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Frame theory is exciting and dynamic with applications to a wide variety of areas in mathematics and engineering. In this paper,
we introduce the concept of Continuous ∗-K-g-frame in Hilbert C∗-Modules and we give some properties.

1. Introduction and Preliminaries

The concept of frames in Hilbert spaces has been introduced
by Duffin and Schaeffer [1] in 1952 to study some deep prob-
lems in nonharmonic Fourier series, after the fundamental
paper [2] by Daubechies, Grossman andMeyer, frame theory
began to be widely used, particularly in the more specialized
context of wavelet frames and Gabor frames [3].

Traditionally, frames have been used in signal processing,
image processing, data compression, and sampling theory. A
discreet frame is a countable family of elements in a separable
Hilbert space which allows for a stable, not necessarily
unique, decomposition of an arbitrary element into an expan-
sion of the frame elements. The concept of a generalization
of frames to a family indexed by some locally compact space
endowed with a Radon measure was proposed by G. Kaiser
[4] and independently by Ali, Antoine, and Gazeau [5].These
frames are known as continuous frames. Gabardo and Han
in [6] called these frames associated with measurable spaces,
Askari-Hemmat, Dehghan, and Radjabalipour in [7] called
them generalized frames and in mathematical physics they
are referred to as coherent states [5].

In this paper, we introduce the notion of Continuous∗-K-
g-Frame which are generalization of ∗-K-g-Frame in Hilbert
𝐶∗-Modules introduced by M. Rossafi and S. Kabbaj [8] and
we establish some new results.

The paper is organized as follows: we continue this
introductory sectionwe briefly recall the definitions and basic
properties of 𝐶∗-algebra, Hilbert 𝐶∗-modules. In Section 2,
we introduce the Continuous ∗-K-g-Frame, the Continuous

pre-∗-K-g-frame operator, and the Continuous ∗-K-g-frame
operator; also we establish here properties.

In the following we briefly recall the definitions and basic
properties of 𝐶∗-algebra, HilbertA-modules. Our reference
for 𝐶∗-algebras is [9, 10]. For a 𝐶∗-algebra A if 𝑎 ∈ A is
positive we write 𝑎 ≥ 0 and A+ denotes the set of positive
elements ofA.

Definition 1 (see [11]). LetA be a unital 𝐶∗-algebra andH a
leftA-module, such that the linear structures ofA andH are
compatible. H is a pre-Hilbert A-module if H is equipped
with anA-valued inner product ⟨., .⟩A :H×H 󳨀→ A, such
that is sesquilinear, positive definite, and respects the module
action. In the other words,

(i) ⟨𝑥, 𝑥⟩A ≥ 0 for all 𝑥 ∈H and ⟨𝑥, 𝑥⟩A = 0 if and only
if 𝑥 = 0.

(ii) ⟨𝑎𝑥 + 𝑦, 𝑧⟩A = 𝑎⟨𝑥, 𝑦⟩A + ⟨𝑦, 𝑧⟩A for all 𝑎 ∈ A and
𝑥, 𝑦, 𝑧 ∈H.

(iii) ⟨𝑥, 𝑦⟩A = ⟨𝑦, 𝑥⟩∗A for all 𝑥, 𝑦 ∈H.

For 𝑥 ∈ H, we define ‖𝑥‖ = ‖⟨𝑥, 𝑥⟩A‖1/2. If H is complete
with ‖.‖, it is called a Hilbert A-module or a Hilbert 𝐶∗-
module over A. For every 𝑎 in 𝐶∗-algebra A, we have |𝑎| =
(𝑎∗𝑎)1/2 and the A-valued norm on H is defined by |𝑥| =
⟨𝑥, 𝑥⟩1/2A for 𝑥 ∈H.

Let H and K be two Hilbert A-modules. A map 𝑇 :
H 󳨀→ K is said to be adjointable if there exists a map
𝑇∗ :K 󳨀→H such that ⟨𝑇𝑥, 𝑦⟩A = ⟨𝑥, 𝑇∗𝑦⟩A for all 𝑥 ∈H
and 𝑦 ∈K.
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We reserve the notation 𝐸𝑛𝑑∗A(H,K) for the set of all
adjointable operators from H to K and 𝐸𝑛𝑑∗A(H,H) is
abbreviated to 𝐸𝑛𝑑∗A(H).

The following lemmas will be used to prove our mains
results

Lemma 2 (see [11]). Let H be Hilbert A-module. If 𝑇 ∈
𝐸𝑛𝑑∗A(H), then

⟨𝑇𝑥, 𝑇𝑥⟩ ≤ ‖𝑇‖2 ⟨𝑥, 𝑥⟩ , ∀𝑥 ∈H. (1)

Lemma 3 (see [12]). Let H and K two Hilbert A-Modules
and 𝑇 ∈ 𝐸𝑛𝑑∗(H,K). �en the following statements are
equivalent:

(i) 𝑇 is surjective.
(ii) 𝑇∗ is bounded below with respect to norm; i.e., there is

𝑚 > 0 such that ‖𝑇∗𝑥‖ ≥ 𝑚‖𝑥‖ for all 𝑥 ∈K.
(iii) 𝑇∗ is bounded below with respect to the inner product;

i.e., there is 𝑚󸀠 > 0 such that ⟨𝑇∗𝑥, 𝑇∗𝑥⟩ ≥ 𝑚󸀠⟨𝑥, 𝑥⟩
for all 𝑥 ∈K.

Lemma 4 (see [13]). LetH andK be two HilbertA-Modules
and 𝑇 ∈ 𝐸𝑛𝑑∗(H,K). �en,

(i) if 𝑇 is injective and 𝑇 has closed range, then the
adjointable map 𝑇∗𝑇 is invertible and

󵄩󵄩󵄩󵄩󵄩(𝑇∗𝑇)−1
󵄩󵄩󵄩󵄩󵄩
−1 𝐼H ≤ 𝑇∗𝑇 ≤ ‖𝑇‖2 𝐼H. (2)

(ii) If 𝑇 is surjective, then the adjointable map 𝑇𝑇∗ is
invertible and

󵄩󵄩󵄩󵄩󵄩(𝑇𝑇∗)−1
󵄩󵄩󵄩󵄩󵄩
−1 𝐼K ≤ 𝑇𝑇∗ ≤ ‖𝑇‖2 𝐼K. (3)

2. Continuous ∗-K-g-Frame in Hilbert
𝐶∗-Modules

Let𝑋be a Banach space, (Ω, 𝜇) ameasure space, and function
𝑓 : Ω 󳨀→ 𝑋 a measurable function. Integral of the Banach-
valued function 𝑓 has defined Bochner and others. Most
properties of this integral are similar to those of the integral of
real-valued functions. Because every 𝐶∗-algebra and Hilbert
𝐶∗-module is a Banach space thus we can use this integral
and its properties.

Let (Ω, 𝜇) be a measure space, let𝑈 and 𝑉 be two Hilbert
𝐶∗-modules, {𝑉𝑤 : 𝑤 ∈ Ω} is a sequence of subspaces of V,
and 𝐸𝑛𝑑∗A(𝑈,𝑉𝑤) is the collection of all adjointable A-linear
maps from𝑈 into 𝑉𝑤. We define

⨁
𝑤∈Ω

𝑉𝑤

= {𝑥 = {𝑥𝑤} : 𝑥𝑤 ∈ 𝑉𝑤,
󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫Ω

󵄨󵄨󵄨󵄨𝑥𝑤󵄨󵄨󵄨󵄨2 𝑑𝜇 (𝑤)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩 < ∞} .

(4)

For any 𝑥 = {𝑥𝑤 : 𝑤 ∈ Ω} and 𝑦 = {𝑦𝑤 : 𝑤 ∈
Ω}, if the A-valued inner product is defined by ⟨𝑥, 𝑦⟩ =
∫
Ω
⟨𝑥𝑤, 𝑦𝑤⟩𝑑𝜇(𝑤), the norm is defined by ‖𝑥‖ = ‖⟨𝑥, 𝑥⟩‖1/2,

the⨁𝑤∈Ω𝑉𝑤 is a Hilbert 𝐶∗-module.

Definition 5. Let𝐾 ∈ 𝐸𝑛𝑑∗A(𝑈); we call {Λ𝑤 ∈ 𝐸𝑛𝑑∗A(𝑈,𝑉𝑤) :𝑤 ∈ Ω} a Continuous ∗-K-g-frame for Hilbert 𝐶∗-module𝑈
with respect to {𝑉𝑤 : 𝑤 ∈ Ω} if

(a) for any 𝑥 ∈ 𝑈, the function 𝑥 : Ω 󳨀→ 𝑉𝑤 defined by
𝑥(𝑤) = Λ𝑤𝑥 is measurable;

(b) there exist two strictly nonzero elements 𝐴 and 𝐵 in
A such that

𝐴⟨𝐾∗𝑥,𝐾∗𝑥⟩𝐴∗ ≤ ∫
Ω
⟨Λ𝑤𝑥, Λ𝑤𝑥⟩ 𝑑𝜇 (𝑤)

≤ 𝐵 ⟨𝑥, 𝑥⟩ 𝐵∗, ∀𝑥 ∈ 𝑈.
(5)

The elements 𝐴 and 𝐵 are called Continuous ∗-K-g-frame
bounds.

If 𝐴 = 𝐵 we call this Continuous ∗-K-g-frame a con-
tinuous tight ∗-K-g-frame, and if 𝐴 = 𝐵 = 1A it is called
a continuous Parseval ∗-K-g-frame. If only the right-hand
inequality of (5) is satisfied, we call {Λ𝑤 : 𝑤 ∈ Ω} a
continuous ∗-K-g-Bessel for 𝑈 with respect to {Λ𝑤 : 𝑤 ∈ Ω}
with Bessel bound 𝐵.
Example 6. Let 𝑙∞ be the set of all bounded complex-valued
sequences. For any 𝑢 = {𝑢𝑗}𝑗∈N, V = {V𝑗}𝑗∈N ∈ 𝑙∞, we define

𝑢V = {𝑢𝑗V𝑗}𝑗∈N ,
𝑢∗ = {𝑢𝑗}𝑗∈N ,
‖𝑢‖ = sup

𝑗∈N

󵄨󵄨󵄨󵄨󵄨𝑢𝑗
󵄨󵄨󵄨󵄨󵄨 .

(6)

ThenA = {𝑙∞, ‖.‖} is a C∗-algebra.
LetH = 𝐶0 be the set of all sequences converging to zero.

For any 𝑢, V ∈H we define

⟨𝑢, V⟩ = 𝑢V∗ = {𝑢𝑗𝑢𝑗}𝑗∈N . (7)

ThenH is a HilbertA-module.
Define 𝑓𝑗 = {𝑓𝑗𝑖 }𝑖∈N∗ by 𝑓𝑗𝑖 = 1/2 + 1/𝑖 if 𝑖 = 𝑗 and 𝑓𝑗𝑖 = 0

if 𝑖 ̸= 𝑗 ∀𝑗 ∈ N∗.
Now define the adjointable operator Λ 𝑗 : H 󳨀→

A, Λ 𝑗𝑥 = ⟨𝑥, 𝑓𝑗⟩.
Then for every 𝑥 ∈H we have

∑
𝑗∈N
⟨Λ 𝑗𝑥, Λ 𝑗𝑥⟩ = {12 +

1
𝑖 }𝑖∈N∗ ⟨𝑥, 𝑥⟩ {

1
2 +

1
𝑖 }𝑖∈N∗ . (8)

So {Λ 𝑗}𝑗 is a {1/2 + 1/𝑖}𝑖∈N∗-tight ∗-g-frame.
Let𝐾 :H 󳨀→H defined by 𝐾𝑥 = {𝑥𝑖/𝑖}𝑖∈N∗ .
Then for every 𝑥 ∈H we have

⟨𝐾∗𝑥,𝐾∗𝑥⟩
A
≤ ∑
𝑗∈N
⟨Λ 𝑗𝑥, Λ 𝑗𝑥⟩

= {12 +
1
𝑖 }𝑖∈N∗ ⟨𝑥, 𝑥⟩ {

1
2 +

1
𝑖 }𝑖∈N∗ .

(9)

Now, let (Ω, 𝜇) be a 𝜎-finite measure space with infinite
measure and {𝐻𝜔}𝜔∈Ω be a family ofHilbertA-module (𝐻𝜔 =𝐶0, ∀𝑤 ∈ Ω).
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Since Ω is a 𝜎-finite, it can be written as a disjoint union
Ω = ⋃Ω𝜔 of countably many subsets Ω𝜔 ⊆ Ω, such that
𝜇(Ω𝑘) < ∞, ∀𝑘 ∈ N. Without less of generality, assume that
𝜇(Ω𝑘) > 0∀𝑘 ∈ N.

For each 𝜔 ∈ Ω, define the operator: Λ 𝜔 : 𝐻 󳨀→ 𝐻𝑤 by

Λ𝑤 (𝑥) = 1
𝜇 (Ω𝑘) ⟨𝑥, 𝑓𝑘⟩ ℎ𝜔, ∀𝑥 ∈ 𝐻 (10)

where 𝑘 is such that 𝑤 ∈ Ω𝜔 and ℎ𝜔 is an arbitrary element of
𝐻𝜔, such that ‖ℎ𝜔‖ = 1.

For each 𝑥 ∈ 𝐻, {Λ 𝜔𝑥}𝜔∈Ω is strongly measurable (since
ℎ𝜔 are fixed) and

∫
Ω
⟨Λ 𝜔𝑥, Λ 𝜔𝑥⟩ 𝑑𝜇 (𝜔) = ∑

𝑗∈N

⟨𝑥, 𝑓𝑗⟩ ⟨𝑓𝑗, 𝑥⟩ (11)

So, therefore

⟨𝐾∗𝑥,𝐾∗𝑥⟩ ≤ ∫
Ω
⟨Λ 𝜔𝑥, Λ 𝜔𝑥⟩ 𝑑𝜇 (𝜔)

= ∑
𝑗∈N

⟨𝑥, 𝑓𝑗⟩ ⟨𝑓𝑗, 𝑥⟩

= {12 +
1
𝑖 }𝑖∈N∗ ⟨𝑥, 𝑥⟩ {

1
2 +

1
𝑖 }𝑖∈N∗

(12)

So {Λ 𝜔}𝜔∈Ω is a continuous ∗-K-g-frame.

Remark 7.

(i) Every continuous ∗-g-frame is a continuous ∗-K-g-
frame indeed:
Let {Λ𝑤 ∈ 𝐸𝑛𝑑∗A(𝑈,𝑉𝑤) : 𝑤 ∈ Ω} be a continuous
∗-g-frame for Hilbert 𝐶∗-module 𝑈 with respect to
{𝑉𝑤 : 𝑤 ∈ Ω}, then

𝐴⟨𝑥, 𝑥⟩ 𝐴∗ ≤ ∫
Ω
⟨Λ𝑤𝑥, Λ𝑤𝑥⟩ 𝑑𝜇 (𝑤) ≤ 𝐵 ⟨𝑥, 𝑥⟩ 𝐵∗,

∀𝑥 ∈ 𝑈.
(13)

or

⟨𝐾∗𝑥,𝐾∗𝑥⟩ ≤ ‖𝐾‖2 ⟨𝑥, 𝑥⟩ , ∀𝑥 ∈ 𝑈. (14)

then

(‖𝐾‖−1 𝐴) ⟨𝐾∗𝑥, 𝐾∗𝑥⟩ (‖𝐾‖−1 𝐴)∗

≤ ∫
Ω
⟨Λ𝑤𝑥, Λ𝑤𝑥⟩ 𝑑𝜇 (𝑤) ≤ 𝐵 ⟨𝑥, 𝑥⟩ 𝐵∗

(15)

so let {Λ𝑤 ∈ 𝐸𝑛𝑑∗A(𝑈,𝑉𝑤) : 𝑤 ∈ Ω} be a continuous∗-K-g-frame with lower and upper bounds ‖𝐾‖−1𝐴
and 𝐵, respectively.

(ii) If 𝐾 ∈ 𝐸𝑛𝑑∗A(𝐻) is a surjective operator, then every
continuous ∗-K-g-frame for 𝐻 with respect to {𝑉𝑤 :𝑤 ∈ Ω} is a continuous ∗-g-frame.

Indeed,
if 𝐾 is surjective there exists 𝑚 > 0 such that

𝑚⟨𝑥, 𝑥⟩ ≤ ⟨𝐾∗𝑥,𝐾∗𝑥⟩ (16)

then

(𝐴√𝑚) ⟨𝑥, 𝑥⟩ (𝐴√𝑚)∗ ≤ 𝐴⟨𝐾∗𝑥,𝐾∗𝑥⟩𝐴∗ (17)

or if {Λ𝑤 ∈ 𝐸𝑛𝑑∗A(𝑈,𝑉𝑤) : 𝑤 ∈ Ω} is a continuous
∗-K-g-frame, we have

(𝐴√𝑚) ⟨𝑥, 𝑥⟩ (𝐴√𝑚)∗ ≤ ∫
Ω
⟨Λ𝑤𝑥, Λ𝑤𝑥⟩ 𝑑𝜇 (𝑤)

≤ 𝐵 ⟨𝑥, 𝑥⟩ 𝐵∗
(18)

hence {Λ𝑤 ∈ 𝐸𝑛𝑑∗A(𝑈,𝑉𝑤) : 𝑤 ∈ Ω} is a continuous
∗-g-frame for 𝑈 with lower and upper bounds 𝐴√𝑚
and 𝐵, respectively

Let 𝐾 ∈ 𝐸𝑛𝑑∗A(𝑈), and {Λ𝑤 ∈ 𝐸𝑛𝑑∗A(𝑈,𝑉𝑤) : 𝑤 ∈ Ω}
be a continuous ∗-K-g-frame for Hilbert 𝐶∗-module 𝑈 with
respect to {𝑉𝑤 : 𝑤 ∈ Ω}.

We define an operator 𝑇 : 𝑈 󳨀→⨁𝑤∈Ω𝑉𝑤 by
𝑇𝑥 = {Λ𝑤𝑥 : 𝑤 ∈ Ω} ∀𝑥 ∈ 𝑈, (19)

then 𝑇 is called the continuous ∗-K-g-frame transform.
So its adjoint operator is 𝑇∗ : ⨁𝑤∈Ω𝑉𝑤 󳨀→ 𝑈 given by

𝑇∗ ({𝑥𝜔}𝜔∈Ω) = ∫
Ω
Λ∗𝜔𝑥𝜔𝑑𝜇 (𝑤) (20)

By composing 𝑇 and 𝑇∗, the frame operator 𝑆 = 𝑇∗𝑇 given
by

𝑆𝑥 = ∫
Ω
Λ∗𝜔Λ 𝜔𝑥𝑑𝜇(𝑤), S is called continuous ∗-K-g

frame operator

Theorem 8. �e continuous ∗-K-g frame operator 𝑆 is bound-
ed, positive, self-adjoint, and ‖𝐴−1‖−2‖𝐾‖2 ≤ ‖𝑆‖ ≤ ‖𝐵‖2

Proof. First we show, 𝑆 is a self-adjoint operator. By definition
we have ∀𝑥, 𝑦 ∈ 𝑈

⟨𝑆𝑥, 𝑦⟩ = ⟨∫
Ω
Λ∗𝑤Λ𝑤𝑥𝑑𝜇 (𝑤) , 𝑦⟩

= ∫
Ω
⟨Λ∗𝑤Λ𝑤𝑥, 𝑦⟩ 𝑑𝜇 (𝑤)

= ∫
Ω
⟨𝑥, Λ∗𝑤Λ𝑤𝑦⟩ 𝑑𝜇 (𝑤)

= ⟨𝑥, ∫
Ω
Λ∗𝑤Λ𝑤𝑦𝑑𝜇 (𝑤)⟩ = ⟨𝑥, 𝑆𝑦⟩ .

(21)

Then 𝑆 is a self-adjoint.
Clearly 𝑆 is positive.
By definition of a continuous ∗-K-g-frame we have

𝐴⟨𝐾∗𝑥,𝐾∗𝑥⟩𝐴∗ ≤ ∫
Ω
⟨Λ𝑤𝑥, Λ𝑤𝑥⟩ 𝑑𝜇 (𝑤)

≤ 𝐵 ⟨𝑥, 𝑥⟩ 𝐵∗.
(22)
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So

𝐴⟨𝐾∗𝑥, 𝐾∗𝑥⟩𝐴∗ ≤ ⟨𝑆𝑥, 𝑥⟩ ≤ 𝐵 ⟨𝑥, 𝑥⟩ 𝐵∗. (23)

This gives
󵄩󵄩󵄩󵄩󵄩𝐴−1

󵄩󵄩󵄩󵄩󵄩
−2 󵄩󵄩󵄩󵄩⟨𝐾𝐾∗𝑥, 𝑥⟩󵄩󵄩󵄩󵄩 ≤ ‖⟨𝑆𝑥, 𝑥⟩‖ ≤ ‖𝐵‖2 ‖⟨𝑥, 𝑥⟩‖ . (24)

If we take supremum on all 𝑥 ∈ 𝑈, where ‖𝑥‖ ≤ 1, we
have

󵄩󵄩󵄩󵄩󵄩𝐴−1
󵄩󵄩󵄩󵄩󵄩
−2 ‖𝐾‖2 ≤ ‖𝑆‖ ≤ ‖𝐵‖2 . (25)

Theorem 9. Let 𝐾 ∈ 𝐸𝑛𝑑∗A(𝐻) be surjective and {Λ𝑤 ∈
𝐸𝑛𝑑∗A(𝑈,𝑉𝑤) : 𝑤 ∈ Ω} a continuous ∗-K-g-frame for 𝑈, with
lower and upper bounds 𝐴 and 𝐵, respectively, and with the
continuous ∗-K-g-frame operator 𝑆.

Let 𝑇 ∈ 𝐸𝑛𝑑∗A(𝑈) be invertible; then {Λ𝑤𝑇 : 𝑤 ∈ Ω} is
a continuous ∗-K-g-frame for 𝑈 with continuous ∗-K-g-frame
operator 𝑇∗𝑆𝑇.
Proof. We have

𝐴⟨𝐾∗𝑇𝑥,𝐾∗𝑇𝑥⟩𝐴∗ ≤ ∫
Ω
⟨Λ𝑤𝑇𝑥, Λ𝑤𝑇𝑥⟩ 𝑑𝜇 (𝑤)

≤ 𝐵 ⟨𝑇𝑥, 𝑇𝑥⟩ 𝐵∗, ∀𝑥 ∈ 𝑈.
(26)

Using Lemma 3, we have ‖(𝑇∗𝑇)−1‖−1⟨𝑥, 𝑥⟩ ≤ ⟨𝑇𝑥, 𝑇𝑥⟩, ∀𝑥 ∈
𝑈.

𝐾 is surjective, then there exists𝑚 such that

𝑚⟨𝑇𝑥, 𝑇𝑥⟩ ≤ ⟨𝐾∗𝑇𝑥,𝐾∗𝑇𝑥⟩ (27)

and then

𝑚󵄩󵄩󵄩󵄩󵄩(𝑇∗𝑇)−1
󵄩󵄩󵄩󵄩󵄩
−1 ⟨𝑥, 𝑥⟩ ≤ ⟨𝐾∗𝑇𝑥,𝐾∗𝑇𝑥⟩ (28)

so

𝑚󵄩󵄩󵄩󵄩󵄩(𝑇∗𝑇)−1
󵄩󵄩󵄩󵄩󵄩
−1 𝐴⟨𝑥, 𝑥⟩ 𝐴∗ ≤ 𝐴⟨𝐾∗𝑇𝑥,𝐾∗𝑇𝑥⟩𝐴∗ (29)

Or ‖𝑇−1‖−2 ≤ ‖(𝑇∗𝑇)−1‖−1, this implies

(󵄩󵄩󵄩󵄩󵄩𝑇−1
󵄩󵄩󵄩󵄩󵄩
−1√𝑚𝐴) ⟨𝑥, 𝑥⟩ (󵄩󵄩󵄩󵄩󵄩𝑇−1

󵄩󵄩󵄩󵄩󵄩
−1√𝑚𝐴)∗

≤ 𝐴⟨𝐾∗𝑇𝑥,𝐾∗𝑇𝑥⟩𝐴∗, ∀𝑥 ∈ 𝑈.
(30)

And we know that ⟨𝑇𝑥, 𝑇𝑥⟩ ≤ ‖𝑇‖2⟨𝑥, 𝑥⟩, ∀𝑥 ∈ 𝑈. This
implies that

𝐵 ⟨𝑇𝑥, 𝑇𝑥⟩ 𝐵∗ ≤ (‖𝑇‖ 𝐵) ⟨𝑥, 𝑥⟩ (‖𝑇‖ 𝐵)∗ , ∀𝑥 ∈ 𝑈. (31)

Using (26), (30), (31) we have

(󵄩󵄩󵄩󵄩󵄩𝑇−1
󵄩󵄩󵄩󵄩󵄩
−1√𝑚𝐴) ⟨𝑥, 𝑥⟩ (󵄩󵄩󵄩󵄩󵄩𝑇−1

󵄩󵄩󵄩󵄩󵄩
−1√𝑚𝐴)∗

≤ ∫
Ω
⟨Λ𝑤𝑇𝑥, Λ𝑤𝑇𝑥⟩ 𝑑𝜇 (𝑤)

≤ (‖𝑇‖ 𝐵) ⟨𝑥, 𝑥⟩ (‖𝑇‖ 𝐵)∗
(32)

So {Λ𝑤𝑇 : 𝑤 ∈ Ω} is a continuous ∗-K-g-frame for 𝑈.
Moreover for every 𝑥 ∈ 𝑈, we have

𝑇∗𝑆𝑇𝑥 = 𝑇∗ ∫
Ω
Λ∗𝑤Λ𝑤𝑇𝑥𝑑𝜇 (𝑤)

= ∫
Ω
𝑇∗Λ∗𝑤Λ𝑤𝑇𝑥𝑑𝜇 (𝑤)

= ∫
Ω
(Λ𝑤𝑇)∗ (Λ𝑤𝑇)𝑥𝑑𝜇 (𝑤) .

(33)

This completes the proof.

Corollary 10. Let {Λ𝑤 ∈ 𝐸𝑛𝑑∗A(𝑈,𝑉𝑤) : 𝑤 ∈ Ω} be
a continuous ∗-K-g-frame for 𝑈 and let 𝐾 ∈ 𝐸𝑛𝑑∗A(𝑈)
be surjective, with continuous ∗-K-g-frame operator 𝑆. �en
{Λ𝑤𝑆−1 : 𝑤 ∈ Ω} is a continuous ∗-K-g-frame for 𝑈.
Proof. Result from the last theorem by taking 𝑇 = 𝑆−1

The following theorem characterizes a continuous ∗-K-g-
frame by its frame operator.

Theorem 11. Let {Λ 𝜔}𝜔∈Ω be a continuous ∗-g-Bessel for 𝐻
with respect to {𝐻𝜔}𝜔∈Ω, then {Λ 𝜔}𝜔∈Ω is a continuous ∗-K-g-
frame for 𝐻 with respect to {𝐻𝜔}𝜔∈Ω if and only if there exists
a constant 𝐴 > 0 such that 𝑆 ≥ 𝐴𝐾𝐾∗ where 𝑆 is the frame
operator for {Λ 𝜔}𝜔∈Ω.
Proof. We know {Λ 𝜔}𝜔∈Ω is a continuous ∗-K-g-frame for𝐻
with bounded 𝐴 and 𝐵 if and only if

𝐴⟨𝐾∗𝑥, 𝐾∗𝑥⟩𝐴∗ ≤ ∫
Ω
⟨Λ𝑤𝑥, Λ𝑤𝑥⟩ 𝑑𝜇 (𝑤)

≤ 𝐵 ⟨𝑥, 𝑥⟩ 𝐵∗
(34)

If and only if

𝐴⟨𝐾𝐾∗𝑥, 𝑥⟩ 𝐴∗ ≤ ∫
Ω
⟨Λ∗𝑤Λ𝑤𝑥, 𝑥⟩ 𝑑𝜇 (𝑤)

≤ 𝐵 ⟨𝑥, 𝑥⟩ 𝐵∗
(35)

If and only if

𝐴⟨𝐾𝐾∗𝑥, 𝑥⟩𝐴∗ ≤ ⟨𝑆𝑥, 𝑥⟩ ≤ 𝐵 ⟨𝑥, 𝑥⟩ 𝐵∗ (36)

where 𝑆 is the continuous ∗-K-g frame operator for {Λ 𝜔}𝜔∈Ω.
Therefore, the conclusion holds.
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