝑛−1

𝑧𝑛
𝑛! (38)

then, in view of (15), we need only to show that

∞∑
𝑛=2

𝑛 (2𝑛 − cos𝛼 − 𝛽) (−𝑐/4)𝑛−1
(𝜅)𝑛−1 𝑛! ≤ cos𝛼 − 𝛽 (39)

or equivalently

∞∑
𝑛=2

(2𝑛 − cos𝛼 − 𝛽) (−𝑐/4)𝑛−1
(𝜅)𝑛−1 (𝑛 − 1)! ≤ cos𝛼 − 𝛽. (40)

The remaining part of the proof is similar to that of
Theorem 5, and so we omit the details.

The proofs of Theorems 14 and 15 are much akin to that
of Theorem 7, and so the details may be omitted.

Theorem 14. Let 𝑐 < 0, 𝜅 > 0 (𝜅 ̸= 0, −1, −2, . . .). If 𝑓 ∈
R𝜏(𝐴, 𝐵), thenI(𝜅, 𝑐)𝑓 is inUCSPT(𝛼, 𝛽) if and only if

(𝐴 − 𝐵) |𝜏| 𝑒(−𝑐/4𝜅) [−𝑐
2𝜅 + (2 − cos𝛼 − 𝛽) (1 − 𝑒(𝑐/4𝜅))]

≤ cos𝛼 − 𝛽.
(41)

Theorem 15. If < 0, 𝜅 > 0 (𝜅 ̸= 0, −1, −2, . . .), then the
integral operator G(𝜅, 𝑐, 𝑧) is in UCSPT(𝛼, 𝛽) if and only
if the condition (32) is satisfied.

5. Corollaries and Consequences

In this section, we apply our main results in order to deduce
each of the following corollaries and consequences.

Corollary 16. If 𝑐 < 0, 𝜅 > 0 (𝜅 ̸= 0, −1, −2, . . .),then 𝑧𝑢𝑝 is
in SP𝑝(𝛼) if

2𝑢󸀠𝑝 (1) + (2 − cos𝛼) (𝑢𝑝 (1) − 1) ≤ cos𝛼. (42)

Corollary 17. If 𝑐 < 0, 𝜅 > 0 (𝜅 ̸= 0, −1, −2, . . .), then𝑧(2 − 𝑢𝑝(𝑧)) is inSP𝑝T(𝛼) if and only if the condition (42) is
satisfied.

Corollary 18. If 𝑐 < 0, 𝜅 > 0 (𝜅 ̸= 0, −1, −2, . . .), then 𝑧𝑢𝑝 is
in SP𝑝(𝛼) if

𝑒(−𝑐/4𝜅) [−𝑐
2𝜅 + (2 − cos𝛼) (1 − 𝑒(𝑐/4𝜅))] ≤ cos𝛼. (43)

Corollary 19. If 𝑐 < 0, 𝜅 > 0 (𝜅 ̸= 0, −1, −2, . . .), then𝑧(2 − 𝑢𝑝(𝑧)) is inSP𝑝T(𝛼) if and only if the condition (43) is
satisfied.

Corollary 20. If 𝑐 < 0, 𝜅 > 0 (𝜅 ̸= 0, −1, −2, . . .), then 𝑧𝑢𝑝(𝑧)
is inUCSP(𝛼) if

2𝑢󸀠󸀠𝑝 (1) + (6 − cos𝛼) 𝑢󸀠𝑝 (1) + (2 − cos𝛼) (𝑢𝑝 (1) − 1)
≤ cos𝛼. (44)

Corollary 21. If 𝑐 < 0, 𝜅 > 0 (𝜅 ̸= 0, −1, −2, . . .), then 𝑧(2 −𝑢𝑝(𝑧)) is inUCSPT(𝛼) if and only if
𝑒(−𝑐/4𝜅) [ 𝑐2

8𝜅 + (6 − cos𝛼) (−𝑐
4𝜅)

+ (2 − cos𝛼) (1 − 𝑒(𝑐/4𝜅))] ≤ cos𝛼.
(45)

Corollary 22. Let 𝑐 < 0, 𝜅 > 0 (𝜅 ̸= 0, −1, −2, . . .). If 𝑓 ∈
R𝜏(𝐴, 𝐵), thenI(𝜅, 𝑐)𝑓 is inUCSPT(𝛼) if and only if

(𝐴 − 𝐵) |𝜏| [2𝑢󸀠𝑝 (1) + (2 − cos𝛼) (𝑢𝑝 (1) − 1)]
≤ cos𝛼. (46)

Corollary 23. If < 0, 𝜅 > 0 (𝜅 ̸= 0, −1, −2, . . .), then the
integral operatorG(𝜅, 𝑐, 𝑧) is inUCSPT(𝛼) if and only if the
condition (42) is satisfied.

Corollary 24. Let 𝑐 < 0, 𝜅 > 0 (𝜅 ̸= 0, −1, −2, . . .). If 𝑓 ∈
R𝜏(𝐴, 𝐵), thenI(𝜅, 𝑐)𝑓 is inUCSPT(𝛼) if and only if

(𝐴 − 𝐵) |𝜏| 𝑒(−𝑐/4𝜅) [−𝑐
2𝜅 + (2 − cos𝛼) (1 − 𝑒(𝑐/4𝜅))]

≤ cos𝛼.
(47)

Corollary 25. If < 0, 𝜅 > 0 (𝜅 ̸= 0, −1, −2, . . .), then the
integral operatorG(𝜅, 𝑐, 𝑧) is inUCSPT(𝛼) if and only if the
condition (45) is satisfied.

Remark 26. If we put 𝛼 = 0 in Corollary 6, we obtain
Theorem 5 in [22] for 𝜆 = 1 and 𝛽 = 1.
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