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In this article, we discuss a new version of metric fixed point theory. The application of this newly introduced concept is to find
some fixed point results where many well-known results in literature cannot be applied. We give some examples to illustrate the
given concepts and obtained results.

1. Introduction

The fixed point theory has a long history. After the Banach
contraction principle [1], there has been a huge development
in metric fixed point theory. This principle has been gener-
alized and extended by many researchers, either by changing
the contraction condition or the underlying space. For more
details, see [2–11]. The theory of fixed points in ordered sets
was started first by Turinici [12]. In 2004, Ran and Reurings
[13] have generalized the Banach contraction principle in
the setting of ordered sets. The key feature in Ran-Reurings
theorem is that the contractive condition on the nonlinear
map is only assumed to hold on the comparable elements
instead of the whole space as in Banach contraction principle.
In 2005, Nieto, Rodŕıguez-López [14] proved a fixed point
theoremby relaxing some conditions in Ran-Reurings [13]. In
2008, Suzuki [15] proved a fixed point theorem by assuming
contraction condition on those elements which satisfy the
given condition. Besides all these results, there exist various
maps on metric spaces which possess a fixed point. This is
because either the underlying metric space is not complete
or the contraction condition is not satisfied. In this paper, we
have tackled both the problems in setting of ordered metric
spaces.

First, we recall some well-known results.

Theorem 1 ((Banach contraction principle) [1]). Let (𝑋, 𝑑) be
a complete metric space and 𝑓 : 𝑋 󳨀→ 𝑋 be a self-mapping
such that for all 𝜍, 𝜇 ∈ 𝑋,

𝑑 (𝑓 (𝜍) , 𝑓 (𝜇)) ≤ 𝛼𝑑 (𝜍, 𝜇) , (1)

where 𝛼 ∈ [0, 1). Then 𝑓 has a unique fixed point in𝑋.

Theorem 2 ((Ran-Reurings theorem) [13]). Let (𝑋, 𝑑, ≤ be a
partially ordered complete metric space such that every pair
(𝜍, 𝜇) ∈ 𝑋2 has a lower bound and an upper bound. Suppose
𝐹 : 𝑋 󳨀→ 𝑋 is a continuous and monotone map (𝑖.𝑒., either
order-preserving or order-reversing ) such that

(1) 𝑑(𝐹(𝜍), 𝐹(𝜇)) ≤ 𝑐𝑑(𝜍, 𝜇) for all 𝜍 ≥ 𝜇, where 0 < 𝑐 < 1;

(2) there exists 𝜍
0
∈ 𝑋 such that 𝜍

0
≤ 𝐹(𝜍
0
) or 𝜍
0
≥ 𝐹(𝜍
0
).

Then 𝐹 has a unique fixed point, say 𝜍 ∈ 𝑋. Moreover, for every
𝜍 ∈ 𝑋,

lim
𝑛󳨀→∞

𝐹𝑛 (𝜍) = 𝜍. (2)
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Theorem 3 ((Suzuki) [15]). Let (𝑋, 𝑑) be a complete metric
space and 𝑓 : 𝑋 󳨀→ 𝑋 be a self-map. Define 𝜓 : [0, 1) 󳨀→
(1/2, 1] by

𝜓 (𝑟) =

{{{{{{
{{{{{{
{

1, 0 ≤ 𝑟 ≤ 1
2 (√5 − 1) ,

1 − 𝑟
𝑟2 , 1

2 (√5 − 1) < 𝑟 < 1
√2 ,1

1 + 𝑟 ,
1
√2 ≤ 𝑟 < 1.

(3)

Assume there exists 𝛼 ∈ [0, 1) such that
𝜓 (𝑟) 𝑑 (𝜍, 𝑓 (𝜍)) ≤ 𝑑 (𝜍, 𝜇) 󳨐⇒
𝑑 (𝑓 (𝜍) , 𝑓 (𝜇)) ≤ 𝛼𝑑 (𝜍, 𝜇) ,

(4)

for all 𝜍, 𝜇 ∈ 𝑋. Then 𝑓 has a unique fixed point in𝑋.

Definition 4 (see [12]). A sequence {𝜍
𝑛
} in an ordered set

(𝑋,⪯) is said to be increasing or ascending (resp. strictly
increasing) if for 𝑚 ≤ 𝑛, 𝜍

𝑚
⪯ 𝜍
𝑛
(resp. 𝜍

𝑚
⪯ 𝜍
𝑛
and 𝜍
𝑚

̸= 𝜍
𝑛
.

We denote it by 𝜍
𝑚
≺ 𝜍
𝑛
).

Definition 5 (see [16]). An ordered metric space (𝑋, 𝑑, ⪯) is
said to be𝑂-complete, if every increasing Cauchy sequence in
𝑋 converges in 𝑋. In an ordered metric space, completeness
implies 𝑂-completeness.

In this paper, we introduce a new contraction condition
which is assumed to hold for comparable elements of a subset
of whole space. Our result guarantees the existence of a fixed
point in such cases where neither Banach contraction princi-
ple nor Ran-Reurings and other theorems can be applied.We
prove that, under certain conditions, noncontractive maps
on incomplete metric spaces have also fixed points. We give
examples to illustrate our concepts and obtained results. We
also discuss some classes of contraction maps.

2. Main Results

First, we present the following definitions along with some
examples.

Definition 6. Let (𝑋, ⪯) be an ordered set and 𝑓 : 𝑋 󳨀→ 𝑋 be
a self-map. A subset 𝐴 ⊆ 𝑋 is said to be a 𝑡-subset of 𝑋 with
respect to 𝑓 if

𝜍 ⪯ 𝑓 (𝜍) for all 𝜍 ∈ 𝐴. (5)

Example 7. Let𝑋 = R be equipped with the natural ordering
≤. Define 𝑓 : R 󳨀→ R by 𝑓(𝜍) = 𝜍2. The following are 𝑡-
subsets of𝑋 with respect to 𝑓:

(i) 𝐴 = [1,∞);
(ii) 𝐴 = (−∞, 0].

Example 8. Let 𝑋 = 𝐶[𝑎, 𝑏]. Equip 𝑋 with the ordering ⪯
defined as 𝑓 ⪯ 𝑔 iff 𝑓(𝑡) ≤ 𝑔(𝑡) for each 𝑡 ∈ [𝑎, 𝑏] and define
𝐹 : 𝑋 󳨀→ 𝑋 by 𝐹(𝑓) = 3𝑓 + 1. Then 𝐴 = {𝑓 ∈ 𝑋 : 𝑓(𝑡) ≥
0, for each, 𝑡 ∈ [𝑎, 𝑏]}, is a 𝑡-subset of 𝑋 with respect to 𝐹.

Definition 9. Let (𝑋, 𝑑, ⪯) be a partially ordered metric space
and 𝑓 : 𝑋 󳨀→ 𝑋 be a self-map. For any subset 𝐴 ⊆ 𝑋 of𝑋, 𝑓
is said to be a 𝑡-contraction with respect to𝐴 if for all 𝜍, 𝜇 ∈ 𝐴
with 𝜍 ≺ 𝜇, we have

𝑑 (𝜇, 𝑓𝜇) ≤ 𝛼𝑑 (𝜍, 𝑓𝜍) , (6)

where 𝛼 ∈ (0, 1).
The following examples illustrate Definition 9.

Example 10. Let us take 𝑋 = (−5, 5) ∩ Q. Endow 𝑋 with the
usual metric ofR and the natural ordering ≤. Let us consider
the subset 𝐴 ⊆ 𝑋 defined by 𝐴 = {𝑎

𝑛
: 𝑎
𝑛+1

= 𝑎
𝑛
/3, 𝑛 ≥

0 with 𝑎
0
= −2}. Then 𝐴 = {−2, −2/3, −2/9, . . .}. Define 𝑓 :

𝑋 󳨀→ 𝑋 by

𝑓 (𝜍) = {
{
{

𝜍
3 , 𝜍 ∈ 𝐴,
𝜍, 𝜍 ∈ 𝐴𝑐.

(7)

For any 𝜍, 𝜇 ∈ 𝐴 with 𝜍 < 𝜇, we have 𝑑(𝜍, 𝑓(𝜍)) = −2𝜍/3,
𝑑(𝜇, 𝑓(𝜇)) = −2𝜇/3 and (3𝜇 − 𝜍) ≥ 0. Take 𝛼 = 1/3. For such
𝜍, 𝜇, we get

𝛼𝑑 (𝜍, 𝑓 (𝜍)) − 𝑑 (𝜇, 𝑓 (𝜇)) = −2𝜍9 + 2𝜇
3 = 2

9 (3𝜇 − 𝜍)

≥ 0.
(8)

Hence 𝑓 is a 𝑡-contraction with respect to 𝐴.
Example 11. Let𝑋 = (−∞, 0) ∩Q be endowed with the usual
metric of R and the natural ordering ≤. Define 𝑓 : 𝑋 󳨀→ 𝑋
by 𝑓(𝜍) = 3𝜍 + 1 and take 𝐴 = {−41, −14, −5, −2, −1}. Clearly,
𝑓 is a 𝑡-contraction with respect to 𝐴.

Our first main result is as follows.

Theorem 12. Let (𝑋, 𝑑, ⪯) be an 𝑂-complete ordered metric
space and 𝑓 : 𝑋 󳨀→ 𝑋 be a self-map. Let 𝐴 ⊆ 𝑋 be any
nonempty 𝑡-subset with respect to 𝑓. Suppose that

(a) 𝑓 is a 𝑡-contraction with respect to 𝐴;
(b) 𝑓 is continuous;
(c) 𝑓(𝐴) ⊆ 𝐴.

Then 𝑓 has at least one fixed point in𝑋.

Proof. The subset 𝐴 is nonempty. Let 𝜍
0
∈ 𝐴, so 𝜍

0
⪯ 𝑓(𝜍

0
).

If 𝜍
0

= 𝑓(𝜍
0
), the proof is completed. Otherwise, choose

𝜍
1
= 𝑓(𝜍

0
). By assumption (c), we have 𝜍

1
= 𝑓(𝜍

0
) ∈ 𝐴.

By definition of a 𝑡-set, 𝜍
1

⪯ 𝑓(𝜍
1
). If 𝜍

1
= 𝑓(𝜍

1
), the

proof is completed. Otherwise, choose 𝜍
2
= 𝑓(𝜍

1
). Therefore,

𝜍
2
= 𝑓(𝜍

1
) ∈ 𝐴. Continuing in this process, we get a strictly

increasing sequence {𝜍
𝑛
} ∈ 𝐴 such that

𝜍
𝑛+1

= 𝑓 (𝜍
𝑛
) . (9)

As 𝜍
0
, 𝜍
1
∈ 𝐴 with 𝜍

0
≺ 𝜍
1
, then by (6) we have

𝑑 (𝜍
1
, 𝑓 (𝜍
1
)) ≤ 𝛼𝑑 (𝜍

0
, 𝑓 (𝜍
0
)) . (10)



Journal of Function Spaces 3

Again, as 𝜍
1
, 𝜍
2
∈ 𝐴 with 𝜍

1
≺ 𝜍
2
, we have

𝑑 (𝜍
2
, 𝑓 (𝜍
2
)) ≤ 𝛼𝑑 (𝜍

1
, 𝑓 (𝜍
1
)) . (11)

Using (10) in (11), we have

𝑑 (𝜍
2
, 𝑓 (𝜍
2
)) ≤ 𝛼2𝑑 (𝜍

0
, 𝑓 (𝜍
0
)) . (12)

Continuing in this way, we get

𝑑 (𝜍
𝑛
, 𝑓 (𝜍
𝑛
)) ≤ 𝛼𝑛𝑑 (𝜍

0
, 𝑓 (𝜍
0
)) . (13)

Now, we show that {𝜍
𝑛
} is a Cauchy sequence. For 𝑛 < 𝑚, by

using triangular inequality, (9) and (13), we get

𝑑 (𝜍
𝑛
, 𝜍
𝑚
) ≤ 𝑑 (𝜍

𝑛
, 𝜍
𝑛+1

) + 𝑑 (𝜍
𝑛+1

, 𝜍
𝑛+2

) + ⋅ ⋅ ⋅
+ 𝑑 (𝜍

𝑚−1
, 𝜍
𝑚
) ,

= 𝑑 (𝜍
𝑛
, 𝑓 (𝜍
𝑛
)) + 𝑑 (𝜍

𝑛+1
, 𝑓 (𝜍
𝑛+1

)) + ⋅ ⋅ ⋅
+ 𝑑 (𝜍

𝑚−1
, 𝑓 (𝜍
𝑚−1

)) ,
≤ 𝛼𝑛𝑑 (𝜍

0
, 𝑓 (𝜍
0
)) + 𝛼𝑛+1𝑑 (𝜍

0
, 𝑓 (𝜍
0
)) + ⋅ ⋅ ⋅

+ 𝛼𝑚−1𝑑 (𝜍
0
, 𝑓 (𝜍
0
)) ,

≤ (𝛼𝑛 + 𝛼𝑛+1 + ⋅ ⋅ ⋅ + 𝛼𝑚−𝑛−1) 𝑑 (𝜍
0
, 𝑓 (𝜍
0
)) ,

≤ 𝛼𝑛
1 − 𝛼𝑑 (𝜍0, 𝑓 (𝜍

0
)) .

(14)

This shows that {𝜍
𝑛
} is an increasing Cauchy sequence in 𝐴

and hence in 𝑋. But 𝑋 is 𝑂-complete; therefore, there exists
𝑢 ∈ 𝑋 such that

𝜍
𝑛
󳨀→ 𝑢 𝑎𝑠 𝑛 󳨀→ ∞. (15)

Since 𝑓 is continuous, we have

𝑓 (𝜍
𝑛
) 󳨀→ 𝑓 (𝑢) . (16)

Taking 𝑛 󳨀→ ∞ in (13), we have

lim
𝑛󳨀→∞

𝑑 (𝜍
𝑛
, 𝑓 (𝜍
𝑛
)) = 0. (17)

So 𝑑(lim
𝑛󳨀→∞

𝜍
𝑛
, lim
𝑛󳨀→∞

𝑓(𝜍
𝑛
)) = 0. By using (15) and (16),

𝑓(𝑢) = 𝑢.Thus, 𝑢 is a fixed point of 𝑓 in𝑋.

Now, we present an example illustrating Theorem 12,
where Banach contraction principle, Ran-Reurings theorem,
Suzuki theorem, and other results cannot be applied.

Example 13. Let 𝑋 = (−4,∞) be endowed with the usual
metric and the natural ordering ≤. Obviously, (𝑋, 𝑑, ≤) is an
𝑂-complete ordered metric space. Define 𝑓 : 𝑋 󳨀→ 𝑋 by

𝑓 (𝜍) = {
{
{

𝜍
2 , 𝜍 < 0
𝜍2, 𝜍 ≥ 0.

(18)

Thus𝑓 is a continuousmapping on𝑋. Considering the subset
𝐴 ⊆ 𝑋 as 𝐴 = {𝑎

𝑛
: 𝑎
𝑛+1

= 𝑎
𝑛
/2, 𝑛 ≥ 0 with 𝑎

0
= −3}, then

𝐴 = {−3, −3/2, −3/4, −3/8, . . .}. Clearly, 𝐴 is a 𝑡-subset of 𝑋
with respect to 𝑓 and 𝑓(𝐴) ⊆ 𝐴. Now, we show that 𝑓 is a 𝑡-
contraction with respect to𝐴. For any 𝜍, 𝜇 ∈ 𝐴with 𝜍 < 𝜇, we
have 𝑑(𝜍, 𝑓(𝜍)) = −𝜍/2, 𝑑(𝜇, 𝑓(𝜇)) = −𝜇/2, and (2𝜇 − 𝜍) ≥ 0.
Set 𝛼 = 1/2. For such 𝜍, 𝜇 ∈ 𝐴, we get

𝛼𝑑 (𝜍, 𝑓 (𝜍)) − 𝑑 (𝜇, 𝑓 (𝜇)) = − 𝜍4 + 𝜇
2 = 1

4 (2𝜇 − 𝜍)

≥ 0.
(19)

Hence 𝑓 is a 𝑡-contraction with respect to 𝐴. Thus all the
conditions ofTheorem 12 are satisfied, and𝑓 has a fixed point.

Our second main result is as follows.

Theorem 14. Let (𝑋, 𝑑, ⪯) be a 𝑂-complete ordered metric
space and 𝑓 : 𝑋 󳨀→ 𝑋 be a self-map. Let 𝐴 ⊆ 𝑋. Suppose
that

(i) 𝑓(𝐴) ⊆ 𝐴;
(ii) 𝑓 is nondecreasing on 𝐴;
(iii) 𝑓 is continuous on𝑋;
(iv) there exists 𝜍

0
∈ 𝐴 such that 𝜍

0
⪯ 𝑓(𝜍

0
);

(v) 𝑓 is a 𝑡-contraction with respect to 𝐴.
Then 𝑓 has at least one fixed point in𝑋.

Proof. As 𝜍
0
∈ 𝐴 with 𝜍

0
⪯ 𝑓(𝜍

0
). If 𝜍
0
= 𝑓(𝜍

0
), the proof

is completed. Otherwise, choose 𝑓(𝜍
0
) = 𝜍

1
∈ 𝐴 such that

𝜍
0
≺ 𝜍
1
. Continuing this process and using monotonicity of

𝑓 in 𝐴, we get a strictly increasing Cauchy sequence {𝜍
𝑛
} in𝐴

such that 𝜍
𝑛+1

= 𝑓(𝜍
𝑛
). As 𝜍

0
≺ 𝜍
1
, using (6), we have

𝑑 (𝜍
1
, 𝑓 (𝜍
1
)) ≤ 𝛼𝑑 (𝜍

0
, 𝑓 (𝜍
0
)) . (20)

Again as 𝜍
1
, 𝜍
2
∈ 𝐴 with 𝜍

1
≺ 𝜍
2
, we have

𝑑 (𝜍
2
, 𝑓 (𝜍
2
)) ≤ 𝛼𝑑 (𝜍

1
, 𝑓 (𝜍
1
)) . (21)

Using (20) in (21), we get

𝑑 (𝜍
2
, 𝑓 (𝜍
2
)) ≤ 𝛼2𝑑 (𝜍

0
, 𝑓 (𝜍
0
)) . (22)

Continuing in this way, we get

𝑑 (𝜍
𝑛
, 𝑓 (𝜍
𝑛
)) ≤ 𝛼𝑛𝑑 (𝜍

0
, 𝑓 (𝜍
0
)) . (23)

As Theorem 12, {𝜍
𝑛
} is an increasing Cauchy sequence in 𝐴

and hence in 𝑋. But 𝑋 is 𝑂-complete, so there exists 𝑢 ∈ 𝑋
such that

𝜍
𝑛
󳨀→ 𝑢, as 𝑛 󳨀→ ∞. (24)

Since 𝑓 is continuous on 𝑋,

𝑓 (𝜍
𝑛
) 󳨀→ 𝑓 (𝑢) . (25)
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By taking 𝑛 󳨀→ ∞ in (23) and using continuity of metric 𝑑,
we get

lim
𝑛󳨀→∞

𝑑 (𝜍
𝑛
, 𝑓 (𝜍
𝑛
)) = 0. (26)

Then

𝑑 ( lim
𝑛󳨀→∞

𝜍
𝑛
, lim
𝑛󳨀→∞

𝑓 (𝜍
𝑛
)) = 0. (27)

By using (24) and (25), we get 𝑓(𝑢) = 𝑢, and so 𝑢 is a fixed
point of 𝑓 in 𝑋.

The following examples show that Theorem 12 cannot be
applied, while the existence of a fixed point can be obtained
using Theorem 14.

Example 15. Let𝑋 = R be endowedwith the usualmetric and
the natural ordering≤.Then (𝑋, 𝑑, ⪯) is an𝑂-completemetric
space. Let us define 𝑓 : 𝑋 󳨀→ 𝑋 by 𝑓(𝜍) = 𝜍3. Clearly, 𝑓 is
a continuous function. Note that neither Banach contraction
principle, nor Ran-Reurings theorem, nor Suzuki result can
be applied. Now, we show that Theorem 14 can work in this
case. Choose the subset 𝐴 ⊆ 𝑋 such that

𝐴 = {𝑎
𝑛
: 𝑎
𝑛+1

= 𝑎3
𝑛
, for 𝑛 ≥ 0, with 𝑎

0
= −2}

∪ {−1} .
(28)

Then 𝐴 = {. . . , −512, −8, −2, −1}. Clearly, 𝐴 is not a 𝑡-subset
with respect to 𝑓. Thus, Theorem 12 cannot be applied. Now,
𝑓(𝐴) ⊆ 𝐴 and𝑓 is nondecreasing in𝐴. So, it remains to prove
that (6) is satisfied. For any 𝜍, 𝜇 ∈ 𝐴 with 𝜍 < 𝜇, we have
𝑑(𝜍, 𝑓(𝜍)) = 𝜍 − 𝜍3 and 𝑑(𝜇, 𝑓(𝜇)) = 𝜇 − 𝜇3. Choose 𝛼 = 1/3.
We have

𝛼𝑑 (𝜍, 𝑓 (𝜍)) − 𝑑 (𝜇, 𝑓 (𝜇)) = 1
3 (𝜍 − 𝜍3) − (𝜇 − 𝜇3)

= 1
3 [(3𝜇3 − 𝜍3) − (3𝜇 − 𝜍)] ≥ 0.

(29)

Thus, all the conditions of Theorem 14 are satisfied, and so 𝑓
has a fixed point in𝑋.

Example 16. Let 𝑋 = R be endowed with the usual metric
and the natural ordering ≤. Then (𝑋, 𝑑, ⪯) is an 𝑂-complete
metric space. Let us define 𝑓 : 𝑋 󳨀→ 𝑋 by

𝑓 (𝜍) = {
{
{

−𝜍2 − 𝜍, 𝜍 ≤ −2
𝜍3 + 6, 𝜍 > −2.

(30)

Mention that 𝑓 is a continuous function on 𝑋. Choose the
subset 𝐴 ⊆ 𝑋 such that

𝐴 = {𝑎
𝑛
: 𝑎
𝑛+1

= −𝑎2
𝑛
− 𝑎
𝑛
, for 𝑛 ≥ 0, with 𝑎

0
= −3}

∪ {−2} .
(31)

Then 𝐴 = {. . . , −30, −6, −3, −2}. Clearly, 𝑓(𝐴) ⊆ 𝐴 and 𝑓
is nondecreasing in 𝐴. Now, it remains to prove that (6) is

satisfied. For any 𝜍, 𝜇 ∈ 𝐴 with 𝜍 < 𝜇, we have 𝑑(𝜍, 𝑓(𝜍)) =
𝜍2 + 2𝜍 and 𝑑(𝜇, 𝑓(𝜇)) = 𝜇2 + 2𝜇. Choose 𝛼 = 1/2. We have

𝛼𝑑 (𝜍, 𝑓 (𝜍)) − 𝑑 (𝜇, 𝑓 (𝜇)) = 1
2 (𝜍2 + 2𝜍) − (𝜇2 + 2𝜇)

= 1
2 [(𝜍2 − 2𝜇2) − (4𝜇 − 2𝜍)] ≥ 0.

(32)

Thus, all the conditions of Theorem 14 are satisfied, so 𝑓 has
a fixed point in 𝑋.

Corollary 17. If all the conditions of Theorem 12 are satisfied,
then the fixed point of 𝑓 exists and lies in 𝐴 (closure of 𝐴).
Proof. Theorem 12 guarantees the existence of a fixed point
in 𝑋. From (15), {𝜍

𝑛
} is a sequence in 𝐴 converging to 𝑢 ∈ 𝑋;

therefore, 𝑢 ∈ 𝐴.
Theorem 18. Let (𝑋, 𝑑, ⪯) be an ordered metric space not
necessarily complete and𝑓 : 𝑋 󳨀→ 𝑋 be a continuous self-map
such that 𝑓(𝑋) is 𝑂-complete and 𝜍 ⪯ 𝑓(𝜍) for all 𝜍 ∈ 𝑓(𝑋).
Suppose that

𝑑 (𝜇, 𝑓 (𝜇)) ≤ 𝛼𝑑 (𝜍, 𝑓 (𝜍)) ,
∀𝜍, 𝜇 ∈ 𝑓 (𝑋) 𝑤𝑖𝑡ℎ 𝜍 ≺ 𝜇,

(33)

where 𝛼 ∈ (0, 1). Then 𝑓 has at least one fixed point in 𝑓(𝑋).
Also, every strict upper bound of fixed points of 𝑓 in 𝑓(𝑋) is
also a fixed point of 𝑓.
Proof. Let 𝜍

0
∈ 𝑓(𝑋). By assumption, 𝜍

0
⪯ 𝑓(𝜍

0
). If 𝜍

0
=

𝑓(𝜍
0
), the proof is completed. Otherwise, let 𝜍

1
= 𝑓(𝜍

0
).

Then 𝜍
1
∈ 𝑓(𝑋) and we have 𝜍

1
⪯ 𝑓(𝜍

1
). If 𝜍

1
= 𝑓(𝜍

1
),

again the proof is completed. Otherwise, continuing in the
process, we get an increasing sequence {𝜍

𝑛
} in 𝑓(𝑋) such that

𝜍
𝑛+1

= 𝑓(𝜍
𝑛
). Now, 𝜍

0
, 𝜍
1
∈ 𝑓(𝑋) with 𝜍

0
≺ 𝜍
1
; then, by (33),

we have

𝑑 (𝜍
1
, 𝑓 (𝜍
1
)) ≤ 𝛼𝑑 (𝜍

0
, 𝑓 (𝜍
0
)) . (34)

Again, as 𝜍
1
, 𝜍
2
∈ 𝑓(𝑋) with 𝜍

1
≺ 𝜍
2
, we have

𝑑 (𝜍
2
, 𝑓 (𝜍
2
)) ≤ 𝛼𝑑 (𝜍

1
, 𝑓 (𝜍
1
)) . (35)

Using (34), we get

𝑑 (𝜍
2
, 𝑓 (𝜍
2
)) ≤ 𝛼2𝑑 (𝜍

0
, 𝑓 (𝜍
0
)) . (36)

Continuing in this way, we get

𝑑 (𝜍
𝑛
, 𝑓 (𝜍
𝑛
)) ≤ 𝛼𝑛𝑑 (𝜍

0
, 𝑓 (𝜍
0
)) . (37)

As Theorem 12, {𝜍
𝑛
} is an increasing Cauchy sequence in

𝑓(𝑋), which is 𝑂-complete, so there exists 𝑧 ∈ 𝑓(𝑋) such
that

𝜍
𝑛
󳨀→ 𝑧 𝑎𝑠 𝑛 󳨀→ ∞. (38)

The continuity of 𝑓 implies that

𝑓 (𝜍
𝑛
) 󳨀→ 𝑓 (𝑧) 𝑎𝑠 𝑛 󳨀→ ∞. (39)
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Letting 𝑛 󳨀→ ∞ in (37) and using (38) and (39), we get

lim
𝑛󳨀→∞

𝑑 (𝜍
𝑛
, 𝑓 (𝜍
𝑛
)) = 0. (40)

Hence 𝑑(lim
𝑛󳨀→∞

𝜍
𝑛
, lim
𝑛󳨀→∞

𝑓(𝜍
𝑛
)) = 0. We deduce that

𝑓(𝑧) = 𝑧. Thus 𝑧 is a fixed point of 𝑓 in 𝑓(𝑋).
Now, let 𝑘 be any strict upper bound of 𝑧 in 𝑓(𝑋), 𝑖.𝑒.,

𝑘, 𝑧 ∈ 𝑓(𝑋) such that 𝑧 ≺ 𝑘. By (33), we have

𝑑 (𝑘, 𝑓 (𝑘)) ≤ 𝛼𝑑 (𝑧, 𝑓 (𝑧)) = 0 (41)

This implies that 𝑘 = 𝑓(𝑘), so 𝑘 is also a fixed point of 𝑓 in
𝑓(𝑋).
Example 19. Let 𝑋 = (−1,∞) be equipped with the natural
ordering ≤ and the usual metric 𝑑. Let 𝑓 : 𝑋 󳨀→ 𝑋 be a
self-map defined by

𝑓 (𝜍) = {
{
{

𝜍2, −1 < 𝜍 < 0
𝜍, 𝜍 ≥ 0.

(42)

Clearly, 𝑓 is continuous and 𝑓(𝑋) = [0,∞) is an 𝑂-complete
metric space. It can be seen that𝑓 satisfies all the assumptions
of Theorem 18, and so there exists a fixed point of 𝑓 in 𝑓(𝑋).
It can be seen that the existing known classical fixed point
results in literature cannot be applied.

Corollary 20. If, in Theorem 18, we replace the 𝑂-complete-
ness of 𝑓(𝑋) by the fact that 𝐴 (closure of 𝐴) is complete, then
𝑓 has a fixed point.

Proof. From (15), we have proved that {𝜍
𝑛
} is a Cauchy

sequence in 𝐴 and hence in 𝐴. Since 𝐴 is complete, {𝜍
𝑛
}

converges to 𝑢 ∈ 𝐴. We have proved in Theorem 12 that 𝑢
is a fixed point.

Remarks. Let (𝑋, 𝑑, ⪯) be a partially ordered metric space.
Consider

𝐵
𝑡
(𝑓,𝑋) = {𝑓 : 𝑋 󳨀→ 𝑋 : 𝑑 (𝑓𝜍, 𝑓𝑦)
≤ 𝛼𝑑 (𝜍, 𝜇) ; 𝜍, 𝜇 ∈ 𝑋, 𝛼 ∈ (0, 1)} ,

(43)

and

𝑅
𝑡
(𝑓,𝑋) = {𝑓 : 𝑋 󳨀→ 𝑋 : 𝑑 (𝑓𝜍, 𝑓𝜇)
≤ 𝛼𝑑 (𝜍, 𝜇) ; 𝜍, 𝜇 ∈ 𝑋, 𝜍 ⪯ 𝜇, 𝛼 ∈ (0, 1)} .

(44)

We have 𝐵
𝑡
(𝑓, 𝑋) ⊆ 𝑅

𝑡
(𝑓, 𝑋). Further, let𝐴 be a 𝑡-subset of𝑋

such that 𝑓(𝐴) ⊆ 𝐴. Define

𝑄 (𝑓, 𝐴,𝑋) = {𝑓 : 𝑋 󳨀→ 𝑋 : 𝑑 (𝜇, 𝑓𝜇)
≤ 𝛼𝑑 (𝜍, 𝑓𝜍) ; 𝜍, 𝜇 ∈ 𝐴, 𝜍 ≺ 𝜇, 𝛼 ∈ (0, 1)} .

(45)

We shall show that 𝑅
𝑡
(𝑓, 𝑋) ⊆ 𝑄(𝑓,𝐴, 𝑋) provided that 𝐴

exists.

For this, let 𝑔 ∈ 𝑅
𝑡
(𝑓, 𝑋). Suppose there exists 𝐴 ⊆ 𝑋

such that 𝑔(𝐴) ⊆ 𝐴 and𝐴 is a 𝑡-subset with respect to𝑔.Then
𝑑(𝑔𝜍, 𝑔𝜇) ≤ 𝛼𝑑(𝜍, 𝜇) for all 𝜍, 𝜇 ∈ 𝑋 with 𝜍 ⪯ 𝜇. In particular,

𝑑 (𝑔𝜍, 𝑔𝜇) ≤ 𝛼𝑑 (𝜍, 𝜇) , ∀𝜍, 𝜇 ∈ 𝐴 𝑤𝑖𝑡ℎ 𝜍 ≺ 𝜇. (46)

As 𝜍, 𝜇 ∈ 𝐴, 𝜍 ⪯ 𝑔𝜍 and 𝜇 ⪯ 𝑔𝜇. Also, 𝑔(𝐴) ⊆ 𝐴 implies that
𝑔𝜍, 𝑔𝜇 ∈ 𝐴. Since (46) holds for all 𝜇 ∈ 𝐴 such that 𝜍 ≺ 𝜇, we
can replace 𝜇 by 𝑔𝜍. From (46), we get

𝑑 (𝜇, 𝑔𝜇) ≤ 𝛼𝑑 (𝜍, 𝑔𝜍) , ∀𝜍, 𝜇 ∈ 𝐴, 𝜍 ≺ 𝜇. (47)

This shows that 𝑔 ∈ 𝑄(𝑓, 𝐴,𝑋). Hence𝑅
𝑡
(𝑓, 𝑋) ⊆ 𝑄(𝑓, 𝐴,𝑋).

It should be noted that the converse is not true in general.

3. Conclusion

In this article, we have introduced new contraction type
mappings assumed to hold only on comparable elements
of a subset of whole space. By using this concept, we have
guaranteed the existence of a fixed point in such cases where
Banach contraction principle, Ran-Reurings theorem, Suzuki
theorem, and others remain silent. The field for applying
this result is not restricted to only contractive maps. This
result can be applied to expansive and nonexpansive maps
too. Further, it is clear that the fixed point is unique if the 𝑡-
subset of𝑋with respect to𝑓 is connected and either bounded
above or bounded below, but not both. However, proof for
uniqueness needs further explorations.

Inclosing, we want to bring to the reader attention the
following open questions.

Question 1. Is it possible to replace the continuity hypothesis
inTheorems 12 and 18, by a weaker condition?

Question 2. In Theorems 12 and 18, under what condition
we will have uniqueness of the fixed point? If such condition
exists, does it give us uniqueness in an orbit or in the whole
space?
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