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In this paper, we introduce a new coupled �xed point theorem in a generalized metric space and utilize the same to study the stability 
for a system of set-valued functional equations.

1. Introduction and Preliminaries

Discussing the stability of functional equations, we pursue the 
inquiry put forward in 1940 by Ulam [1] which states that the 
solution of an equation varying marginally from a given solu-
tion, should of need be near the solution for the given equa-
tion.  ree popular techniques to establish the stability from 
a perspective Hyers–Ulam of functional equations are the 
direct technique [2], the technique of invariant means [3, 4] 
and the �xed point technique (see [5]). In the last technique, 
di�erent de�nitely known �xed point theorems are utilized, 
just as some new have been demonstrated and utilized in a 
speci�c circumstance. In 1991, Baker [6] studied the stability 
of functional equations via the banach �xed point theorem. 
Since �xed point technique of Baker, Radu [7] gave the stability 
of an equation of functional by the option of �xed point tech-
nique which was presented by Diaz and Margolis [8].  e �xed 
point technique has given a great deal of impact in the 
advancement of the stability of functional equations. We allude 
to numerous papers of stability of equations of functional uti-
lizing the �xed point technique in references on the stability 
of equations of functional (see [8–10]).

In 2008, Park and An [11] used the �xed point technique 
to study the stability of functional equations due to Cauchy–
Jensen. In 2009, Gao et al. [12] de�ned the generalized 
Cauchy–Jensen equation as follows:

Let � be an abelian group and �-divisible, where � ∈ N, the 
set of all natural numbers, and � be a normed space with the 
norm ‖, ‖�. For any function � : � → �, the equation

for each �, �, � ∈ � and � ∈ N is said to be the generalized 
equation of Cauchy–Jensen. In special case, when � = 2, the 
equation is called the Cauchy–Jensen equation.

Recently, in 2018, Kaskasem et al. [13] introduced the sta-
bility by Hyers–Ulam–Rassias of the generalized set-valued 
functional equations of Cauchy-Jensen given by

for each �, �, � ∈ � � ≥ 2.
 e objective of our paper is basically two fold.  e �rst 

goal is introduce a new �xed point technique dealing with 
coupled �xed point results for nonlinear contractive mappings 
on the generalized metric space due to Diaz et al. [8].  e 
second goal is to apply our new coupled �xed point results to 
study the stability for the following coupled system of the gen-
eralized set-valued functional equations of Cauchy–Jensen:

(1)��(� + �� + �) = �(�) + �(�) + ��(�),

(2)��(� + �� + �) = �(�) ⊕ �(�) ⊕ ��(�),

(3)
��(� + �� + �,

� + v
� + �) = �(�, �) ⊕ �(�, v) ⊕ ��(�, �),
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for all �, �, �, �, v, � ∈ �, � ≥ 2 and �, � : � → �.
Next, we recall some preliminaries that will be used in the 

main results of this paper.
Let � be a Banach space. We de�ned the following:

(i)   2� = the set of power sets of �;
(ii)   ��(�) = all bounded and closed subsets of �;
(iii)   ��(�) = all convex and closed subsets of �;
(iv)   ���(�) = all convex closed and bounded subsets of 
�.

De�nition 1 [12].     On 2�, they consider the addition and 
the scalar multiplication as follows:

where �,�� ∈ 2� and � ∈ R, the set of all real numbers. Also, 
we de�ne the following:

 en

Also, when � is convex, we obtain

for all �, � ∈ R. For any set � ∈ 2�, the distance function �(., �)
and the support function �(., �) are de�ned by

For all sets �,�� ∈ ��(�), the Hausdor� distance between �
and �� is de�ned by

where �� is the closed unit ball in �.
Proposition 1 [13].  For any �,��, �, �� ∈ ���(�) and � > 0, 
the following properties hold:

(1)    ℎ(� ⊕ ��, � ⊕��) ≤ ℎ(� ⊕�) + (�� ⊕��);
(2)    ℎ(��, ��) = �ℎ(�,�).

De�nition 2 [14].   Let � be a set. A distance mapping 
� : � ×�→ [0,∞] is said to be a generalized metric on � if 
the following conditions are hold:

(1) �(�, �) = 0 for all �, � ∈ � if and only if � = �;
(2) �(�, �) = �(�, �) for all �, � ∈ �;
(3) �(�, �) ≤ �(�, �) + �(�, �) for all �, �, � ∈ �;

(4)

��(� + �� + �,
� + v
� + �) = �(�, �) ⊕ �(�, v) ⊕ ��(�, �),

(5)� + �� = {� + ��� ∈ �, �� ∈ ��}and�� = {��� ∈ �},

(6)� ⊕ �� = � + ��.

(7)�� + ��� = �(� + ��) and (� + �)� ⊆ �� + ��.

(8)(� + �)� = �� + ��,

(9)�(�, �) = inf
�∈�
{����� − ����� ����� ∈ �},

(10)�(�∗, �) = sup
�∗∈�∗
{⟨� − �⟩ |� ∈ �}.

(11)ℎ(�, ��) = inf{� > 0� ⊆ �� + ���, �� ⊆ � + ���},

(4) every �-Cauchy sequence in � is �−convergent, 
i.e., lim�,�→∞�(��, ��) = 0 for a sequence �� ∈ �, 
� = 1, 2, . . . implies the existence of an element � ∈ � with 
lim�→∞�(�, ��) = 0, (� is unique by (1) and (3)).

By the fact that not every two points in � have necessarily 
a �nite distance. One might call such a space a generalized 
complete metric space.

Example 1.   Let � = {�, �, �}. De�ne � on � ×� as follows:

 en (�, �) is a generalized metric space.

De�nition 3 [15].    Let (�, _≺) be a partially ordered space 
and let � : � ×�→ �.  e function � is said to have the 
mixed monotone property if �(�, �) is nondecreasing 
monotone in � and is nonincreasing monotone in �, that is, 
for each �, � ∈ �,

De�nition 4 [15].   A pair (�, �) ∈ � ×� is called a coupled 
�xed point of the function � : � ×�→ � if � = �(�, �) and 
� = �(�, �).

2. Main Coupled Fixed Point Results

Theorem 1. Suppose that (�, �) is a complete generalized 
metric space and the function � : � ×�→ � be a continuous 
mapping having the mixed monotone property on �. Assume 
that there exists a � ∈ [0, 1] such that for �, �, �, v ∈ �, the 
following holds:

for all � ≤ �, � ≥ v and �(�, �) <∞. If there exist �0, �0 ∈ � such 
that �0 ≤ �(�0, �0) and �0 ≥ �(�0, �0). �en the following alter-
native holds: either.

(i)  for all � ≥ 0, we have

(ii)  � has a coupled �xed point in �, that is, there exist 
�, � ∈ � such that � = �(�, �) and � = �(�, �).

(12)
�(�, �) = �(�, �) = 1,
�(�, �) = �(�, �) = �(�, �) = �(�, �) = ∞,
�(�, �) = 0, ∀� ∈ �.

(13)�1, �2 ∈ �, �1_≺�2 ⇒ �(�1, �)_≺�(�2, �),

(14)�1, �2 ∈ �, �1_≺�2 ⇒ �(�, �1)_≺�(�, �2).

(15)�(�(�, �), �(�, v)) ≤ �2 [�(�, �) + �(�, v)],

(16)

�(��(�, �), ��+1(�, �)) = �(��(�, �), ��+1(�, �)) =∞, ��
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Proof. By the given assumptions, there exists (�0, �0) ∈ � ×�
such that �0 ≤ �(�0, v0) and �0 ≥ �(�0, �0).  en, we can de�ne 
(�1, �1) ∈ � ×� such that �1 = �(�0, �0) and �1 = �(�0, �0), 
then �0 ≤ �(�0, �0) = �1 and �0 ≥ �(�0, �0) = �1. Also there exists 
(�2, �2) ∈ � ×� such that �2 = �(�1, �1) and �2 = �(�1, �1). 
Since � has the mixed monotone property, we have,

Continuing in this way, we construct two sequences {��} and 
{��} in � such that

for all � = 0, 1, 2, ....
 ere are two mutually exclusive possibilities: either

(a)   for every integer � = 0, 1, 2...., one has

which is exactly the alternative (�) of the conclusion of the 
theorem, or else
(b)    some integer � = 0, 1, 2...., one has

Now, we need to show that (b) implies alternative (��) of 
the conclusion of the theorem.

If case (b) holds, let � = �(�0, �0) denote a particular one. 
For de�niteness, one could choose the smallest of all integer 
� ≥ 0, such that

 en, by (15), since �(��(�0, �0), ��+1(�0, �0)) <∞ and 
�(��(�0, �0), ��+1(�0, �0)) <∞, we get

(17)
�1 = �(�0, �0) ≤ �(�1, �1) = ��(�0, �0)
= �(�(�0, �0), �(�0, �0)) = �2,

(18)
�1 = �(�0, �0) ≤ �(�1, �1) = ��(�0, �0)
= �(F(�0, �0), �(�0, �0)) = �2.

(19)
��+1 = ��+1(�0, �0) = ���(�0, �0) = �(��(�0, �0), ��(�0, �0))

(20)
��+1 = ��(�+1) (�0, �0�) = ���(�0, �0) = �(��(�0, �0), ��(�0, �0))

(21)
�(��(�0, �0), ��+1(�0, �0)) = ∞ and

�(��(�0, �0), ��+1(�0, �0)) = ∞.

(22)
�(��(�0, �0), ��+1(�0, �0)) < ∞ and

�(��(�0, �0), ��+1(�0, �0)) < ∞.

(23)
�(��(�0, �0), ��+1(�0, �0)) < ∞ and

�(��(�0, �0), ��+1(�0, �0)) < ∞.

(24)

�(��+1(�0, �0), ��+2(�0, �0)) = �(���(�0, �0), ���+1(�0, �0)),
= �(�(��(�0, �0), ��(�0, �0)),
(��+1(�0, �0), ��+1(�0, �0)))),
≤ �2[�(�

�(�0, �0), ��+1(�0, �0))
+�(��(�0, �0), ��+1(�0, �0)))],
< ∞.

Also,

However at this point, the triangle property (12  in De�nition 2 
infers that, at whatever point � > �, one has for each 
� = 1, 2, ⋅ ⋅ ⋅, that

Since 0 < � < 1, then the sequence {��(�0, �0)}∞�=0 and similarly 
the sequence {��(�0, �0)}∞�=0 are �−Cauchy sequences and by 
(15) in De�nition 2 they are �−convergent. In other words, 
there exist �, � ∈ � such that

At last, we guarantee �(�, �) = � and �(�, �) = �, since � is 
continuous at (�, �) then we have

Remark 1.   Let � : �→ � be a mapping from � into itself. 
If we put �(�) = �(�, �) and �(�) = �(�, �) in  eorem 1, 
then one can deduce the following theorem.

Theorem 2. Suppose that (�, �) is a partially ordered 
complete generalized metric space and the function � : �→ �
be a continuous strictly contractive mapping, that is, there 
exists a number � < 1 such that

If there exists �0 ∈ � with �0 ≤ �(�0).
�en the following alternative holds: either

(I)  for all � ≥ 0, we have

(II)  � has a coupled �xed point in �, that is, there exist 
� ∈ � such that � = �(�).

(25)

�(��+1(�0, �0), ��+2(�0, �0)) ≤ �2[�(�
�(�0, �0), ��+1(�0, �0))

+�(��(�0, �0), ��+1(�0, �0)))]
< ∞.

(26)

�(��(�0, �0), ��+1(�0, �0)) ≤
�∑
�=1
�(��+�−1(�0, �0), ��+�(�0, �0)),

≤ �∑
�=1
(��+1−�−�2�+1−�−�)�(�

�(�0, �0), ��+1(�0, �0)),

≤ (�2)
�−� 1 − (�/2)�
1 − �/2 �(�

�(�0, �0), ��+1(�0, �0)).

(27)lim�→∞ �(��(�0, �0), �) = 0 and lim�→∞ �(��(�0, �0), �) = 0.

(28)

�(�, �) = lim�→∞�(��(�0, �0), ��(�0, �0)),
= lim�→∞��+1(�0, �0),
= �,

(29)

�(�, �) = lim�→∞�(��(�0, �0), ��(�0, �0)),
= lim�→∞��+1(�0, �0),
= �.

(30)�(��, ��) ≤ ��(�, �),∀� ≥ �.

(31)�(��(�), ��+1(�)) =∞, ��
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At last, we guarantee lim�→∞��(�) = �, since � is continuous 
at � then we have

Remark 2.   We note that the contractive condition in  
[8,  eorem 1.6] is slightly stronger than the condition (30) 
of  eorem 2.

3. Stability of the Cauchy–Jensen Functional 
Equations

Let � be a real normed space and � be a real banach space.

De�nition 5.   Let �, � : � ×�→ ���(�) be two set-valued 
mappings.

(1)   e coupled generalized Cauchy-Jensen set-valued 
functional equation is de�ned by

for all �, �, �, �, v, � ∈ � and � ≥ 2
(2)  Every solution of the generalized Cauchy-Jensen 

set-valued functional equation is called a Cauchy–
Jensen set-valued mapping.

Theorem 3.  Let �, � be two set-valued mappings de�ned on 
� ×� into (���(�),⊕, ℎ) such that there exists a function

� : � ×� ×�→ [0,∞ satisfying

for all �, �, �, �, v, � ∈ � and � ≥ 2. If there exists � < 1 such 
that

for all �, �, �, �, v, � ∈ �, then there exists unique generalized 
Cauchy–Jensen set-valued mappings �, � : � ×�→
(���(�), ⊕, ℎ) such that

(40)�(�) = lim�→∞�(��(�0)) = lim�→∞��+1(�0) = �.

(41)

��(� + �� + �,
� + v
� + �) = �(�, �) ⊕ �(�, v) ⊕ ��(�, �),

(42)

��(� + �� + �,
� + v
� + �) = �(�, �) ⊕ �(�, v) ⊕ ��(�, �),

(43)

ℎ(��(� + �� + �,
� + v
� + �), �(�, �) ⊕ �(�, v) ⊕ ��(�, �))

≤ 
(�, �, �) + 
(�, v, �),

(44)�(�, �, �) ≤ �2��(��, ��, ��),
(45)�(�, v, �) ≤ �2��(��, �v, ��),

(46)

ℎ(�(�, �), �(�, �)) ≤ 1
(1 − �)(2 + �)[
(�, �, �) + 
(�, �, �)],

(47)

ℎ(�(�, �), �(�, �)) ≤ 1
(1 − �)(2 + �)[
(�, �, �) + 
(�, �, �)],

Proof 2. By the given assumptions, there exists �0 ∈ �
such that �0 ≤ �(�0).  en, we can de�ne �1 ∈ � such that 
�1 = �(�0), then �0 ≤ �(�0) = �1. Also there exists �2 ∈ �
such that �2 = �(�1). Since � has the mixed monotone 
property, we have,

Continuing in this way, we construct two sequences {��} in �
such that

for all � = 0, 1, 2, ....
 ere are two mutually exclusive possibilities: either

(A)    for every integer � = 0, 1, 2...., one has

 which is exactly the alternative (�) of the conclusion of 
the theorem, or else
(B)    some integer � = 0, 1, 2...., one has

Now, we need to show that (B) implies alternative (II) of 
the conclusion of the theorem.

If case (B)  holds, let � = �(�0) denote a particular one. 
For de�niteness, one could choose the smallest of all integer 
� ≥ 0, such that

 en, by (30), since �(��(�0), ��+1(�0)) <∞, we get

However at this point, the triangle property (12) in De�nition 
3 infers that, at whatever point � > �, one has for each 
� = 1, 2, . . ., that

Since 0 < � < 1, then the sequence {��(�0)}∞�=0 is a �−Cauchy 
sequence and by (15) in De�nition 2 it is �−convergent. In 
other words, there exists a point � ∈ � such that

(32)�1 = �(�0) ≤ �(�1) = ��(�0) = �(�(�0)) = �2.

(33)��+1 = ��+1(�0) = ���(�0) = �(��(�0))

(34)�(��(�0), ��+1(�0) =∞,)

(35)�(��(�0), ��+1(�0)) <∞.

(36)�(��(�0), ��+1(�0)) <∞.

(37)

d(��+1(�0), ��+2(�0)) = �(���(�0), ���+1(�0))
= �(�(��(�0), ��(�0)),
(��+1(�0), ��+1(�0))))
≤ �[�(��(�0), ��+1(�0))]
< ∞.

(38)

�(��(�0), ��+1(�0)) ≤
�∑
�=1
�(��+�−1(�0), ��+�(�0))

≤ �∑
�=1
��+1−�−��(��(�0), ��+1(�0))

≤ (�)�−�(1 − ��)�(��(�0), ��+1(�0)).

(39)lim�→∞ �(��(�0), �) = 0.
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and so

for all �, � ∈ �.
By  eorem 1, there exist two mappings 
�, � : � ×�→ (���(�), ℎ) such that the following conditions 
hold;

(a)  (�, �) is a coupled �xed point of �, that is,  
�(�, �) = �(�(�, �), �(�, �)) and �(�, �) =
�(�(�, �), �(�, �)), for all �, � ∈ �.  en we have

(b)    e sequences {��(�, �)} and {��(�, �)} converge to 
�, � respectively.  is implies the following equality:

(c)  We obtain that �(�, �) ≤ 1/(1 − �)�(�, �(�, �)) and 
�(�, �) ≤ 1/(1 − �)�(�, �(�, �)) which implies to 
the following inequality:

 us the inequalities (46) hold.
It follows from (41) and (42) that

for all �, �, �, �, v, � ∈ �.  us, we have

So, we have

(58)�(�(�, �), �) ≤ 1�2 <∞,

(59)�(�(�, �), �) ≤ 1�2 <∞.

(60)
�(�, �) = �(�(�, �), �(�, �)) = 1��(��, ��)

⇒ �(��, ��) = ��(�, �),

(61)
�(�, �) = �(�(�, �), �(�, �)) = 1��(��, ��)

⇒ �(��, ��) = ��(�, �).

(62)�(�, �) = lim�→∞
1
���(�

��, ���)∀�, � ∈ �,

(63)�(�, �) = lim�→∞
1
���(�

��, ���)∀�, � ∈ �.

(64)�(�, �) ≤ 1
(1 − �)� and �(�, �) ≤

1
(1 − �)� .

(65)

ℎ(��(� + �� + �,
� + v
� + �), (�, �) ⊕ (�, v) ⊕ �(�, �))

= lim�→∞
1
�� ℎ(�
(

��� + ���
� + ���, �

�� + ���
� + ���,),


(���, ���) ⊕ 
(���, ��v) ⊕ 
(���, ���))
≤ lim�→∞
1
���(�

��, ���, ���) + �(���, ��v, ���) = 0,

(66)

ℎ(��(� + �� + �,
� + v
� + �), �(�, �) ⊕ �(�, v) ⊕ ��(�, �)) = 0.

(67)

��(� + �� + �,
� + v
� + �) = �(�, �) ⊕ �(�, v) ⊕ ��(�, �),

for all �, � ∈ �. Moreover, if there exist positive real number �
and � with � < 1 such that diam �(�, �) ≤ �����(�, �)

����
�
�,

�(�, �) ≤ �����(�, �)
����
�
� for all �, � ∈ �, then �(�, �), �(�, �) are 

singleton sets.

Proof 3. First, we consider the set � = {� : � × � → ���(�)|�(0, 0) = 0} and introduce the generalized metric on X 
as follows:

where � = �(�, �, �) + �(�, �, �) and inf� = +∞.  en (�, �)
is a complete generalized metric space (see[[16],  eorem 
(3)]). Now, we consider a linear mapping � : � × �→ � such 
that

where � = (2/�) + 1.
Next, we show that � is a strictly contractive mapping with 

Lipschitz constant �. Let �, � ∈ � with �(�(�, �), �(�, �)) = �
and �(�(�, �), v(�, �)) = �� for some �,�� ∈ �+. It follows 
from (48) that

for all �, � ∈ �. From Proposition 1, (44), (45) and (52) we 
obtain that

for all � ∈ �. Hence, �(�(�, �), �(�, v)) ≤ �/2(� + ��), that 
is, �(�(�, �), �(�, v)) ≤ �/2[�(�, �) + �(�, v)].  erefore, we 
suppose that � = �, � = (� − 2/�)�, � = v, � = (� − 2/�)� and 
in (43) since �(�, �) is convex, we have

for all �, � ∈ �.  en, we have

for all �, � ∈ �.  us, by (2), we have

for all �, � ∈ �.
Similarly, one can deduce that

(48)
�(�(�, �), �(�, �)) = inf{� ∈ [0,∞)ℎ(�(�, �), �(�, �)) ≤��},

(49)�(�(�, �), �(�, �)) = 1��(��, ��),∀�, � ∈ �,

(50)�(�(�, �), �(�, �)) = 1��(��, ��), ∀�, � ∈ �,

(51)ℎ(�(�, �), �(�, �)) ≤ �[�(�, �, �) + �(�, �, �) ,
(52)ℎ(�(�, �), v(�, �)) ≤ ��[�(�, �, �) + �(�, �, �) ,

(53)

ℎ(�(�, �), �(�, v)) = ℎ( 1��(��, ��),
1
��(��, ��))

= 1�ℎ(�(��, ��), �(��, ��))
≤ 
2 (� + �

�) [�(�, �, �) + �(�, �, �)]},

(54)ℎ(��(��, ��), �2�(�, �)) ≤ �(�, �, �) + �(�, �, �),

(55)�2ℎ( 1��(��, ��), �(�, �)) ≤ �(�, �, �) + �(�, �, �),

(56)ℎ(�(�, �), �) ≤ 1�2 [�(�, �, �) + �(�, �, �)],

(57)ℎ(�(�, �), �) ≤ 1�2 [�(�, �, �) + �(�, �, �)],
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pp. 91–96, 2003.

[8]  J. B. Diaz and B. Margolis, “A �xed point theorem of the 
alternative for contractions on a generalized complete metric 
space,” Bulletin of the American Mathematical Society, vol. 74, 
no. 2, pp. 305–309, 1968.

[9]  M. E. Gordji and S. Abbaszadeh, �eory of Approximate 
Functional Equations in Banach Algebras, Academic Press, 
London, 2016.

[10]  S. M. Jung, Hyers–Ulam–Rassias Stability of Functional 
Equations in Nonlinear Analysis, Springer, New York, 2011.

[11]  C. Park and J. S. An, “Stability of the Cauchy-Jensen functional 
equation in C*- algebras: a �xed point approach,” Fixed Point 
�eory and Applications, vol. 2008, Article ID 872190, 2008.

[12]  Z. X. Gao, H. X. Cao, W. T. Zheng, and L. Xu, “Generalized 
Hyers–Ulam–Rassias stability of functional inequalities and 
functional equations,” Journal of Mathematical Inequalities, 
no. 1, pp. 63–77, 2009.

[13]  P. Kaskasem, C. Klin-eam, and Y. J. Cho, “On the stability of the 
generalized Cauchy–Jensen set-valued functional equations,” 
Journal of Fixed Point �eory and Applications, vol. 20, no. 2, 
p. 76, 2018.

[14]  W. Luxemburg, “On the convergence of successive 
approximations in the theory of ordinary di�erential equations, 
II,” Indagationes Mathematicae (Proceedings), vol. 61, no. 20, 
pp. 540–546, 1958.

[15]  T. G. Bhaskar and V. Lakshmikantham, “Fixed point theorems 
in partially ordered metric spaces and applications,” Nonlinear 
Analysis: �eory, Methods & Applications, vol. 65, no. 7,  
pp. 1379–1393, 2006.

[16]  M. E. Gordji, C. Park, and M. B. Savadkouhi, “ e stability 
of quartic type functional equation with the �xed point 
alternative,” Fixed Point �eory, vol. 11, pp. 265–272, 2010.

[17]  H. Aydi and S. Czerwik, “Fixed point theorems in generalized 
b-metric spaces,” in Modern Discrete Mathematics and Analysis. 
Springer Optimization and Its Applications, pp. 1–9, Springer, 
Cham, 2018.

[18]  E. Karapinar, S. Czerwik, and H. Aydi, “(α, ψ)-Meir–Keeler 
contraction mappings in generalized b-metric spaces,” Journal 
of Function Spaces, vol. 2018, Article ID 3264620, 4 pages, 2018.

and similarly, one can get that

for all �, �, �, �, v, � ∈ �. Moreover, let � and � be positive 
real numbers with � < 1 and �����(�, �) ≤��‖(�, �)‖� for 
all �, � ∈ �.  en, we have

for all x, � ∈ �. Since 1/��−�� < 1, we have lim�→∞ (1/�)�‖(���, ���)‖�� = 0.
 is implies that �(�) = lim�→∞ (1/�)

�����(�
��, ���)����

�
�  is a 

singleton set.  is completes the proof.

Open Problem 13. Can our results in this paper be extended 
in generalized b−metric spaces as in Aydi and Czerwik [17] 
and Karapinar et al. [18].
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