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The 𝑡−multifractal formalism is a formula introduced by Jaffard and Mélot in order to deduce the 𝑡−spectrum of a function 𝑓
from the knowledge of the (𝑝, 𝑡)−oscillation exponent of 𝑓. The 𝑡−spectrum is the Hausdorff dimension of the set of points where𝑓 has a given value of pointwise 𝐿𝑡 regularity. The (𝑝, 𝑡)−oscillation exponent is measured by determining to which oscillation
spaces 𝑂𝑠

𝑝,𝑡 (defined in terms of wavelet coefficients) 𝑓 belongs. In this paper, we first prove embeddings between oscillation and
Besov-Sobolev spaces. We deduce a general lower bound for the (𝑝, 𝑡)−oscillation exponent. We then show that this lower bound
is actually equality generically, in the sense of Baire’s categories, in a given Sobolev or Besov space. We finally investigate the Baire
generic validity of the 𝑡−multifractal formalism.

1. Introduction

Multifractal analysis is concerned with the pointwise regular-
ity and the scaling behavior of functions. It gives a powerful
classification tool in various domains. In the setting of the
classical Hölder pointwise regularity, it has been successfully
used theoretically in (see [1–18] and references therein) and
practically for signal and image processing (see [18–24] and
references therein). Several related generic results, in the
sense of Baire’s categories [15, 25–34] and in the prevalence
sense [10, 11, 35, 36], were proved. Recall that a prevalent
result is large in a measure sense, whereas a Baire generic
result holds in a residual set (any countable intersection of
open dense sets) in a well chosen topological vector space.
Both Baire and prevalent generic sets are dense and stable
by translation, dilation, and countable intersection. However,
prevalence and Baire genericity usually differ widely. In R𝑑,
prevalence coincides with Lebesgue almost everywhere, and
there exist subsets of R𝑑 with vanishing Lebesgue measure,
but Baire generic. In infinite-dimensional spaces, there are
stronger results of this type in [37, 38]. Nevertheless, in [39],

Kolàr proved that the so-calledHP-notion of genericity yields
both Baire and prevalent results (see also [40]).

The Hölder regularity has some limitations (see [41, 42]
and references therein). Hölder regularity is only defined for
locally bounded functions. It can not take negative values.
It is not stable under some pseudodifferential and integral
operators. It is not significant in fractal boundaries where it
takes only two values 0 and ∞. For instance, in fully devel-
oped turbulence, velocity is not bounded near vorticity fila-
ments and yields negative singularities [20]. The same holds
for microcalcifications in mammography [20]. In order to
overcome these weaknesses, Hölder regularity was replaced
by the pointwise 𝐿𝑡 regularity introduced by Calderón and
Zygmund in [43] for functions that belong locally to 𝐿𝑡 to
better study elliptic partial differential equations.This notion
has recently been put forward in the mathematical literature
in [42, 44–46].

Definition 1. Let 𝑡 ≥ 1. Let 𝑢 be a real number and 𝑥 ∈ R𝑑. A
function 𝑓 in 𝐿𝑡

𝑙𝑜𝑐(R𝑑) belongs to 𝑇𝑢,𝑡(𝑥) if there exists 𝑅 > 0
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and a polynomial𝑃 of degree less than 𝑢 (with𝑃 = 0 if 𝑢 < 0),
such that ∀𝑟 ≤ 𝑅

󵄩󵄩󵄩󵄩𝑓 (𝑦) − 𝑃 (𝑦 − 𝑥)󵄩󵄩󵄩󵄩𝐿𝑡(𝐵(𝑥,𝑟)) ≤ 𝐶𝑟𝑢+𝑑/𝑡 (1)

for some constant 𝐶 independent of 𝑟.
The pointwise 𝐿𝑡 regularity of 𝑓 at 𝑥 is𝑢𝑡 (𝑥) = sup {𝑢; 𝑓 ∈ 𝑇𝑢,𝑡 (𝑥)} . (2)

Definition 1 written for 𝑡 = ∞ corresponds to the Hölder
regularity.

Definition 1 can be also extended to the case 𝑡 ∈ (0, 1),
where we consider the Hardy space 𝐻𝑡 instead of 𝐿𝑡 [47]. In
[48]Theorem 1 p. 4, it is proved that 𝑢𝑡(𝑥) ∈ [−𝑑/𝑡, ∞], 𝑡 󳨃󳨀→𝑢𝑡(𝑥) is decreasing, and V 󳨃󳨀→ 𝑢1/V(𝑥) is concave on [0, 1].
In [43], it is shown that, contrary to the Hölder regularity,
the pointwise 𝐿𝑡 regularity for 1 ≤ 𝑡 < ∞ is invariant under
pseudodifferential operators of order 0.

The 𝑡-sets of 𝑓 are given by𝐸𝑡 (ℎ) = {𝑥; 𝑢𝑡 (𝑥) = ℎ} . (3)

The 𝑡−spectrum of 𝑓 is defined by the functionℎ 󳨃󳨀→ 𝑑𝑡 (ℎ) = 𝑑𝑖𝑚 𝐸𝑡 (ℎ) (4)

where 𝑑𝑖𝑚 denotes the Hausdorff dimension. By convention𝑑𝑖𝑚 0 = −∞.
In [11, 49], Fraysse has computed the 𝑡−spectrum for

almost every function, in the prevalence setting, in a given
Sobolev or Besov space.

In [45, 46], Jaffard and Mélot have shown that the
pointwise 𝐿𝑡 regularity is well adapted for fractal interfaces.
They have also proved that if 𝑓 belongs to the Besov space𝐵𝜀,∞
𝑡 (R𝑑) for an 𝜀 > 0, then the pointwise𝐿𝑡 regularity is char-

acterized by some conditions bearing on the moduli of the
wavelet coefficients [47] (the definition of Besov is recalled
in the next section). Note that (see [50])

𝐵𝜀,∞
𝑡 (R𝑑) 󳨅→ 𝐿𝑡 (R𝑑) 󳨅→ 𝐵0,𝑡

𝑡 (R𝑑) . (5)

Let us recall the result obtained in [46]; let (𝜓𝑖)𝑖=1,...,2𝑑−1 be
either the Daubechies [51] compactly supported wavelets in𝐶𝑟𝜓(R𝑑) (where 𝑟𝜓 is the uniform Hölder regularity of 𝜓) or
the Lemarié-Meyer [50, 52] wavelets in the Schwartz class
S(R𝑑) of rapidly decreasing𝐶∞ functions (we will write 𝑟𝜓 =∞), such that the family (𝜓𝑖(2𝑗𝑥 − 𝑘)), for 𝑗 ∈ Z and 𝑘 ∈ Z𝑑,
form an orthogonal basis of 𝐿2(R𝑑) (note that we choose the𝐿∞ normalization, not 𝐿2). We will omit the letter 𝑖 and the
summation with respect to 𝑖. This will not affect the results
of this work. The wavelets will be indexed in terms of dyadic
cubes

𝜆 = 𝜆𝑗,𝑘 = 𝑘2−𝑗 + [0, 2−𝑗)𝑑 , (6)

so that we can write

𝜓𝜆 (𝑥) = 𝜓 (2𝑗𝑥 − 𝑘) . (7)

For 𝑗 ∈ N0, set Λ 𝑗 = {𝜆 = 𝜆𝑗,𝑘 with 𝑘 ∈ Z
𝑑} . (8)

Put

Λ = ⋃
𝑗∈N0

Λ 𝑗 = {𝜆 = 𝜆𝑗,𝑘 with (𝑗, 𝑘) ∈ N0 × Z
𝑑} . (9)

Let S󸀠(R𝑑) be the space of tempered distributions (i.e., the
dual of S(R𝑑); let 𝑓 ∈ S󸀠(R𝑑). Using the notation 𝜓̆(𝑥) =𝜓(−𝑥), the wavelet coefficient 𝐶𝜆 of 𝑓 is given by

𝐶𝜆 = (𝑓 ( .2𝑗 ) ∗ 𝜓̆) (𝑘) = 2𝑑𝑗 ⟨𝑓, 𝜓𝜆⟩ . (10)

If 𝑓 ∈ 𝐿2(R𝑑) then
𝐶𝜆 = 2𝑑𝑗 ∫

R𝑑
𝑓 (𝑦) 𝜓𝜆 (𝑦) 𝑑𝑦. (11)

And

𝑓 = ∑
𝑗∈Z

∑
𝜆∈Λ 𝑗

𝐶𝜆𝜓𝜆. (12)

Recall that, for 0 < 𝑡 < ∞, the 𝑡−exponent of 𝑓 is given by

𝜂 (𝑡) = sup {𝜏:𝑓 ∈ 𝐵𝜏/𝑡,∞
𝑡 (R𝑑)}

= 𝑑 + lim inf
𝑗󳨀→∞

log (∑𝜆∈Λ 𝑗

󵄨󵄨󵄨󵄨𝐶𝜆
󵄨󵄨󵄨󵄨𝑡)

log (2−𝑗) . (13)

Remark 2. In [48] Section 3.4, it is proved that if 𝑡 ≥ 1, then𝜂(𝑡) does not depend on the chosen wavelet basis as long as𝑟𝜓 > |ℎmin| (where ℎmin = lim inf𝑗󳨀→∞((log(sup𝜆∈Λ 𝑗 |𝐶𝜆|))/(log (2−𝑗)))). When 𝑡 ≥ 1, if 𝜂(𝑡) > 0, then 𝑓 ∈ 𝐿𝑡
𝑙𝑜𝑐(R𝑑) and

if 𝜂(𝑡) < 0 then 𝑓 ∉ 𝐿𝑡
𝑙𝑜𝑐(R𝑑).

For 0 < 𝑡 < ∞, the 𝑡−wavelet leader of 𝑓 ∈ 𝐿𝑡
𝑙𝑜𝑐(R𝑑) at𝜆 ∈ Λ 𝑗 was introduced in [46]

ℓ𝑡,𝜆 = ( ∑
𝑗󸀠≥𝑗,𝜆󸀠⊂𝜆

󵄨󵄨󵄨󵄨󵄨󵄨𝐶𝜆󸀠2(𝑑/𝑡)(𝑗−𝑗󸀠)󵄨󵄨󵄨󵄨󵄨󵄨𝑡)
1/𝑡 , (14)

where the sum is over all 𝜆󸀠 ∈ Λ 𝑗󸀠 such that 𝜆󸀠 ⊂ 𝜆 with𝑗󸀠 ≥ 𝑗. The sum (14) is finite if 𝜂(𝑡) > 0.
For 𝑥 ∈ R𝑑, denote by 𝜆𝑗(𝑥) the unique cube at the scale𝑗 that contains 𝑥 and 3𝜆𝑗(𝑥) the set formed by the cube 𝜆𝑗(𝑥)

and all its 3𝑑 − 1 adjacent cubes at scale 𝑗. Let 𝑓 ∈ S󸀠(R𝑑).
Suppose that 1 < 𝑡 < ∞ and 𝑟𝜓 > 𝑢𝑡(𝑥) (resp., 1 ≤ 𝑡 < ∞ and𝑟𝜓 = ∞). If 𝜂(𝑡) > 0, then

𝑢𝑡 (𝑥) = lim inf
𝑗󳨀→∞

log (ℓ𝑡,3𝜆𝑗(𝑥))
log (2−𝑗) , (15)

and see [48], Section 3.3 (resp., [46] Corollary 1 p. 553).

Remark 3. Formula (15) was used in [48] to extend the
definition of the pointwise 𝐿𝑡 regularity to the case 0 < 𝑡 ≤ 1
under the sole condition 𝑓 ∈ 𝐵0,∞

𝑡 (R𝑑) (see [48], Section
3.4). From now on, the pointwise 𝐿𝑡 regularity is defined by
formula (15) for 𝑡 > 0.
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Using characterization (15), a 𝑡−multifractal formalism
associated with pointwise 𝐿𝑡 regularities was conjectured by
Jaffard and Mélot in [46]. Let us recall it.

Definition 4. For 𝑠 ∈ R, 𝑝, 𝑡 > 0, the oscillation space𝑂𝑠
𝑝,𝑡(R𝑑) (see [46]) is the space of tempered distributions 𝑓

that satisfy

sup
𝑗∈N0

(2(𝑠−𝑑/𝑝)𝑗 ( ∑
𝜆∈Λ 𝑗

(ℓ𝑡,𝜆)𝑝)1/𝑝) < ∞
if 0 < 𝑝 < ∞

sup
𝑗∈N0 ,𝜆∈Λ 𝑗

(2𝑠𝑗ℓ𝑡,𝜆) if 𝑝 = ∞.
(16)

The left-hand term defines the 𝑂𝑠
𝑝,𝑡(R𝑑)-seminorm.

It is independent of the choice of the smooth enough
wavelet basis or in the Schwartz class (see [53], Section 3.2).

This space together with global notions (3) and (4) can
also be defined locally; let

O = {Ω ⊂ R
𝑑 :

Ω is a nonempty bounded open subset of R𝑑} . (17)

For Ω ∈ O, set

𝐸Ω
𝑡 (ℎ) = {𝑥 ∈ Ω; 𝑢𝑡 (𝑥) = ℎ} (18)

and

𝑑Ω
𝑡 (ℎ) = 𝑑𝑖𝑚 𝐸Ω

𝑡 (ℎ) . (19)

Clearly

𝑑𝑡 (ℎ) = sup
Ω∈O

𝑑Ω
𝑡 (ℎ) . (20)

For Ω ∈ O and 𝑗 ∈ N0, set

Λ 𝑗 (Ω) = {𝜆 ∈ Λ 𝑗 : 𝜆 ∩ Ω ̸= 0} . (21)

Definition 5. For 𝑠 ∈ R, 𝑝, 𝑡 > 0, the oscillation space 𝑂𝑠
𝑝,𝑡(Ω)

is the space of tempered distributions 𝑓 that satisfy

sup
𝑗∈N0

(2(𝑠−𝑑/𝑝)𝑗 ( ∑
𝜆∈Λ 𝑗(Ω)

(ℓ𝑡,𝜆)𝑝)1/𝑝) < ∞
if 0 < 𝑝 < ∞

sup
𝑗∈N0,𝜆∈Λ 𝑗(Ω)

(2𝑠𝑗ℓ𝑡,𝜆) if 𝑝 = ∞.
(22)

Remark 6. For this space, we can assume that functions
and wavelets are compactly supported, with support 𝐾 that
contains Ω. Then, there exists 𝐶 > 0, such that, at each scale𝑗, there are at most 𝐶2𝑑𝑗 dyadic cubes 𝜆 ∈ Λ 𝑗(Ω) for whichℓ𝑡,𝜆 does not vanish (see [17] in the proof of Proposition 10
p.36).

For 0 < 𝑡, 𝑝 < ∞, the local (𝑝, 𝑡)−oscillation exponent of𝑓 on Ω is given by

𝜁Ω𝑡 (𝑝) = sup {𝜏 : 𝑓 ∈ 𝑂𝜏/𝑝
𝑝,𝑡 (Ω)}

= 𝑑 + lim inf
𝑗󳨀→∞

log (∑𝜆∈Λ 𝑗(Ω) (ℓ𝑡,𝜆)𝑝)
log (2−𝑗) . (23)

The (𝑝, 𝑡)−oscillation exponent of 𝑓 is defined as

𝜁𝑡 (𝑝) = inf
Ω∈O

𝜁Ω𝑡 (𝑝) . (24)

The 𝑡−multifractal formalism in [46] states that

𝑑𝑡 (ℎ) = inf
0<𝑝<∞

(𝑑 + ℎ𝑝 − 𝜁𝑡 (𝑝)) . (25)

The local 𝑡−multifractal formalism on Ω states that

𝑑Ω
𝑡 (ℎ) = inf

0<𝑝<∞
(𝑑 + ℎ𝑝 − 𝜁Ω𝑡 (𝑝)) . (26)

These formalisms yield upper bounds valid for any function
(see either [46], Theorem 2, p. 561, or [53], Section 3.2); for𝑡 > 0, define the upper 𝑡-set 𝐵𝑡(ℎ) of 𝑓 by

𝐵𝑡 (ℎ) = {𝑥; 𝑢𝑡 (𝑥) ≤ ℎ} (27)

and the upper 𝑡−spectrum by

ℎ 󳨃󳨀→ 𝐷𝑡 (ℎ) = 𝑑𝑖𝑚 𝐵𝑡 (ℎ) . (28)

Define the local upper 𝑡-set 𝐵Ω
𝑡 (ℎ) of 𝑓 by

𝐵Ω
𝑡 (ℎ) = 𝐵𝑡 (ℎ) ∩ Ω (29)

and the local upper 𝑡−spectrum on Ω by

ℎ 󳨃󳨀→ 𝐷Ω
𝑡 (ℎ) = 𝑑𝑖𝑚 𝐵Ω

𝑡 (ℎ) . (30)

Then ∀𝑡 > 0,
𝜂 (𝑡) > 0

∀ℎ 𝑑𝑡 (ℎ) ≤ 𝐷𝑡 (ℎ) ≤ inf
0<𝑝<∞

(𝑑 + ℎ𝑝 − 𝜁𝑡 (𝑝)) (31)

and ∀𝑡 > 0,
𝜂Ω (𝑡) > 0

∀ℎ 𝑑Ω
𝑡 (ℎ) ≤ 𝐷Ω

𝑡 (ℎ) ≤ inf
0<𝑝<∞

(𝑑 + ℎ𝑝 − 𝜁Ω𝑡 (𝑝))
(32)

where

𝜂Ω (𝑡) = 𝑑 + lim inf
𝑗󳨀→∞

log (∑𝜆∈Λ 𝑗(Ω)
󵄨󵄨󵄨󵄨𝐶𝜆

󵄨󵄨󵄨󵄨𝑡)
log (2−𝑗) . (33)

As in (26), we state the 𝑡−multifractal formalism for upper𝑡-sets as 𝐷𝑡 (ℎ) = inf
0<𝑝<∞

(𝑑 + ℎ𝑝 − 𝜁𝑡 (𝑝)) . (34)
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We also state the local 𝑡−multifractal formalism for upper 𝑡-
sets on Ω as

𝐷Ω
𝑡 (ℎ) = inf

0<𝑝<∞
(𝑑 + ℎ𝑝 − 𝜁Ω𝑡 (𝑝)) . (35)

In [53], Leonarduzzi et al. have validated the 𝑡−multifractal
formalism for some synthetic images and signals that include
independent realizations of random processes.

This paper is devoted to the study of the Baire generic
validity of both local and global 𝑡−multifractal formalisms in
a given Sobolev or Besov space. Recall that Besov and Sobolev
spaces are complete metrizable spaces [54]. Note that, if 𝑠 >𝑑/𝑝 then 𝐵𝑠,𝑞

𝑝 (R𝑑) ⊂ 𝐶𝑠−𝑑/𝑝(R𝑑) ⊂ 𝐿∞(R𝑑) for all 𝑞. On
the contrary, if 𝑠 = 𝑑/𝑝 and 𝑞 > 1 (resp., 𝑠 < 𝑑/𝑝), Jaffard
and Meyer [55] (resp., [28]) have proved that a function in𝐵𝑠,𝑞
𝑝 (R𝑑) can be infinite on a dense set and thus nowhere

Hölder regular. Similarly, if 𝑠 ≤ 𝑑/𝑝, there exist functions in
the usual Sobolev space

𝐿𝑝,𝑠 (R𝑑) = {𝑓 ∈ 𝐿𝑝 (R𝑑) ; (−Δ)𝑠/2 𝑓 ∈ 𝐿𝑝 (R𝑑)} (36)

which are everywhere locally unbounded [55].
In this paper, we are interested in the Baire generic

validity of the 𝑡−multifractal formalisms in Besov spaces𝐵𝑠0 ,𝑞0
𝑝0

(R𝑑) for 𝑠0, 𝑞0, 𝑝0 > 0 and Sobolev spaces 𝐿𝑝0,𝑠0(R𝑑) for𝑠0 > 0 and 1 ≤ 𝑝0 < ∞, under the condition 𝑠0−𝑑/𝑝0 > −𝑑/𝑡.
In the next section, we recall some tools from the theory
of Besov spaces. We also add some embeddings between
oscillation spaces and a relationship with the space BMO of
functions of bounded mean oscillation. In the third section,
we prove embeddings between Besov and oscillation spaces.
We deduce a general lower bound for the (𝑝, 𝑡)−oscillation
exponent. In the fourth section, we show that the obtained
lower bound is actually equality generically, in the sense of
Baire categories, in a given Sobolev or Besov space. In the
fifth section, we investigate the Baire generic validity of the𝑡−multifractal formalisms. Finally, in the sixth section, we
deduce a conclusion on the range of Baire validity of both the𝑡−multifractal formalism and the 𝑡−multifractal formalism
for upper 𝑡−sets.

All generic results are studied locally on Ω𝐿 = 𝐿 + (0, 1)𝑑
(𝐿 ∈ Z𝑑) and also globally on R𝑑.

Remark 7. Since only 𝑡−wavelet leaders for 𝑗 ≥ 0 are
needed in the values of pointwise 𝐿𝑡 regularity and the(𝑝, 𝑡)−exponent, then, from now on, we will identify func-
tions that have the same wavelet coefficients 𝐶𝜆 for 𝑗 ≥ 0.
2. Besov, Sobolev, and Oscillation Spaces

2.1. Besov and Sobolev Spaces. Let us first recall some proper-
ties of Besov spaces (for details, see, for example, [54, 56, 57]).
Given a function𝑓 ∈ S(R𝑑), its Fourier transform is denoted
by 𝑓. Let Ψ0 ∈ S(R𝑑) with

Ψ̂0 (𝜉) = 1 if 󵄨󵄨󵄨󵄨𝜉󵄨󵄨󵄨󵄨 ≤ 1,
Ψ̂0 (𝜉) = 0 if 󵄨󵄨󵄨󵄨𝜉󵄨󵄨󵄨󵄨 ≥ 2. (37)

For 𝑗 ∈ N, let

Ψ̂𝑗 (𝜉) = Ψ̂0 (2−𝑗𝜉) − Ψ̂0 (2−(𝑗−1)𝜉) . (38)

Then the support of Ψ̂𝑗 is included in the annulus {𝜉; 2𝑗−1 <|𝜉| ≤ 2𝑗+1} and
∞∑
𝑗=0

Ψ̂𝑗 = 1 (39)

is a partition of the unity. The Littlewood Paley definition of
Besov spaces is the following.

Definition 8. Let 0 < 𝑝, 𝑞 ≤ ∞, 𝑠 ∈ R. Then

𝐵𝑠,𝑞
𝑝 (R𝑑) = {𝑓 ∈ S

󸀠 (R𝑑) ; 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐵𝑠,𝑞𝑝 (R𝑑) < ∞} (40)

where󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐵𝑠,𝑞𝑝 (R𝑑)
= {{{{{{{

( ∞∑
𝑗=0

2𝑗𝑠𝑞 󵄩󵄩󵄩󵄩󵄩𝑓 ∗ Ψ𝑗

󵄩󵄩󵄩󵄩󵄩𝑞𝐿𝑝(R𝑑))
1/𝑞

if 0 < 𝑞 < ∞
sup
𝑗∈N0

2𝑗𝑠 󵄩󵄩󵄩󵄩󵄩𝑓 ∗ Ψ𝑗

󵄩󵄩󵄩󵄩󵄩𝐿𝑝(R𝑑) if 𝑞 = ∞.
(41)

Note that ‖.‖𝐵𝑠,𝑞𝑝 (R𝑑) is a norm (quasinorm when 𝑝 < 1 or 𝑞 <1) on 𝐵𝑠,𝑞
𝑝 (R𝑑).

Besov spaces do not depend on the choice of Ψ0. They are
separable when both 𝑝 and 𝑞 are finite.

Let us recall their wavelet characterizations; for a given
sequence of scalar numbers (𝑎𝜆)𝜆∈Λ (where Λ is as in (9)), let󵄩󵄩󵄩󵄩󵄩(𝑎𝜆)𝜆∈Λ󵄩󵄩󵄩󵄩󵄩𝑏𝑠,𝑞𝑝

= ( ∞∑
𝑗=0

(2(𝑠−𝑑/𝑝)𝑗 ( ∑
𝜆∈Λ 𝑗

󵄨󵄨󵄨󵄨𝑎𝜆󵄨󵄨󵄨󵄨𝑝)1/𝑝)
𝑞

)
1/𝑞

, (42)

with the usual modification when 𝑝 = ∞ or 𝑞 = ∞ (i.e.,2(𝑠−𝑑/∞)𝑗 = 2𝑠𝑗 and the sums of 𝑝th or 𝑞th powers replaced by
suprema over the same sets of indices), and

𝑏𝑠,𝑞𝑝 = {(𝑎𝜆)𝜆∈Λ : 󵄩󵄩󵄩󵄩󵄩(𝑎𝜆)𝜆∈Λ󵄩󵄩󵄩󵄩󵄩𝑏𝑠,𝑞𝑝 < ∞} . (43)

Then, for the above wavelets if either 𝑟𝜓 = ∞ or 𝑟𝜓 is large
enough (𝑟𝜓 > max{𝑠, 2𝑑/𝑝 + 𝑑/2 − 𝑠} in [57], Theorem 1.64,
p. 48, and (𝑟𝜓 > |𝑠| if 𝑝 ≥ 1, and 𝑟𝜓 > max{𝑠, 2𝑑/𝑝 − 𝑑 − 𝑠} if0 < 𝑝 < 1) in [50, 58]), then𝐼 : 𝑓 󳨀→ (𝐶𝜆 (𝑓))𝜆∈Λ (44)

is an isomorphic map from 𝐵𝑠,𝑞
𝑝 (R𝑑) onto 𝑏𝑠,𝑞𝑝 .

Under the same condition on 𝑟𝜓, it is also proved that, for1 ≤ 𝑝 < ∞ and 𝑠 > 0, the Sobolev space 𝐿𝑝,𝑠(R𝑑) given in
(36) is characterized by

󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿𝑝,𝑠(R𝑑) fl
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩( ∞∑

𝑗=0

22𝑠𝑗 ∑
𝜆∈Λ 𝑗

󵄨󵄨󵄨󵄨𝐶𝜆
󵄨󵄨󵄨󵄨2 𝜒𝜆)1/2󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(R𝑑) < ∞, (45)

where 𝜒𝜆 denotes the characteristic function of the cube 𝜆.
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Note that characterizations (44) and (45) do not depend
on choice of the wavelet basis (see [50]).

Besov and usual Sobolev spaces are closely related (see
[12, 59]):

∀𝑝 ≥ 1 ∀𝑠 > 0
𝐵𝑠,1
𝑝 (R𝑑) 󳨅→ 𝐿𝑝,𝑠 (R𝑑) 󳨅→ 𝐵𝑠,∞

𝑝 (R𝑑) (46)

and

∀𝑝 > 1 ∀𝑠 > 𝜀 > 0 ∀𝑞 > 0
𝐵𝑠−𝜀,𝑞
𝑝 (R𝑑) 󳨅→ 𝐿𝑝,𝑠 (R𝑑) 󳨅→ 𝐵𝑠+𝜀,𝑞

𝑝 (R𝑑) . (47)

The following embeddings hold (for example, see [60],
Proposition 2.6, p. 245, Proposition 2.8, p. 245, andTheorem
2.14, p. 248, respectively):

∀0 < 𝑞2 ≤ 𝑞1
𝑏𝑠,𝑞2𝑝 󳨅→ 𝑏𝑠,𝑞1𝑝 , (48)

∀𝑠1 ≤ 𝑠2
𝑏𝑠2 ,𝑞2𝑝 󳨅→ 𝑏𝑠1 ,𝑞1𝑝 , (49)

∀0 < 𝑝2 ≤ 𝑝1

𝑏𝑠,𝑞𝑝2 󳨅→ 𝑏𝑠+𝑑/𝑝1−𝑑/𝑝2 ,𝑞𝑝1
. (50)

The following interpolation property holds:

∀0 ≤ 𝜃 ≤ 1
𝑏𝑠1 ,𝑞𝑝1

∩ 𝑏𝑠2 ,𝑞𝑝2
󳨅→ 𝑏𝜃𝑠1+(1−𝜃)𝑠2 ,𝑞𝑝 ,

where 1𝑝 = 𝜃𝑝1

+ 1 − 𝜃𝑝2

.
(51)

Using the isomorphic (44), we obtain similar embeddings
between Besov spaces.

2.2. Oscillation Spaces

Proposition 9. The following embeddings between oscillation
spaces hold:

∀𝑝, 𝑡 > 0
∀𝑠1 ≤ 𝑠2

𝑂𝑠2
𝑝,𝑡 (R𝑑) 󳨅→ 𝑂𝑠1

𝑝,𝑡 (R𝑑) ,
(52)

∀𝑡 > 0
∀0 < 𝑝2 ≤ 𝑝1

𝑂𝑠
𝑝2,𝑡

(R𝑑) 󳨅→ 𝑂𝑠+𝑑/𝑝1−𝑑/𝑝2
𝑝1 ,𝑡

(R𝑑) ,
(53)

and ∀0 ≤ 𝜃 ≤ 1
𝑂𝑠1
𝑝1,𝑡

(R𝑑) ∩ 𝑂𝑠2
𝑝2,𝑡

(R𝑑) 󳨅→ 𝑂𝜃𝑠1+(1−𝜃)𝑠2
𝑝,𝑡 (R𝑑) ,
where 1𝑝 = 𝜃𝑝1

+ 1 − 𝜃𝑝2

.
(54)

We also have∀0 < 𝜃 < 1
𝑂𝑠1
𝑝,𝑡1

(R𝑑) ∩ 𝑂𝑠2
𝑝,𝑡2

(R𝑑)
󳨅→ 𝑂(𝜃𝑡1/(𝜃𝑡1+(1−𝜃)𝑡2))𝑠1+((1−𝜃)𝑡2/(𝜃𝑡1+(1−𝜃)𝑡2))𝑠2

𝑝,𝜃𝑡1+(1−𝜃𝑡2)
(R𝑑) .

(55)

And ∀𝑝 > 0 ∀𝑠
𝑂𝑠
𝑝,𝑡 (R𝑑) 󳨅→ 𝐵𝑠,∞

𝑝 (R𝑑) (56)

and
𝑂0
∞,2 (R𝑑) = 𝐵𝑀𝑂. (57)

If O is as in (17), then the following local embedding holds:

∀Ω ∈ O ∀𝑡 > 0 ∀0 < 𝑝1 ≤ 𝑝2

𝑂𝑠
𝑝2 ,𝑡

(Ω) 󳨅→ 𝑂𝑠
𝑝1,𝑡

(Ω) . (58)

Proof. Embeddings (52) (resp., (53)) follows directly from
(49) (resp., (50)). Embedding (54) follows from (51) and the
equivalence

𝑓 ∈ 𝑂𝑠
𝑝,𝑡 (R𝑑) ⇐⇒ (ℓ𝑡,𝜆)

𝜆∈Λ
∈ 𝑏𝑠,∞𝑝 . (59)

Let us now prove embedding (55). Write the 𝑡−wavelet leader
of 𝑓 at a cube 𝜆 ∈ Λ 𝑗 (given in (14)) as

ℓ𝑡,𝜆 = 2(𝑑/𝑡)𝑗𝑎1/𝑡𝑡,𝜆
(60)

where

𝑎𝑡,𝜆 = ∞∑
𝑗󸀠=𝑗

(2−𝑑𝑗󸀠 ∑
𝜆󸀠⊂𝜆

󵄨󵄨󵄨󵄨𝐶𝜆󸀠
󵄨󵄨󵄨󵄨𝑡) . (61)

If 𝜃 ∈ (0, 1), then𝑎𝜃𝑡1+(1−𝜃)𝑡2 ,𝜆
= ∞∑

𝑗󸀠=𝑗

∑
𝜆󸀠⊂𝜆

(󵄨󵄨󵄨󵄨𝐶𝜆󸀠
󵄨󵄨󵄨󵄨𝑡1 2−𝑑𝑗󸀠)𝜃 (󵄨󵄨󵄨󵄨𝐶𝜆󸀠

󵄨󵄨󵄨󵄨𝑡2 2−𝑑𝑗󸀠)1−𝜃 . (62)

We know that, by Cauchy-Schwartz inequality, if 𝑃 ≥ 1 and1/𝑃 + 1/𝑄 = 1, then∀𝐴 𝑖, 𝐵𝑖 ≥ 0 ∀
∑ 𝐴 𝑖𝐵𝑖 ≤ (∑ 𝐴𝑃

𝑖 )1/𝑃 (∑ 𝐵𝑄
𝑖 )1/𝑄 . (63)

If 𝑃 = 1/𝜃 then 𝑄 = 1/(1 − 𝜃); then relation (63) applied to
(62) with 𝐴 𝑖 = (|𝐶𝜆󸀠 |𝑡12−𝑑𝑗󸀠)𝜃 and 𝐵𝑖 = (|𝐶𝜆󸀠 |𝑡22−𝑑𝑗󸀠)1−𝜃 (with𝑖 = (𝑗󸀠, 𝜆󸀠)) yields

𝑎𝜃𝑡1+(1−𝜃)𝑡2 ,𝜆 ≤ (𝑎𝑡1 ,𝜆)𝜃 (𝑎𝑡2 ,𝜆)1−𝜃 . (64)
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Then

2𝑑𝑗𝑎𝜃𝑡1+(1−𝜃)𝑡2 ,𝜆 ≤ (2𝑑𝑗𝑎𝑡1 ,𝜆)𝜃 (2𝑑𝑗𝑎𝑡2 ,𝜆)1−𝜃 . (65)

It follows from (60) thatℓ𝜃𝑡1+(1−𝜃)𝑡2 ,𝜆
≤ (ℓ𝑡1,𝜆)𝜃𝑡1/(𝜃𝑡1+(1−𝜃)𝑡2) (ℓ𝑡2 ,𝜆)(1−𝜃)𝑡2/(𝜃𝑡1+(1−𝜃)𝑡2) . (66)

Put

𝑆𝑡 (𝑝, 𝑗) fl 2−𝑑𝑗 ∑
𝜆∈Λ 𝑗(Ω)

(ℓ𝑡,𝜆)𝑝 = 2𝑑(𝑝/𝑡−1)𝑗 ∑
𝜆∈Λ 𝑗(Ω)

𝑎𝑝/𝑡
𝑡,𝜆

. (67)

Then, as in (64), relation (66) yields

𝑆𝜃𝑡1+(1−𝜃)𝑡2 (𝑝, 𝑗) ≤ (𝑆𝑡1 (𝑝, 𝑗))𝜃𝑡1/(𝜃𝑡1+(1−𝜃)𝑡2)
⋅ (𝑆𝑡2 (𝑝, 𝑗))(1−𝜃)𝑡2/(𝜃𝑡1+(1−𝜃)𝑡2) . (68)

This achieves the proof of embedding (55).
Embedding (56) follows from the fact that |𝐶𝜆| ≤ ℓ𝑡,𝜆.
With regard to (57), for 𝑝 = ∞, 𝑠 = 0, and 𝑡 = 2,󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝑂0∞,2(R𝑑) = sup

𝑗∈N0,𝜆∈Λ 𝑗

(ℓ2,𝜆)
= sup

𝑗∈N0,𝜆∈Λ 𝑗

( ∑
𝜆󸀠⊂𝜆

󵄨󵄨󵄨󵄨󵄨󵄨𝐶𝜆󸀠2(𝑑/2)(𝑗−𝑗󸀠)󵄨󵄨󵄨󵄨󵄨󵄨2)
1/2 . (69)

It follows that

𝑓 ∈ 𝑂0
∞,2 (R𝑑) ⇐⇒

∃𝐶 > 0 : ∀𝑗 ∈ N0 ∀𝜆 ∈ Λ 𝑗

∑
𝜆󸀠⊂𝜆

󵄨󵄨󵄨󵄨𝐶𝜆󸀠
󵄨󵄨󵄨󵄨2 2−𝑑𝑗󸀠 ≤ 𝐶2−𝑑𝑗.

(70)

Thanks to our 𝐿∞ (resp., Meyer 𝐿2) normalization (7) for
wavelets and (10), the right-hand term in (70) coincides with
the Carleson condition for the wavelet characterization of the𝐵𝑀𝑂 space given inTheorem 4, p. 150-151 in [50].

Finally result (58) follows from Remark 6 and the Hölder
inequality:

∑
𝜆∈Λ 𝑗(Ω)

(ℓ𝑡,𝜆)𝑝1

≤ 𝐶2𝑑𝑗(1−𝑝1/𝑝2) ( ∑
𝜆∈Λ 𝑗(Ω)

(ℓ𝑡,𝜆)𝑝2)𝑝1/𝑝2 . (71)

Oscillation spaces 𝑂𝑠
𝑝,𝑡(R𝑑) were defined in terms of

wavelet coefficients. They can be characterized by some
Littlewood Paley conditions; moreover 𝑡−wavelet leaders can
also be replaced by 𝐿𝑡 local norms [61].

When 𝑡 = ∞, the 𝑡−wavelet leaders of 𝑓 ∈ 𝐿∞
𝑙𝑜𝑐(R𝑑) given

in (14) boil down to the classical wavelet leadersℓ∞,𝜆 = sup
𝜆󸀠⊂𝜆

󵄨󵄨󵄨󵄨𝐶𝜆󸀠
󵄨󵄨󵄨󵄨 (72)

used for the characterization of the Hölder exponent. The
corresponding oscillation spaces𝑂𝑠

𝑝,∞(R𝑑) have been studied
in [17, 62, 63] and denoted by𝑂𝑠

𝑝(R𝑑).Their characterizations
by differences were obtained in [62]. Their independence of
the chosen wavelet basis in the Schwartz class was obtained
in [17]. For either 𝑠 ≥ 0 or 𝑠 ≤ −𝑑/𝑝, it is proved in [63] that
these spaces are a variation on the definition of Besov spaces.
On the contrary, the spaces 𝑂𝑠

𝑝(R𝑑) for −𝑑/𝑝 < 𝑠 < 0 cannot
be sharply imbedded between Besov spaces and thus are new
spaces of really different nature.

Generalized oscillation spaces 𝑂𝑠,𝑠󸀠

𝑝,𝑡 (R𝑑) were also intro-
duced in [46]; if 𝑠󸀠 > 0 (resp., 𝑠󸀠 < 0), then 𝑓 belongs to𝑂𝑠,𝑠󸀠

𝑝,𝑡 (R𝑑) if its fractional derivative (resp., primitive) or order

𝑠󸀠 whichwe denote by (−Δ)𝑠󸀠/2𝑓 (i.e., such that ̂(−Δ)𝑠󸀠/2𝑓(𝜉) =|𝜉|𝑠󸀠𝑓(𝜉)) belongs to 𝑂𝑠
𝑝,𝑡(R𝑑). Spaces 𝑂𝑠,𝑠󸀠

𝑝,∞(R𝑑) allow the
computation of fractal dimension of graphs and yield a
multifractal formalism for chirp-type Hölder singularities
that behave like |𝑥 − 𝑥0|ℎ sin(1/|𝑥 − 𝑥0|𝛽) (see [62]).
3. General Lower Bound on the(𝑝,𝑡)−Oscillation Exponent

The following general lower bounds of both local and global(𝑝, 𝑡)−oscillation exponents hold.

�eorem 10. Let 𝑓 be any function in either the Besov space𝐵𝑠0 ,𝑞0
𝑝0

(R𝑑) for 𝑠0, 𝑞0, 𝑝0 > 0 or the Sobolev space 𝐿𝑝0,𝑠0(R𝑑) for𝑠0 > 0 and 𝑝0 ≥ 1. Then, for all 𝑡 > 0 such that 𝑠0 − 𝑑/𝑝0 >−𝑑/𝑡,
∀Ω ∈ O

𝜁Ω𝑡 (𝑝) ≥ {{{
𝑝 (𝑠0 − 𝑑𝑝0

) + 𝑑 ∀𝑝 ≥ 𝑝0𝑝𝑠0 ∀𝑝 ≤ 𝑝0

(73)

and

𝜁𝑡 (𝑝) ≥ {{{
𝑝 (𝑠0 − 𝑑𝑝0

) + 𝑑 ∀𝑝 ≥ 𝑝0𝑝𝑠0 ∀𝑝 ≤ 𝑝0. (74)

Proof. For Ω ∈ O, define the local Besov space 𝐵𝑠,𝑞
𝑝 (Ω) (resp.,

Sobolev space 𝐿𝑠
𝑝(Ω)) as in (44) (resp., (45)) with Λ replaced

by ⋃𝑗∈N0
Λ 𝑗(Ω) (resp., Λ 𝑗 replaced by Λ 𝑗(Ω)).

Result (73) will follow from (23) and the following
proposition. Result (74) will be deduced from (24).

Proposition 11. LetΩ ∈ O. The following embeddings hold for
all 𝑠0, 𝑞0, 𝑝0, 𝑡 > 0 such that 𝑠0 − 𝑑/𝑝0 > −𝑑/𝑡:

If 𝑡 ≥ 𝑝0

𝑡ℎ𝑒𝑛 𝐵𝑠0 ,𝑞0
𝑝0

(Ω) 󳨅→ 𝑂𝑠0−𝑑/𝑝0+𝑑/𝑝
𝑝,𝑡 (Ω) if 𝑝 ≥ 𝑝0

𝐵𝑠0 ,𝑞0
𝑝0

(Ω) 󳨅→ 𝑂𝑠0
𝑝,𝑡 (Ω) ∀𝑝 ≤ 𝑝0

(75)
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and
if 𝑡 < 𝑝0 𝑡ℎ𝑒𝑛∀𝜀 > 0

𝐵𝑠0 ,𝑞0
𝑝0

(Ω) 󳨅→ 𝑂𝑠0−𝑑/𝑝0+𝑑/𝑝−𝜀
𝑝,𝑡 (Ω) ∀𝑝 ≥ 𝑝0

𝐵𝑠0 ,𝑞0
𝑝0

(Ω) 󳨅→ 𝑂𝑠0−𝜀
𝑝,𝑡 (Ω) ∀𝑝 ≤ 𝑝0.

(76)

Embeddings between similar local Sobolev and oscillation
spaces also hold (using (46) and (47)).

Proof. Let 𝑓 ∈ 𝐵𝑠0 ,𝑞0
𝑝0

(Ω) for 𝑠0, 𝑞0, 𝑝0 > 0 and 𝑡 > 0 such that𝑠0 − 𝑑/𝑝0 > −𝑑/𝑡.(1) Assume that 𝑡 ≥ 𝑝0. If 𝑎𝑡,𝜆 is as in (61), then using the
property

∀𝑥𝑛 ≥ 0 ∀𝑝 ≥ 1
∑ 𝑥𝑝

𝑛 ≤ (∑ 𝑥𝑛)𝑝 (77)

we get

𝑎1/𝑡𝑡,𝜆 ≤ ( ∞∑
𝑗󸀠=𝑗

(2−𝑑(𝑝0/𝑡)𝑗󸀠 ∑
𝜆󸀠⊂𝜆

󵄨󵄨󵄨󵄨𝐶𝜆󸀠
󵄨󵄨󵄨󵄨𝑝0))1/𝑝0 . (78)

(a) If 𝑝 ≥ 𝑝0, then by Remark 6, the quantity 𝑆𝑡(𝑝, 𝑗)
given in (67) satisfies

𝑆𝑡 (𝑝, 𝑗) ≤ 𝐶2𝑑(𝑝/𝑡−1)𝑗 ( ∑
𝜆∈Λ 𝑗(Ω)

∞∑
𝑗󸀠=𝑗

∑
𝜆󸀠⊂𝜆

󵄨󵄨󵄨󵄨𝐶𝜆󸀠
󵄨󵄨󵄨󵄨𝑝0

⋅ 2−𝑑(𝑝0/𝑡)𝑗󸀠)𝑝/𝑝0 .
(79)

Clearly

∑
𝜆∈Λ 𝑗(Ω)

∞∑
𝑗󸀠=𝑗

∑
𝜆󸀠⊂𝜆

󵄨󵄨󵄨󵄨𝐶𝜆󸀠
󵄨󵄨󵄨󵄨𝑝0 2−𝑑(𝑝0/𝑡)𝑗󸀠

= ∞∑
𝑗󸀠=𝑗

∑
𝜆󸀠∈Λ

𝑗󸀠
(Ω)

󵄨󵄨󵄨󵄨𝐶𝜆󸀠
󵄨󵄨󵄨󵄨𝑝0 2−𝑑(𝑝0/𝑡)𝑗󸀠 .

(80)

Since 𝑓 ∈ 𝐵𝑠0 ,𝑞0
𝑝0

(Ω), then 𝑓 ∈ 𝐵𝑠0 ,∞
𝑝0

(Ω). There exists 𝑗0
such that

∀𝑗󸀠 ≥ 𝑗0
2−𝑑𝑗󸀠 ∑

𝜆󸀠∈Λ
𝑗󸀠
(Ω)

󵄨󵄨󵄨󵄨𝐶𝜆󸀠
󵄨󵄨󵄨󵄨𝑝0 ≤ 𝐶2−𝑠0𝑝0𝑗󸀠 . (81)

It follows that for all 𝑗 ≥ 𝑗0
𝑆𝑡 (𝑝, 𝑗) ≤ 𝐶2𝑑(𝑝/𝑡−1)𝑗 ( ∞∑

𝑗󸀠=𝑗

2𝑑(1−𝑝0/𝑡)𝑗󸀠2−𝑠0𝑝0𝑗󸀠)𝑝/𝑝0 . (82)

Since 𝑠0 − 𝑑/𝑝0 > −𝑑/𝑡, then
𝑆𝑡 (𝑝, 𝑗) ≤ 𝐶2(−𝑑+(𝑑−𝑠0𝑝0)(𝑝/𝑝0))𝑗. (83)

Thus

𝑓 ∈ 𝑂𝑠0−𝑑/𝑝0+𝑑/𝑝
𝑝,𝑡 (Ω) . (84)

(b) Let now 𝑝 ≤ 𝑝0.∀0 ≤ 𝑟 ≤ 1
∑

𝜆∈Λ 𝑗(Ω)

(ℓ𝑡,𝜆)𝑟𝑝 ≥ 𝐶2𝑑𝑗(1−𝑟) ( ∑
𝜆∈Λ 𝑗(Ω)

(ℓ𝑡,𝜆)𝑝)𝑟 . (85)

It follows that

𝑆𝑡 (𝑟𝑝, 𝑗) ≥ 𝐶 (𝑆𝑡 (𝑝, 𝑗))𝑟 . (86)

From 1.(a) since 𝑠0 > 0, then 𝑓 ∈ 𝑂𝑠0
𝑡,𝑝0

(Ω). Then

𝑆𝑡 (𝑝0, 𝑗) ≤ 𝐶2−𝑠0𝑝0𝑗. (87)

By taking 𝑟 = 𝑝0/𝑝, we deduce that
𝑆𝑡 (𝑝, 𝑗) ≤ 𝐶2−𝑠0𝑝𝑗. (88)

Thus

𝑓 ∈ 𝑂𝑠0
𝑝,𝑡 (Ω) . (89)

(2)Assume that 𝑡 < 𝑝0. Since 𝑠0−𝑑/𝑝0 > −𝑑/𝑡, then there
exists 𝑡󸀠 > 𝑡 such that 𝑠0 − 𝑑/𝑝0 = −𝑑/𝑡󸀠. It follows from the
fact that 𝑠0 > 0 that 𝑡󸀠 > 𝑝0. Let 𝑡1 ∈ (𝑝0, 𝑡󸀠) and 𝑡2 < 𝑡. Since𝑡 < 𝑝0 write 𝑡 = 𝜃𝑡1 + (1 − 𝜃)𝑡2.

Since 𝑡1 < 𝑝󸀠, then 𝑠0 − 𝑑/𝑝0 > −𝑑/𝑡1. Since 𝑡1 > 𝑝0,
then from above 1.(a) yields

𝑓 ∈ 𝑂𝑠0−𝑑/𝑝0+𝑑/𝑝
𝑝,𝑡1

(Ω) if 𝑝 ≥ 𝑝0

𝑓 ∈ 𝑂𝑠0
𝑝,𝑡1

(Ω) if 𝑝 < 𝑝0. (90)

On the other hand, since 𝑡2 < 𝑝0 then𝑓 ∈ 𝑂𝑠0−𝑑/𝑝0
𝑝,𝑡2

(Ω). In
fact

𝑎𝑡2 ,𝜆 ≤ 𝐶 ∞∑
𝑗󸀠=𝑗

2𝑑(1−𝑡2/𝑝0)(𝑗󸀠−𝑗) ( ∑
𝜆󸀠⊂𝜆

󵄨󵄨󵄨󵄨𝐶𝜆󸀠
󵄨󵄨󵄨󵄨𝑝0)

𝑡2/𝑝0 2−𝑑𝑗󸀠

= 𝐶2−𝑑(1−𝑡2/𝑝0)𝑗 ∞∑
𝑗󸀠=𝑗

(2−𝑑𝑗󸀠 ∑
𝜆󸀠⊂𝜆

󵄨󵄨󵄨󵄨𝐶𝜆󸀠
󵄨󵄨󵄨󵄨𝑝0)

𝑡2/𝑝0 .
(91)

Since 𝑓 ∈ 𝐵𝑠0 ,𝑞0
𝑝0

(Ω), then from (81) we get

∀𝑗 ≥ 𝑗0 ∀𝜆 ∈ Λ 𝑗

𝑎𝑡2 ,𝜆 ≤ 𝐶2−𝑑(1−𝑡2/𝑝0)𝑗 ∞∑
𝑗󸀠=𝑗

2−𝑡2𝑠0𝑗󸀠 . (92)

Since 𝑠0 > 0 then

∀𝑗 ≥ 𝑗0 ∀𝜆 ∈ Λ 𝑗

𝑎𝑡2 ,𝜆 ≤ 𝐶2−𝑑(1−𝑡2/𝑝0)𝑗2−𝑡2𝑠0𝑗. (93)
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It follows from (60) that

∀𝑗 ≥ 𝑗0 ∀𝜆 ∈ Λ 𝑗

ℓ𝑡2 ,𝜆 ≤ 𝐶2−(𝑠0−𝑑/𝑝0)𝑗. (94)

Then

𝑆𝑡2 (𝑝, 𝑗) ≤ 𝐶2−𝑝(𝑠0−𝑑/𝑝0)𝑗. (95)

Therefore

𝑓 ∈ 𝑂𝑠0−𝑑/𝑝0
𝑝,𝑡2

(Ω) . (96)

Using (54), both (90) and (96) yield

𝑓 ∈ 𝑂(𝜃𝑡1/𝑡)(𝑠0−𝑑/𝑝0+𝑑/𝑝)+((1−𝜃)𝑡2/𝑡)(𝑠0−𝑑/𝑝0)
𝑝,𝑡 (Ω)

= 𝑂(𝜃𝑡1/𝑡)(𝑑/𝑝)+𝑠0−𝑑/𝑝0
𝑝,𝑡 (Ω) if 𝑝 ≥ 𝑝0

𝑓 ∈ 𝑂(𝜃𝑡1/𝑡)𝑠0+((1−𝜃)𝑡2/𝑡)(𝑠0−𝑑/𝑝0)
𝑝,𝑡 (Ω)

= 𝑂𝑠0−((1−𝜃)𝑡2/𝑡)(𝑑/𝑝0)
𝑝,𝑡 (Ω) if 𝑝 ≤ 𝑝0.

(97)

When 𝑡2 tends to 0, fraction (1 − 𝜃)𝑡2/𝑡 tends to 0 too, and𝜃𝑡1/𝑡 tends to 1. Hence (76) holds.
◻

4. Generic (𝑝,𝑡)−Oscillation Exponent

For a given Besov or Sobolev space, the residual set that we
will construct will be generated from a saturating function𝐹 (i.e., for which the lower bounds obtained in Theorem 10
become equality). Thanks to embedding (46), we can choose
for saturating function for the Sobolev space the one obtained
for the Besov space 𝐵𝑠0 ,1

𝑝0
(R𝑑).

4.1. Saturating Function. For 𝜆 = 𝑘2−𝑗 + [0, 2−𝑗)𝑑, let 𝐽 ≤ 𝑗
be the unique integer given by the irreducible representa-
tion

𝑘2−𝑗 = 𝐾2−𝐽 with 𝐾 ∈ Z
𝑑 − (2Z)𝑑 . (98)

For 𝐿 = (ℓ1, . . . , ℓ𝑑) ∈ Z𝑑, put

|𝐿| = 󵄨󵄨󵄨󵄨ℓ1󵄨󵄨󵄨󵄨 + ⋅ ⋅ ⋅ + 󵄨󵄨󵄨󵄨ℓ𝑑󵄨󵄨󵄨󵄨 ,
Ω𝐿 = 𝐿 + (0, 1)𝑑 . (99)

The following wavelet series will be called a saturating
function:

𝐹 = ∑
𝐿∈Z𝑑

2−|𝐿|𝐹𝐿 (100)

where

𝐹𝐿 = ∞∑
𝑗=1

∑
𝜆∈Λ 𝑗(Ω𝐿)

𝑗−𝑎2(𝑑/𝑝0−𝑠0)𝑗2−(𝑑/𝑝0)𝐽𝜓𝜆 (101)

and 𝑎 = 2/𝑝0 + 2/𝑞0 + 1.

Remark 12. If 𝜆 = 𝑘2−𝑗 + [0, 2−𝑗)𝑑 ∈ Λ 𝑗(Ω0) and 𝐿 ∈ Z𝑑 then𝐿 + 𝜆 fl 𝐿 + 𝑘2−𝑗 + [0, 2−𝑗)𝑑 ∈ Λ 𝑗(Ω𝐿). Both 𝜆 and 𝐿 + 𝜆 share
the same 𝐽. The previous function 𝐹 satisfies

𝐶𝐿+𝜆 = 2−|𝐿|𝐶𝜆. (102)

This yields

ℓ𝑡,𝐿+𝜆 = 2−|𝐿|ℓ𝑡,𝜆. (103)

It follows that

𝜁Ω𝐿𝑡 (𝑝) = 𝜁Ω0𝑡 (𝑝) . (104)

It is easy to show that 𝐹0 ∈ 𝐵𝑠0 ,𝑞0
𝑝0

(Ω0) (see [15], Propo-
sition 2, p. 532). Relation (102) yields that ‖𝐹𝐿‖𝐵𝑠0,𝑞0𝑝0 (Ω𝐿)

=2−|𝐿|‖𝐹0‖𝐵𝑠0,𝑞0𝑝0 (Ω0)
. Note that the norm of the local Besov space

is as the global one but with restriction on

Λ (Ω) = ⋃
𝑗∈N0

Λ 𝑗 (Ω) . (105)

Therefore 𝐹 ∈ 𝐵𝑠0 ,𝑞0
𝑝0

(R𝑑) and ‖𝐹‖𝐵𝑠0,𝑞0𝑝0 (R𝑑) = ‖𝐹0‖𝐵𝑠0,𝑞0𝑝0 (Ω0)
.

�eorem 13. Let 𝑠0, 𝑞0, 𝑝0 > 0 and 𝑡 > 0 be such that 𝑠0 −𝑑/𝑝0 > −𝑑/𝑡. Then the saturating function 𝐹 satisfies

∀𝐿 ∈ Z
𝑑

𝜁𝑡 (𝑝) = 𝜁Ω𝐿𝑡 (𝑝) = {{{
𝑝 (𝑠0 − 𝑑𝑝0

) + 𝑑 ∀𝑝 ≥ 𝑝0𝑝𝑠0 ∀𝑝 ≤ 𝑝0.
(106)

Proof.Thanks to both (104) andTheorem 10, it suffices to show
that

𝜁Ω0𝑡 (𝑝) ≤ {{{
𝑝 (𝑠0 − 𝑑𝑝0

) + 𝑑 ∀𝑝 ≥ 𝑝0𝑝𝑠0 ∀𝑝 ≤ 𝑝0. (107)

We know that, for 𝑗 ∈ N,

Λ 𝑗 (Ω0) = {𝜆 = 𝑘2−𝑗 + [0, 2−𝑗)𝑑 with 𝑘
∈ {0, . . . , 2𝑗 − 1}𝑑} . (108)

It is easy to show that

∀𝑝 > 0
𝜂Ω0 (𝑝) = {{{

𝑑 + 𝑝 (𝑠0 − 𝑑𝑝0

) if 𝑝 ≥ 𝑝0𝑠0𝑝 if 𝑝 ≤ 𝑝0

(109)

(the proof is the same as in [15], Proposition 4, p. 540-541, and
we do not need the assumption 𝑠0 > 𝑑/𝑝0).

The following result estimates the 𝑡−wavelet leaders of𝐹0 and allows the computation of its local (𝑝, 𝑡)− oscillation
exponent on Ω0.
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Proposition 14. Let 𝑠0, 𝑝0, 𝑞0 > 0 and 𝑡 > 0 such that 𝑠0 −𝑑/𝑝0 > −𝑑/𝑡. Let 𝐹0 be as in (101).Then there exist two positive
constants 𝐶1(𝑡) and 𝐶2(𝑡) such that

∀𝜀 > 0 ∃𝑗𝜀 ∀𝑗 ≥ 𝑗𝜀 ∀𝜆 ∈ Λ 𝑗 (Ω0)
𝐶1 (𝑡) 2−𝜀𝑗𝑗𝑎𝐶𝜆 ≤ ℓ𝑡,𝜆 ≤ 𝐶2 (𝑡) 𝑗𝑎𝐶𝜆. (110)

Proof. For 𝜆󸀠 ⊂ 𝜆, either 𝐽󸀠 = 𝐽 or 𝐽󸀠 > 𝑗. There exists 𝐶 > 0
such that, at each scale 𝐽󸀠 > 𝑗, there are 𝐶2𝑑(𝐽󸀠−𝑗) subdyadic
cubes 𝜆󸀠 of 𝜆 that have the irreducible representation 𝐾󸀠2−𝐽󸀠 .
Then

𝑎𝑡,𝜆 = ∞∑
𝑗󸀠=𝑗

∑
𝜆󸀠⊂𝜆

𝑗󸀠−𝑎𝑡2(𝑑/𝑝0−𝑠0)𝑡𝑗󸀠2−(𝑑𝑡/𝑝0)𝐽󸀠2−𝑑𝑗󸀠

= ( ∞∑
𝑗󸀠=𝑗

𝑗󸀠−𝑎𝑡2((𝑑/𝑝0−𝑠0)𝑡−𝑑)𝑗󸀠) 2−(𝑑𝑡/𝑝0)𝐽

+ ∞∑
𝐽󸀠=𝑗+1

2𝑑(𝐽󸀠−𝑗) ∞∑
𝑗󸀠=𝐽󸀠

(𝑗󸀠−𝑎𝑡2((𝑑/𝑝0−𝑠0)𝑡−𝑑)𝑗󸀠) 2−(𝑑𝑡/𝑝0)𝐽󸀠 .
(111)

The left-hand series corresponds to 𝜆󸀠 = 𝑘2−𝑗 + [0, 2−𝑗󸀠)𝑑 if𝜆 = 𝑘2−𝑗 + [0, 2−𝑗)𝑑.
Consequently, there exists ℎ𝑗 such that

𝑎𝑡,𝜆 = ℎ𝑗 [[( ∞∑
𝑗󸀠=𝑗

2((𝑑/𝑝0−𝑠0)𝑡−𝑑)𝑗󸀠) 2−(𝑑𝑡/𝑝0)𝐽

+ ∞∑
𝐽󸀠=𝑗+1

2𝑑(𝐽󸀠−𝑗) ∞∑
𝑗󸀠=𝐽󸀠

(2((𝑑/𝑝0−𝑠0)𝑡−𝑑)𝑗󸀠) 2−(𝑑𝑡/𝑝0)𝐽󸀠]]
(112)

with

∀𝑗 ℎ𝑗 ≤ 1 (113)

and

∀𝜀 > 0 ∃𝑗𝜀 ∀𝑗 ≥ 𝑗𝜀
ℎ𝑗 ≥ 2−𝑡𝜀𝑗. (114)

Since 𝑠0 − 𝑑/𝑝0 > −𝑑/𝑡, we get
𝑎𝑡,𝜆 ≈ ℎ𝑗 (2((𝑑/𝑝0−𝑠0)𝑡−𝑑)𝑗2−(𝑑𝑡/𝑝0)𝐽 + 2−(𝑠0𝑡+𝑑)𝑗)

≈ ℎ𝑗2−(𝑠0𝑡+𝑑)𝑗2(𝑑𝑡/𝑝0)(𝑗−𝐽) (115)

where ≈ means that the left quantity is bounded from below
and above by positive constants times the right quantity.

It follows that

ℓ𝑡,𝜆 = 2(𝑑/𝑡)𝑗𝑎1/𝑡𝜆 ≈ ℎ1/𝑡
𝑗 2(𝑑/𝑝0−𝑠0)𝑗2−(𝑑/𝑝0)𝐽. (116)

Hence (110) holds.

Relation (110) together with (23) yields (107). ◻

4.2. The Residual Set. We will need the following lemma.

Lemma 15. Let 𝑠0, 𝑝0, 𝑞0 > 0 and 𝑡 > 0 such that 𝑠0 − 𝑑/𝑝0 >−𝑑/𝑡. Then, for all Ω ∈ O, for all 𝑓 ∈ 𝐵𝑠0 ,𝑞0
𝑝0

(Ω),
∀𝑗 ∀𝜆 ∈ Λ 𝑗 (Ω)

ℓ𝑡,𝜆 ≤ 𝐶 (𝑡) 2(𝑑/𝑝0−𝑠0)𝑗 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐵𝑠0,𝑞0𝑝0 (Ω)

(117)

where 𝐶(𝑡) = max(1/(1 − 2𝑠0𝑡), 1/(1 − 2−𝑑(1−𝑡/𝑝0)−𝑠0𝑡))1/𝑡.
Proof. Let Ω ∈ O and 𝑓 ∈ 𝐵𝑠0 ,𝑞0

𝑝0
(Ω). Write ‖𝑓‖ instead of‖𝑓‖𝐵𝑠0,𝑞0𝑝0 (Ω). Clearly

∀𝑗
∑

𝜆∈Λ 𝑗(Ω)

󵄨󵄨󵄨󵄨𝐶𝜆
󵄨󵄨󵄨󵄨𝑝0 ≤ 2(𝑑−𝑠0𝑝0)𝑗 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝑝0 . (118)

Let 𝜆 ∈ Λ 𝑗(Ω) and 𝑡 > 0.
(i) Suppose that 𝑡 ≤ 𝑝0. Then

∑
𝜆󸀠∈Λ

𝑗󸀠
,𝜆󸀠⊂𝜆

󵄨󵄨󵄨󵄨𝐶𝜆󸀠
󵄨󵄨󵄨󵄨𝑡 2−𝑑𝑗󸀠

≤ 2−𝑑𝑗󸀠2𝑑(1−𝑡/𝑝0)(𝑗󸀠−𝑗) ( ∑
𝜆󸀠∈Λ

𝑗󸀠
,𝜆󸀠⊂𝜆

󵄨󵄨󵄨󵄨𝐶𝜆󸀠
󵄨󵄨󵄨󵄨𝑝0)

𝑡/𝑝0 .
(119)

Using (118)

∑
𝜆󸀠∈Λ

𝑗󸀠
,𝜆󸀠⊂𝜆

󵄨󵄨󵄨󵄨𝐶𝜆󸀠
󵄨󵄨󵄨󵄨𝑡 2−𝑑𝑗󸀠

≤ 2−𝑑(1−𝑡/𝑝0)𝑗2−𝑑(𝑡/𝑝0)𝑗󸀠 (2(𝑑−𝑠0𝑝0)𝑗󸀠 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝑝0)𝑡/𝑝0
≤ 2−𝑑(1−𝑡/𝑝0)𝑗2−𝑠0𝑡𝑗󸀠 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝑡 .

(120)

Then

𝑎𝑡,𝜆 ≤ 2−𝑑(1−𝑡/𝑝0)𝑗 ( ∞∑
𝑗󸀠=𝑗

2−𝑠0𝑡𝑗󸀠) 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝑡
≤ 𝐶1 (𝑡) 2(−𝑑(1−𝑡/𝑝0)−𝑠0𝑡)𝑗 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝑡

(121)

where 𝐶1(𝑡) = 1/(1 − 2𝑠0𝑡).
We therefore get

ℓ𝑡,𝜆 ≤ (𝐶1 (𝑡))1/𝑡 2(𝑑/𝑝0−𝑠0)𝑗 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩 . (122)
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(ii) If 𝑡 > 𝑝0 and 𝑠0 − 𝑑/𝑝0 > −𝑑/𝑡, then
∑

𝜆󸀠∈Λ
𝑗󸀠
,𝜆󸀠⊂𝜆

󵄨󵄨󵄨󵄨𝐶𝜆󸀠
󵄨󵄨󵄨󵄨𝑡 2−𝑑𝑗󸀠

≤ 2−𝑑𝑗󸀠 ( ∑
𝜆󸀠∈Λ

𝑗󸀠
,𝜆󸀠⊂𝜆

󵄨󵄨󵄨󵄨𝐶𝜆󸀠
󵄨󵄨󵄨󵄨𝑝0)

𝑡/𝑝0

≤ 2−𝑑𝑗󸀠 (2(𝑑−𝑠0𝑝0)𝑗󸀠 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝑝0)𝑡/𝑝0
= 2(−𝑑(1−𝑡/𝑝0)−𝑠0𝑡)𝑗󸀠 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝑡 .

(123)

Since 𝑠0 − 𝑑/𝑝0 > −𝑑/𝑡, we get
𝑎𝑡,𝜆 ≤ ( ∞∑

𝑗󸀠=𝑗

2(−𝑑(1−𝑡/𝑝0)−𝑠0𝑡)𝑗󸀠) 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝑡
≤ 𝐶2 (𝑡) 2(−𝑑(1−𝑡/𝑝0)−𝑠0𝑡)𝑗 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝑡

(124)

where 𝐶2(𝑡) = 1/(1 − 2−𝑑(1−𝑡/𝑝0)−𝑠0𝑡).
Then

ℓ𝑡,𝜆 ≤ (𝐶2 (𝑡))1/𝑡 2(𝑑/𝑝0−𝑠0)𝑗 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩 . (125)

Therefore (117) holds with 𝐶(𝑡) = max {𝐶1(𝑡), 𝐶2(𝑡)}1/𝑡.
Hence Lemma 15 holds.

�eorem 16. Let 𝑠0, 𝑝0, 𝑞0 > 0 (resp., 𝑠0 > 0 and 𝑝0 ≥ 1) and𝑡 > 0 such that 𝑠0 − 𝑑/𝑝0 > −𝑑/𝑡.
(1) For all 𝐿 ∈ Z𝑑, there exists a residual set A(Ω𝐿)

of 𝐵𝑠0 ,𝑞0
𝑝0

(Ω𝐿) (resp., 𝐿𝑝0,𝑠0(Ω𝐿)) such that for all 𝑓 ∈
A(Ω𝐿)

∀𝑝 > 0
𝜁Ω𝐿𝑡 (𝑝) = {{{

𝑑 + 𝑝 (𝑠0 − 𝑑𝑝0

) if 𝑝 ≥ 𝑝0𝑠0𝑝 if 𝑝 ≤ 𝑝0

(126)

and

inf
0<𝑝<∞

(𝑑 + ℎ𝑝 − 𝜁Ω𝐿𝑡 (𝑝))

=
{{{{{{{{{{{

−∞ if ℎ < 𝑠0 − 𝑑𝑝0𝑝0 (ℎ − 𝑠0) + 𝑑 if 𝑠0 − 𝑑𝑝0

≤ ℎ ≤ 𝑠0𝑑 if ℎ > 𝑠0.
(127)

(2) There exists a residual set A of 𝐵𝑠0 ,𝑞0
𝑝0

(R𝑑) (resp.,𝐿𝑝0,𝑠0(R𝑑)) such that for all 𝑓 ∈ A

∀𝑝 > 0
𝜁𝑡 (𝑝) = {{{

𝑑 + 𝑝 (𝑠0 − 𝑑𝑝0

) if 𝑝 ≥ 𝑝0𝑠0𝑝 if 𝑝 ≤ 𝑝0

(128)

and

inf
0<𝑝<∞

(𝑑 + ℎ𝑝 − 𝜁𝑡 (𝑝))

=
{{{{{{{{{{{

−∞ if ℎ < 𝑠0 − 𝑑𝑝0𝑝0 (ℎ − 𝑠0) + 𝑑 if 𝑠0 − 𝑑𝑝0

≤ ℎ ≤ 𝑠0𝑑 if ℎ > 𝑠0.
(129)

Relations (126) and (127) also hold onA.

Proof.

(1) (i) First consider 𝐿 = 0. By Theorem 10, it suffices to
prove the upper bound in (126).Thanks to embedding
(46), it suffices to write the proof in Besov spaces.
We will follow the idea of [64] in the construction
of the residual set since it does not depend on the
separability of the space 𝐵𝑠0 ,𝑞0

𝑝0
(Ω0). Let 𝐹0 be the

saturating function defined in (101).
From now on, when it is necessary, we will make the
dependency on the function in the previous notations
(for example, we write 𝐶𝜆(𝑓) instead of 𝐶𝜆 in (10),ℓ𝑡,𝜆(𝑓) instead of ℓ𝑡,𝜆, and 𝜁Ω0

𝑡,𝑓
(𝑝) instead of 𝜁Ω0𝑡 (𝑝)).

If 𝑛 ∈ N, set

𝐸𝑛 (Ω0) = {𝑔𝑛 ∈ 𝐵𝑠0 ,𝑞0
𝑝0

(Ω0) : ∀𝜆 ∈ Λ (Ω0) ∃𝑀
∈ Z \ {0} : 𝐶𝜆 (𝑔𝑛) = 𝑀𝑛 𝐶𝜆 (𝐹0)} , (130)

where Λ(Ω) is as in (105).
Clearly

∀𝑛 ∀𝑔𝑛 ∈ 𝐸𝑛 (Ω0) ∀𝜆 ∈ Λ (Ω0)
ℓ𝑡,𝜆 (𝑔𝑛) ≥ 1𝑛ℓ𝑡,𝜆 (𝐹0) . (131)

Write ‖𝑓‖ instead of ‖𝑓‖𝐵𝑠0,𝑞0𝑝0 (Ω0)
. In [64] (Proof of

Lemma 2.9, p. 1520-1521), it is proved that there exists𝐶 > 0 such that

∀𝑓 ∈ 𝐵𝑠0 ,𝑞0
𝑝0

(Ω0) ∀𝑛 ∈ N ∃𝑔𝑛 ∈ 𝐸𝑛 (Ω0)
󵄩󵄩󵄩󵄩𝑓 − 𝑔𝑛

󵄩󵄩󵄩󵄩 ≤ 𝐶𝑛 , (132)

and so, if𝑁 ∈ N, then the set𝐷𝑁(Ω0) fl ⋃𝑛≥𝑁 𝐸𝑛(Ω0)
is dense in 𝐵𝑠0 ,𝑞0

𝑝0
(Ω0).

Let (𝑟𝑛)𝑛 be a sequence of positive numbers which
converges to 0. Put

𝐴𝑛 (Ω0)
= {𝑓 ∈ 𝐵𝑠0 ,𝑞0

𝑝0
(Ω0) : ∃𝑔𝑛 ∈ 𝐸𝑛 (Ω0) 󵄩󵄩󵄩󵄩𝑓 − 𝑔𝑛

󵄩󵄩󵄩󵄩 < 𝑟𝑛} . (133)
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Then
A (Ω0) fl ⋂

𝑁∈N

⋃
𝑛≥𝑁

𝐴𝑛 (Ω0) (134)

is a residual set of 𝐵𝑠0 ,𝑞0
𝑝0

(Ω0).
If 𝐶(𝑡) = max(21/𝑡−1, 1), then the following trivial
relation holds: ∀ (𝑓, 𝑔) ∀𝜆

ℓ𝑡,𝜆 (𝑓 + 𝑔) ≤ 𝐶 (𝑡) (ℓ𝑡,𝜆 (𝑓) + ℓ𝑡,𝜆 (𝑔)) . (135)

Choose

𝑟𝑛 = 𝐶1 (𝑡)2𝑛2𝑎𝐶 (𝑡) 𝐶 (𝑡)2−𝑑𝑛/𝑝0 (136)

where𝐶(𝑡) is as in Lemma 15 and𝐶1(𝑡) is any constant
satisfying (110). LetA(Ω0) be the residual set given by
(141) associated with the sequence (𝑟𝑛).
Let 𝑓 ∈ A(Ω0). Then for infinitely many integers 𝑛,
there exists 𝑔𝑛 ∈ 𝐸𝑛(Ω0) such that ‖𝑓 − 𝑔𝑛‖ < 𝑟𝑛.
By (135)

∀𝜆 ∈ Λ
ℓ𝑡,𝜆 (𝑓) ≥ 1𝐶 (𝑡)ℓ𝑡,𝜆 (𝑔𝑛) − ℓ𝑡,𝜆 (𝑔𝑛 − 𝑓) . (137)

By Lemma 15 and Proposition 14,

∀𝜆 ∈ Λ 𝑛 (Ω0)
ℓ𝑡,𝜆 (𝑔𝑛 − 𝑓) ≤ 𝐶 (𝑡) 2(𝑑/𝑝0−𝑠0)𝑛 󵄩󵄩󵄩󵄩𝑓 − 𝑔𝑛

󵄩󵄩󵄩󵄩
≤ 𝐶 (𝑡) 2(𝑑/𝑝0−𝑠0)𝑛𝑟𝑛
≤ 12𝑛𝑎𝐶 (𝑡)ℓ𝑡,𝜆 (𝐹0) .

(138)

It follows from (131) that∀𝜆 ∈ Λ 𝑛 (Ω0)
ℓ𝑡,𝜆 (𝑓) ≥ 12𝑛𝐶 (𝑡)ℓ𝑡,𝜆 (𝐹0) . (139)

Since (139) holds for infinitely many scales 𝑛 and for
all 𝜆 ∈ Λ 𝑛, and thanks to the fact that the liminf in𝜁𝑡,𝐹0(𝑝) is actually a limit, we deduce that

∀𝑝 > 0
𝜁Ω0
𝑡,𝑓

(𝑝) ≤ 𝜁Ω𝑡,𝐹0 (𝑝) . (140)

Result (106) allows achieving the proof ofTheorem 16.
(ii) Now if 𝐿 ̸= 0, it suffices to replace 𝐹0 by 𝐹𝐿 defined in

(101) and 𝑟𝑛 by 2−|𝐿|𝑟𝑛.This means that the residual set
of 𝐵𝑠0 ,𝑞0

𝑝0
(Ω0) on which (126) will hold is

A (Ω𝐿) fl ⋂
𝑁∈N

⋃
𝑛≥𝑁

𝐴𝑛 (Ω𝐿) , (141)

where

𝐴𝑛 (Ω𝐿) = {𝑓 ∈ 𝐵𝑠0 ,𝑞0
𝑝0

(Ω𝐿) : ∃𝑔𝑛

∈ 𝐸𝑛 (Ω𝐿) 󵄩󵄩󵄩󵄩𝑓 − 𝑔𝑛
󵄩󵄩󵄩󵄩𝐵𝑠0,𝑞0𝑝0 (Ω𝐿)

< 2−|𝐿|𝑟𝑛} (142)

and

𝐸𝑛 (Ω𝐿) = {𝑔𝑛 ∈ 𝐵𝑠0 ,𝑞0
𝑝0

(Ω𝐿) : ∀𝜆 ∈ Λ (Ω𝐿) ∃𝑀
∈ Z \ {0} : 𝐶𝜆 (𝑔𝑛) = 𝑀𝑛 𝐶𝜆 (𝐹𝐿)} . (143)

(2) Clearly

A = ⋂
𝐿∈Z𝑑

A (Ω𝐿) (144)

is a residual set of 𝐵𝑠0 ,𝑞0
𝑝0

(R𝑑) on which (128) and (126)
hold (using (24) and the first result in this theorem).

5. Generic Validity of the𝑡−Multifractal Formalisms

We first show that condition 𝜂(𝑡) > 0 in both result (15)
and upper bound (31) holds for all functions in Besov spaces𝐵𝑠0 ,𝑞0
𝑝0

(R𝑑) for 𝑠0, 𝑞0, 𝑝0 > 0 and Sobolev spaces 𝐿𝑝0,𝑠0(R𝑑) for𝑠0 > 0 and 𝑝0 ≥ 1, for all 𝑡 > 0 such that 𝑠0 − 𝑑/𝑝0 > −𝑑/𝑡.
Lemma 17. Let 𝑓 be any function in either the Besov space𝐵𝑠0 ,𝑞0
𝑝0

(R𝑑) for 𝑠0, 𝑞0, 𝑝0 > 0 or the Sobolev space 𝐿𝑝0,𝑠0(R𝑑) for𝑠0 > 0 and 𝑝0 ≥ 1. Then, for all 𝑡 > 0 such that 𝑠0 − 𝑑/𝑝0 >−𝑑/𝑡,
𝜂 (𝑡) > 0. (145)

Proof. Embedding (56) implies that 𝜂(𝑝) ≥ 𝜁𝑡(𝑝). It follows
that 𝜂(𝑡) ≥ 𝜁𝑡(𝑡). Since 𝑠0 − 𝑑/𝑝0 > −𝑑/𝑡, then Theorem 10
yields 𝜂(𝑡) > 0.

Lemma 17 together with both Theorem 10 and upper
bound (31) yields the following corollary.

Corollary 18. Let 𝑓 be any function in either the Besov space𝐵𝑠0 ,𝑞0
𝑝0

(R𝑑) for 𝑠0, 𝑞0, 𝑝0 > 0 or the Sobolev space 𝐿𝑝0,𝑠0(R𝑑) for𝑠0 > 0 and𝑝0 ≥ 1.Then, for all 𝑡 > 0 such that 𝑠0−𝑑/𝑝0 > −𝑑/𝑡
∀ℎ

𝑑𝑡 (ℎ) ≤ 𝐷𝑡 (ℎ) ≤ inf
0<𝑝<∞

(𝑑 + ℎ𝑞 − 𝜁𝑡 (𝑝))
{{{{{{{{{{{

= −∞ if ℎ < 𝑠0 − 𝑑𝑝0≤ 𝑝0 (ℎ − 𝑠0) + 𝑑 if 𝑠0 − 𝑑𝑝0

≤ ℎ ≤ 𝑠0≤ 𝑑 if ℎ > 𝑠0.

(146)

The following result shows that the Baire generic 𝑡-
spectrum is the same as the prevalent generic one obtained
in [49].
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�eorem 19. Let 𝑠0, 𝑝0, 𝑞0 > 0 (resp., 𝑠0 > 0 and 𝑝0 ≥ 1) and𝑡 > 0 such that 𝑠0 − 𝑑/𝑝0 > −𝑑/𝑡.
(1) For all 𝐿 ∈ Z𝑑, for all functions 𝑓 in the residual set

A(Ω𝐿) of 𝐵𝑠0 ,𝑞0
𝑝0

(Ω𝐿) (resp., 𝐿𝑝0,𝑠0(Ω𝐿)) constructed in
Theorem 16,

𝑑Ω𝐿
𝑡 (ℎ)

= {{{{{{{
−∞ if ℎ < 𝑠0 − 𝑑𝑝0

or ℎ > 𝑠0
𝑝0 (ℎ − 𝑠0) + 𝑑 if 𝑠0 − 𝑑𝑝0

≤ ℎ ≤ 𝑠0
(147)

and

𝐷Ω𝐿
𝑡 (ℎ) =

{{{{{{{{{{{

−∞ if ℎ < 𝑠0 − 𝑑𝑝0𝑝0 (ℎ − 𝑠0) + 𝑑 if 𝑠0 − 𝑑𝑝0

≤ ℎ ≤ 𝑠0𝑑 if ℎ > 𝑠0.
(148)

(2) For all functions 𝑓 in the residual set A of 𝐵𝑠0 ,𝑞0
𝑝0

(R𝑑)
(resp., 𝐿𝑝0,𝑠0(R𝑑)) constructed in Theorem 16,

𝑑𝑡 (ℎ) = {{{{{{{
−∞ if ℎ < 𝑠0 − 𝑑𝑝0

or ℎ > 𝑠0
𝑝0 (ℎ − 𝑠0) + 𝑑 if 𝑠0 − 𝑑𝑝0

≤ ℎ ≤ 𝑠0 (149)

and

𝐷𝑡 (ℎ) =
{{{{{{{{{{{

−∞ if ℎ < 𝑠0 − 𝑑𝑝0𝑝0 (ℎ − 𝑠0) + 𝑑 if 𝑠0 − 𝑑𝑝0

≤ ℎ ≤ 𝑠0𝑑 if ℎ > 𝑠0.
(150)

Both (147) and (148) also hold onA.

Proof. As in the proof of Theorem 16, it suffices to give the
proof for 𝐿 = 0; let 𝑓 ∈ A(Ω0). Relation (139) is satisfied
for infinitely many scales 𝑛. Let 𝛼 ≥ 1. For each such scale 𝑛,
write 𝜆 ∈ Γ𝑛(𝛼) if 𝜆 ∈ Λ 𝑛 satisfies (98) with 𝐽 = [𝑛/𝛼]. Let𝐾(𝛼) be the set of points 𝑥 ∈ Ω0 that belong to 𝜆 ∈ Γ𝑛(𝛼),
for an infinite number of values of the above 𝑛’s. In [15], p.
535-536, we can find the following result (see also [65]).

Proposition 20. For 𝛼 ≥ 1, the Hausdorff dimension of 𝐾(𝛼)
is 𝑑/𝛼. Moreover, there exists a 𝜎-finite measure 𝑚𝛼 carried by𝐾(𝛼) such that 𝑚𝛼(Ω) = 0 for any Ω ⊂ 𝐾(𝛼) with 𝑑𝑖𝑚Ω <𝑑/𝛼.

The following proposition bounds the pointwise 𝐿𝑡 regu-
larity of 𝑓 ∈ A(Ω0) on 𝐾(𝛼).
Proposition 21. Let 𝑠0, 𝑝0, 𝑞0 > 0 (resp., 𝑠0 > 0 and 𝑝0 ≥ 1)
and 𝑡 > 0 such that 𝑠0 − 𝑑/𝑝0 > −𝑑/𝑡. For all 𝑓 ∈ A(Ω0), for
all 𝑥 ∈ 𝐾𝛼,

𝑢𝑡 (𝑥) ≤ 𝑠0 − 𝑑𝑝0

(1 − 1𝛼) . (151)

Proof. Let 𝑥 ∈ 𝐾(𝛼). Result (15), relation (139), and result
(145) imply that

𝑢𝑡,𝑓 (𝑥) ≤ lim inf
𝑛󳨀→∞

log (ℓ𝑡,𝜆𝑛(𝑥) (𝑓))
log (2−𝑛)

≤ lim inf
𝑛󳨀→∞

log (ℓ𝑡,𝜆𝑛(𝑥) (𝐹0))
log (2−𝑛)

= 𝑠0 − 𝑑𝑝0

(1 − 1𝛼) .
(152)

Put𝐻(𝛼) = 𝑠0−(𝑑/𝑝0)(1−1/𝛼). Take𝛼 = 𝑑/(𝑝0(ℎ−𝑠0)+𝑑)
if ℎ ∈ [𝑠0 − 𝑑/𝑝0, 𝑠0] (resp., 𝛼 = 1 if ℎ > 𝑠0). Then 𝐻(𝛼) = ℎ
if ℎ ∈ [𝑠0 − 𝑑/𝑝0, 𝑠0] (resp., 𝐻(𝛼) = 𝑠0 < ℎ if ℎ > 𝑠0). Using
Proposition 21, for all 𝑥 ∈ 𝐾(𝛼), 𝑢𝑡(𝑥) ≤ ℎ. It follows that𝐾(𝛼) ⊂ 𝐵𝑡(ℎ). Therefore, for all ℎ ≥ 𝑠0 − 𝑑/𝑝0,

min {𝑝0 (ℎ − 𝑠0) + 𝑑, 𝑑} ≤ 𝐷Ω0
𝑡 (ℎ) . (153)

Thus, by (20) and (146), for all ℎ ≥ 𝑠0 − 𝑑/𝑝0,

𝐷Ω0
𝑡 (ℎ) = min {𝑝0 (ℎ − 𝑠0) + 𝑑, 𝑑} . (154)

For ℎ ∈ [𝑠0 − 𝑑/𝑝0, 𝑠0], consider the set 𝐽(ℎ) = {𝑥 ∈Ω0; 𝑢𝑡,𝑓(𝑥) < 𝐻(𝛼) = ℎ}, where 𝛼 = 𝑑/(𝑝0(ℎ − 𝑠0) + 𝑑).
Clearly 𝐽(𝛼) = ⋃𝑛≥1 𝐵Ω0

𝑡 (ℎ − 1/𝑛). By (150), for all 𝑛 ≥1, 𝑑𝑖𝑚 𝐵Ω0
𝑡 (ℎ − 1/𝑛) < min{𝑝0(ℎ − 𝑠0) + 𝑑, 𝑑}. Then, by

Proposition 20,𝑚𝛼(𝐵Ω0
𝑡 (ℎ−1/𝑛)) = 0. Using the 𝜎−additivity

of the measure 𝑚𝛼, we get 𝑚𝛼(𝐽(ℎ)) = 0.
Since 𝐾(𝛼) ⊂ 𝐵Ω0

𝑡 (ℎ) = 𝐸Ω0
𝑡 (ℎ) ∪ 𝐽(ℎ), it follows that𝑚𝛼(𝐸Ω0

𝑡 (ℎ)) > 0. Thus,

𝑝0 (ℎ − 𝑠0) + 𝑑 ≤ 𝑑𝑡 (ℎ) . (155)

By (150), for ℎ ∈ [𝑠0 − 𝑑/𝑝0, 𝑠0], we get
𝑑Ω0
𝑡 (ℎ) = 𝑝0 (ℎ − 𝑠0) + 𝑑. (156)

For 𝛼 = 1, 𝐾(1) = Ω0. Then for all 𝑥 ∈ Ω0, 𝑢𝑡(𝑥) ≤ 𝑠0. Thus,
for ℎ > 𝑠0, 𝐸Ω0

𝑡 (ℎ) = 0.
Both (147) and (148) also hold on A. This achieves the

proof ofTheorem 19. ◻
6. Conclusion

The following theorem summarizes the range of Baire validity
of both 𝑡−multifractal formalism and 𝑡−multifractal formal-
ism for upper 𝑡−sets, locally on the Ω𝐿 and also globally on
R𝑑. It follows directly from bothTheorems 16 and 19.

�eorem 22. Let 𝑠0, 𝑝0, 𝑞0 > 0 (resp., 𝑠0 > 0 and 𝑝0 ≥ 1) and𝑝 > 0 such that 𝑠0−𝑑/𝑝0 > −𝑑/𝑡. Baire generically in𝐵𝑠0 ,𝑞0
𝑝0

(R𝑑)
(resp., 𝐿𝑝0,𝑠0(R𝑑)), 𝐸𝑡(ℎ) = 0 for all ℎ > 𝑠0, the 𝑡−multifractal
formalism is valid for ℎ ≤ 𝑠0, and the 𝑡−multifractal formalism
for upper 𝑡−sets is valid for all ℎ.

The same results hold for the local 𝑡−multifractal formalism
on Ω𝐿.
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