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Inequalities become a hot topic for researcher due to its wide applications in means and sum, numerical integration, quantum
calculus. Different generalizations and refinements are made by researchers. Here, in this article, we give another generalization of
integral inequalities and harmonizing them on time scale T from R.

1. Introduction

Inequalities have a great contribution in mathematical analy-
sis. In nonlinear analysis, these inequalities are very useful.
Ostrowski’s inequalities have various coatings in numerical
integration and in the theory of probability. In 1938, a math-
ematician A. Ostrowski gave an inequality named as Ostrowski
inequality, since then a large number of results related to this
inequality have been investigated by many researchers. In lit-
erature, many research papers appeared which contains refine-
ments, elongations, generalizations and many similiar results
of this inequality.

Theorem 1 (see [1]). Let f: [b,b,] — R be differentiable on
(b,,b,), then we have

1 b (" - (bl + bz)/2)2 1
f(”)—bl_szhlf(s)ds SM(bZ_bl)[ (bz_bl)z +4 >
(1)

where M = sup, _,., | f'(r)| < co holds for all r € [b;,b,].

This is the Ostrowski inequality here the constant 1/4 is
best possible. Ostrowski’s inequality plays a vital role in theory
of special means. This inequality has multiple ises in a variety
of settings. Lately there have been elongations and many new
results of this inequality. This inequality has significant and

remarkable background in mathematical analysis. All the work
related to this inequality is not possible to list here.

If you want to study discrete and continuous analysis
together you will need the theory of time scale. S. Hilger com-
peted the great task of harmonizing continuous and discrete
calculus in one result, in his PhD research. Now we are able
to give one definition for discrete and continuous analysis and
if we change the range of function in the result we will come
to different cases of time scale.

Time Scales is defined as a closed subset of R by Stefan
Hilger, which is symbolize as T. A point of T is defined as
r:r € T. If we consider T = R then, T*(r) = T" (r) = T'(r).
However, if T =7 then, T"()=AT(r), where
T*(r) =T(r+1)=T(r) and T" (r) = T(r) — T(r — 1) are for-
ward and backward difference operators used in difference
equability. The mappings o,p:T — T defined as
o(r) =inf{s € T:s>r}and p(r) = sup{s € T : s < r} are the
jump operators. S. Hilger gave a new definition of derivative
which was denoted by T*; T* exists if and only if for every
& > 0 Janeighborhood U of r s.t

|TU(7’) —T(s) - T*(r)(o(r) — s)|< €|o(r) - s'v seU (2)

Also a differentiable mapping T': T — R is known as
anti-derivative of T on T provided that T*(r) = 7(r), then
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b,
j T()Ar = T(b,) - T(b,), ¥r € T. 5
b,

LetT:T —» Randr €T,
(1) IfT is differentiable at r then T is continuous at 7.
(2) IfT is differentiable at r, then

f7r) = f) + pr) fA(). (4)
In the resent years, calculus of time scales has enchanted
scientists due to its tremendous practical applications in many
branches, e.g., quantum calculus, dynamical system, infor-
mation theory, etc., see [2-4]. During the last decennia, the
progression of integral and differential equation have been
revealed. The convenient discoveries concern a consequential
part in many areas of research of mathematics (can be seen
in [5, 6]). S. Hilger has proposed the time scale theory in the
terms “a theory that combines differential and difference cal-
culus in the most worldly wise manner”. Concludingly, a
number of researchers have discussed the new assorted fact
of the dynamic inequations on time scales comprehensively
(5, 7-11].

Lemma 2 (see [1]). Let b,b,,s,r e Tandb <b, If f:
[b,,b,] — R be differentiable, then V' s € [b,b,] andA € [0, 1],
then.

(1-5 )= 15 | oo

bz - b1
B A(” -b)f(b) + (b, -1)f(b) (5)
2(b2 - bl)
b,
+ b—b, J lfA(s)K(r, s)As,
where

s— <b1 +/\r_2bl),b1 <s<r,

K(r,s) := b (6)

s—<b2—AZT_r>,rSSSb2.

Theorem 3 (see[1]). Letb,b,,s,r € TandIf f:[b.b] - R
be differentiable, then

1
bZ_bl

M
bz_bl

<

(hy(r, b)) + hy(r,1,)),

(7)

h2
‘f(r) - L F(0()As

where M = supbl<r<bz|fA(r)| < 00.

This is sharp because the R.H.S of this inequality can’t be
changed by any smaller number. In this paper, we also get a
generalization of this inequality. In this article first of all we
will prove a generalize form of montgomery identity and then
discuss the case for w = b, — b, In our next result get a gener-
alized version of (7), we have also discussed its continuous,
discrete and %uantum calculus cases by choosing time scale
asR, T and qj,.
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2. Main Results

For points a,b € T suchthata < b. The interval [a,b] is
distinguished as a real interval and [a, b] is distinguished as
[a,b] NT. In this sense [a,b]; is a nonempty, closed and
bounded set having points from T. In this paper, by the inter-
val [a, b] we mean [a,b] N T. Now we first prove an identity
which is the generalize form of Montgomery identity and then
use this identity in our next theorems to get new generaliza-
tions of Owstrowski’s inequality.

Lemma 4. Let b,b,weTb <b, If f:[b,b] >R be
differentiable, thenV s € [b,,b,], we have

bz bz
£ - Hb‘f(o@)ms - ﬂblfA‘s)"w(” 9As,  (8)

where
(b, - w)f(b,) -b.f(b)
K (r,s) = °T f(b) - f(b) =s-0,, relb,s]
T be(bJZf)(};)(lil ;(Z))f(bl) =s-0, re(sb),
)
with 0, — 0, = w.

Proof. We initiated with

bZ
J fA(s)Kw(r, s)As
bl

" (bz — w)f(bz) B blf(bl) (10)
= J f (s){s— b) - 76 }As

s bf(b,) - (b +w)f(b)
R e e R

1

We can rewrite after calculations

b,
J fA(s)Kw(r, s)As
by

b,-w)f(b,) - b f(b) }
f(bz) - f(b1)
(b, - w)f(b,) - b f(b) }
f(bz) - f(bl)
_bf(b) - (b +W)f(b1)}
f(bz) - f(bl)
bf(b,) - (b +w)f(b) }
f(bz) - f(bl)

b, b,
- J FE ) Ar = wf(r) - J FENA®D).
b, b,

=f(r){r—(

- f(bl)ibl -
(11)

+refs

—f(r){r—

Eventually, we come to the required result, i.e.,

b, b,
fr) - Hb f(o(s)As = Hb FAs)k, (r,)As.  (12)

Remark 5. Let w=0b, - b, then the above equation (8)
becomes
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1 1
O J flopas= gy J FAOK, (1 9)As,
(13)

which is the Montgomery identity on T talked in [9], also
discussed in [1] with continuous, discrete and quantum
cases.

Theorem 6. With supposition: for a time scale T, b, b,,w € T
such that b, < b, If f:[b,b] — R be differentiable, then
Vs e [b,b,].

1 (" M
‘f(r) B Ejblf(a(s))As < o |:h2(r, b))

b-b+w
CYRNICY)

Chy(rb) + [~ b) £ () + (b - r)f(bn]].

(14)
holds where M = sup,, _,, |fA(s)|.

Proof. We can rescript Lemma 4 as

Lﬂﬂ—i]jﬂd@Ms

b,
< i J FASK,(r,5)As

1
w
M
w

+

sl [l B
W b, f(b,) — (b, +w) f(b,
Jr f (s)(s— A f)(bz)(_f(bl))f( ))‘As]
v g
b, b f(b,) - (b, +w) f(b
)'( f(f(b)( f(b))( )—s)As]
hy(r,b,) = hy(r,b,)
(o) ),
j:<b2 f(b,) —{lib 2+) w)ff( (b;l)) _ )
*L( ORI %>M}
(15)
And further

‘ £ - Hi Flo(s)As| < %[hz(r, b)

b-b+w ~ s
m[(r b)f(b,) + (b, )f(bl)]].

- hy(r,b,) +

(16)

Remark 7. When w = b, — b, then inequality (14) reduces to

JﬂmmwiM[Hh)%@@l

(17)
which is the Ostrowski inequality on time scales as stated in (7).

-

bz _bl

Remark 8. Further choosing r = (b, +b,)/2andr = b,
respectively in inequality (14) with assumption of Theorem 6,
we come to

f(ﬁjjé>—l]@fw@DAs

2
sz[@(b”’ b> h<b+b b) (18)
b ( O ) + 5001 |
‘f(b f(cf(s
< "j[ (o) + ﬁ[(@ ~0)s(e)]|
(19)
Corollary 9 (Continuous Case). Let T =R, then

hy(r,s) = (r - $)?*/2, forallr,s € R, a(s) = s and in the case
A-integral becomes usual Riemann integral, as Cauchy’s integral
is a particular case of Riemann integral thus the inequality in

(17) becomes
< M ( b, +b, )
< r— .
(bz - bl) 2 (20)

Corollary 10 (Discrete Case). Let T = Z then b, = 0,b, = n,
r =iand f(k) = x;. Also h,(r,0) = (r,2) = r(r — 1)/2,h,(r,n) =
(r-mn2)=(r—-n)(r—n-1)/2, thus the inequality in (17)

becomes
|<% (%)
2/ (21)

Corollary 11 (Quantum Calculus Case). Let T = g> with
q>1,b =q",b, = q"withm < n. In this situation we have
h(r,s) = 15 r — q'/%,-0q", forallr,s € T, therefore hy(r,q") =

(r-q")(r-q™")/(1 +q)and hy(r.q") = (r—q")(r - q"")/(1 + q)
thus the inequality in (17) becomes

3 M o q2n+1 _ q2m+l
s q"_qm q 1 .

(22)

1 (2
lﬂﬂ—;hfw%

.
1)~ | _foenas

Theorem 12. Let b,,b,,w € Tb, < b, If f:[b,b] > R be
dzﬁ”erentzable, and if f* is rd-continuous and

y< fA(r) <TVr e [b,b)], thenVs € [b,b,],
1 (b b,) - f(b
f(’") - Ejb f(<35(s))As - %{hz(n b1) - hz(r’ bz)

b~ b+w){(r—b1)f(bz)+(bz—r)f(bl)}H

o) - 16
< 2:uy Ll K, (r,s) - ﬁ{hz(n b,) - hy(r,b,)
b-b+w . (b s S
+m{( b)f(b,) + (b, )f(bl)}}A,
(23)



4

holds where

_ (b, -w)f(b) - b f(b)

f(bz)—f(bl) =s-0,, re[bl,s],
bf(bz) (b +w)f(b)

S
KW(r, 9 = 2 —\1 1
ST T B O R

with0, -0, = w.

re(s b,
(24)

Proof. Choosing  f(r)
theorem 3.1 of [12],

=K, (r,s)and g(r)
we have.

= fA(r) in

b, N 1 (b b
Lle(r, s)f(s)As - ELIKw(r, S)L,f (s)As

(25)

— bZ
< r YJ |Kw(r,T)AT|Ar.
2 b,

By solving K (, s) and f*(r) on [b,, b, ], we get

[ (" (b, —w)f(b,) - b, f(b)
_L(S' 76y) — F(0) )As
bl bf(b) - (b,
+j< &
)

bZ
J K, (r,s)As =
bl

o +w)f(b) )AS]

_ )
= | hy(r,b,) — hy(r,b,

[ (b - w)f(b) - b f(B)

' {b” F(b) - 1) }(r‘bl)
bzf(bz) - (b1 + w)f(b1)

' {"2‘ &) - 1) }(bf’)]’

(26)

that is

b,
J K, (r,s)As = [hz(r, b)) - h,(r,b,)
b,

PR AR GE N 1))

CYENICY
(27)

’HluS the R H S Of inequality (25) becomes
2
2

+(b, - b, +w)<|r +

b,
K (75 8) — lj K, (r,T)AT|As

K w(18) = |:hz("a bl) - hz(r> bz) (28)

s

From (25) and (27), we get

b, 1 b,
J K, (rs) fA(s)——J Kw(r,s)AsJ FA(s)As
b,

< ;VJ K, (r s)——[h(rb) hy(r,b,) (29)
ool SR
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Now, from Lemma 4,
bZ

fr) = lrz F(o(s)As + lj f(o(s)As = jbz FAS)K, () 5)As
S wly, wly, )y, W

b, b, b,
‘wf(r) - L f(o(s))As - ijb K, (r, s)AsL F2(s)As

b

j% SOK 985 - [ Ao
b,f K, (r )As = — blf s)As|.

(30)

By using these inequalities, we come to the following result.

‘wf(r) J flo(s)As — —[ L(r, b)) — h,(r,b,)

+(b1—b2+w>{ AL ) - e |
< ;Vj K(rs)——[hZ(rb) hy(r.b,)

(31)
‘f(”) - iJ’:Zf(G(S))AS - i[hz(r’ bl) - hz(r’ bz)
H(b - b+ (=) 1) + (- )] (32

-y (> 1
< zwy Jbl K, (r,s) - ” [hz(r, b)) - h,(r,b,)

o =) 2EZREO o,

f(bz) - f(bl)

Remark 13. Letw = b, — b, then from (23), we have

1 b f(bz) - f(bl)
O — L,f("(sms O ) <)
FZYL b, b(r 5) b 1171 {hz(r,bl)—hz(r,bz)} As

(33)
Theorem 14. Letb,,b,,w € Twithb, < b, If f: [b,b,] - R
be differentiable, then for all s € [b,,b,],

b,
‘wf(r) - J fU(S)AS - Fzﬂ [hz(r’ bl) - hz(r’ bz)

SR b)) (- @)
)
o B (bb )
1, )0
G ey}
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Proof. By using Lemma 4, we know that

f(r) = J f° (s)As+—J f (s)K,,(,5)As,

5 (35)
j FR)K, (r, 5)As = wf (r) — L f7(s)As,
where
_ (b, —w)f(b,) - b f(b) o ; s
PN b VR Y %o relbosh
v bzf(bz)_(b1+w)f(b1)zs_9 E(Sb]
f(bz) - f(h1) z , (;6)
Also
rsz(r, s)As = h,(r,b,) — h,(r,b,)
1 L (b-bvw) (37)
b b
DR f(b){( b)f(by) + (b, - ) f(by)}-
LetC = (T +y)/2
b,
Jb K, (r, s)[fA(s) - C]As =wf(r)
_ Jbz Fo(s)As - ? [hz(r, b) - hy(r.b,) (38)

1

(b - b, +w)
f(bz) -

On the other

“szw(r, s)[fA
b,

we have also

max |f
sebb

I 1K, (r,)| = [hz(bl, (b2 -
hl

f(®)
hand

(s) - C]As

(s) - c|

{((r—b)f(B) + (b r)f(b)}]

b,
A —
srﬁazc] |F40s) C|Jbl|Kw|(r,s)|As|,

>

w)f(b,) - b f(b)

f(bz) - f(bl)

+h2(r,

(bz - w)f(bz) - blf(bl) )

f(bz) -

f(&)

+h2(r,
+h2(b2,

therefore

b f(b,) - (b +w)f(b) )

f(bz) -

f(®)

bf(b,) - (b +w)f(b) )]

f(bz) -

f(®)

)

(39)

(40)

b,
L K, (r, s)|[fA(s) - C]As

St )

ol r (b, -~w)f(b,) - b, f(b)
()
+ b f(b,) - (b, +w)f(b)
(o )
b f(b,) - (b +w)f(b)
+h2(7': f(bz)_f(bl) )}

Remark 15. Letr = (b, +b,)/2 € Tandw = b, — b, then.

f(%%)_b lbrf( (sDAs

1
I'+y b +b, ) (b +b, )}
2 b— { < hy 2 -b,
-y {h<b +b, b) h(b +b,b2>}.
2(b, - b)) 2
Corollary 16 (Continuous Case). Let T =R, then

hy(r,s) = (r - $)?*/2, forallr,s € R, o(s) = s and in the case
A-integral becomes usual Riemann integral, thus the inequality

(41)

IN

(42)

b b
(5%) - g [ roas
_F_Y (b 1_(l’1+bz)/2)2 _ ((bl+b2)/2—b2)2
2 2 2
-y (b= (b + bz)/z)z (b +b,)/2- b2)2
Z2(b,- b)) 2 - 2 ’
b b 1 b,—b,
‘f ) e bjf()d nh)
(43)
3. Concluding Remarks

The study of inequalities on T is the genom of mathematics
which is most recently gaining a substantial attention. The
given article is the description of some general statements
regarding Ostrowski’s type inequalities on T. The results
demonstrated here are some stimulus generalization of
Ostrowski’s type inequalities via A-integrals and generalizing
the results of articles [8, 10-13]. These results will be very
useful in the study of quantum calculus and dynamical system
related differential equations which bring difference and dif-
ferential equations together [14-18].
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