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We study the Banach spaceB𝛼𝐻 (𝛼 > 0) of the harmonic mappings ℎ on the open unit disk D satisfying the condition sup𝑧∈D(1 −|𝑧|2)𝛼(|ℎ𝑧(𝑧)| + |ℎ𝑧(𝑧)|) < ∞, where ℎ𝑧 and ℎ𝑧 denote the first complex partial derivatives of ℎ. We show that several properties that
are valid for the space of analytic functions known as the 𝛼-Bloch space extend to B𝛼𝐻. In particular, we prove that for 𝛼 > 0 the
mappings in B𝛼𝐻 can be characterized in terms of a Lipschitz condition relative to the metric defined by 𝑑𝐻,𝛼(𝑧, 𝑤) = sup{|ℎ(𝑧) −ℎ(𝑤)| : ℎ ∈B𝛼𝐻, ‖ℎ‖B𝛼𝐻 ≤ 1}. When 𝛼 > 1, the harmonic 𝛼-Bloch space can be viewed as the harmonic growth space of order 𝛼− 1,
while for 0 < 𝛼 < 1,B𝛼𝐻 is the space of harmonic mappings that are Lipschitz of order 1 − 𝛼.

1. Introduction

Given a regionΩ in the complex planeC, a harmonicmapping
with domain Ω is a complex-valued function ℎ defined onΩ
satisfying the Laplace equation

Δℎ fl 4ℎ𝑧𝑧 ≡ 0 on Ω, (1)
having denoted by ℎ𝑧𝑧 the mixed complex second partial
derivatives of ℎ.

It is well known that a harmonic mapping ℎ admits a
representation of the form 𝑓 + 𝑔, where 𝑓 and 𝑔 are analytic
functions. This representation is unique if, fixing a base point𝑧0, the function 𝑔 is chosen so that 𝑔(𝑧0) = 0.

In the last several decades, much research has been car-
ried out on the study of Banach spaces of analytic functions
on the open unit disk D in the complex plane. Since analytic
functions are clearly harmonic, a natural question is whether
such spaces 𝑋 are subspaces of some Banach space 𝑋H of
harmonic mappings onD in such a way that the norm on the
larger space agrees with the norm of𝑋when restricting to the
elements of 𝑋.

A space that has been thoroughly studied in complex
function theory is the classical Bloch spaceB defined as the
set of analytic functions 𝑓 on D such that

𝛽𝑓 fl sup
𝑧∈D
(1 − |𝑧|2) 󵄨󵄨󵄨󵄨󵄨𝑓󸀠 (𝑧)󵄨󵄨󵄨󵄨󵄨 < ∞. (2)

In [1], Theorem 10, the second author observed that the
functions 𝑓 in the Bloch space are precisely the analytic
Lipschitz maps when regarded as functions between the met-
ric spaces (D, 𝜌) (where 𝜌 denotes the hyperbolic distance)
and (C, | ⋅ |) (see also Theorem 5.5 of [2]). Moreover, the
correspondence 𝑓 󳨃󳨀→ 𝛽𝑓 is a seminorm on B and is equal
to the Lipschitz number, namely, for 𝑓 ∈B,

𝛽𝑓 = sup
𝑧 ̸=𝑤

󵄨󵄨󵄨󵄨𝑓 (𝑧) − 𝑓 (𝑤)󵄨󵄨󵄨󵄨𝜌 (𝑧, 𝑤) , (3)

where we recall

𝜌 (𝑧, 𝑤) = 12 log
1 + 󵄨󵄨󵄨󵄨𝜙𝑧 (𝑤)󵄨󵄨󵄨󵄨1 − 󵄨󵄨󵄨󵄨𝜙𝑧 (𝑤)󵄨󵄨󵄨󵄨 ,

with 𝜙𝑧 (𝑤) = 𝑧 − 𝑤1 − 𝑧𝑤.
(4)

This result motivated the following notion of Bloch
harmonic mapping in [3].

A harmonic mapping ℎ onD is called Bloch if there exists
a constant 𝑐 > 0 such that

|ℎ (𝑧) − ℎ (𝑤)| ≤ 𝑐𝜌 (𝑧, 𝑤) for all 𝑧, 𝑤 ∈ D, (5)
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where for ℎ = 𝑓 + 𝑔, with 𝑓, 𝑔 analytic on D, the Lipschitz
number

𝐿ℎ = sup
𝑧 ̸=𝑤

|ℎ (𝑧) − ℎ (𝑤)|
𝜌 (𝑧, 𝑤) (6)

was shown in [3] to be equal to the quantity

𝛽ℎ fl sup
𝑧∈D
(1 − |𝑧|2) (󵄨󵄨󵄨󵄨󵄨𝑓󸀠 (𝑧)󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑔󸀠 (𝑧)󵄨󵄨󵄨󵄨󵄨)

= sup
𝑧∈D
(1 − |𝑧|2) (󵄨󵄨󵄨󵄨ℎ𝑧 (𝑧)󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨ℎ𝑧 (𝑧)󵄨󵄨󵄨󵄨) ,

(7)

thereby extending to harmonic mappings the corresponding
result valid for analytic functions.

In this work, we expand the research done in [3] by
focusing on the study of the harmonic extensions of the 𝛼-
Bloch spaces (for 𝛼 > 0) introduced by Zhu in [4].

Research on the study of harmonic mappings has been
conducted extensively in the last two decades by mostly
analyzing the function theoretic aspects. The study of the
extensions of classical Banach spaces of analytic functions is
still relatively limited. Besides [3], references in the unit disk
setting include [5] for the study of harmonic Bloch and Besov
spaces, [6] for the study of harmonic ]-Bloch mappings, [7]
on planar harmonic Lipschitz and Hardy classes, and [8] for
the study of harmonic Lipschitz-type spaces. In the setting
of the unit ball in C𝑛, see [9] for the study of the harmonic
Bloch spaces, [10, 11] for the study of the harmonic Bergman
spaces and [12] for extensions of the main results in [5]. For
a general reference on harmonic mappings in the plane we
refer the interested reader to [13].

After giving in Section 2 some preliminaries and back-
ground on the (analytic) 𝛼-Bloch spaces, we introduce in
Section 3 the harmonic 𝛼-Bloch spaces and study their
properties. In particular, we show that as done by the second
author in [3] for the harmonic Bloch space (case 𝛼 = 1),
the 𝛼-Bloch space can be characterized by Lipschitz-type
conditions similar to the conditions obtained by Zhu in [4]
for other positive values of 𝛼.

In Section 4, we show that for 𝛼 ̸= 1, as for the analytic
counterparts described by Zhu in [4], such spaces can be
divided into two classes: the space of Lipschitz harmonic
mappings of order 1 − 𝛼 for 0 < 𝛼 < 1, and the harmonic
weighted Banach space of harmonic mappings with weight
given by the Bergman weight 𝑧 󳨃󳨀→ (1 − |𝑧|2)𝛼−1 for 𝛼 > 1.

Finally, in Section 5, we give some properties of the
harmonic growth spaces that are useful to extend a charac-
terization of functions in the Zygmund space to the harmonic
space counterpart. This topic is treated in [14].

2. Preliminaries and Background

Let𝐻(D) denote the class of analytic functions on D, and for𝑅 > 0, let D(0, 𝑅) be the open disk centered at 0 of radius 𝑅.
In [4], for 𝛼 > 0, Zhu introduced the 𝛼-Bloch space B𝛼

as the collection of functions 𝑓 ∈ 𝐻(D) such that

𝛽𝛼𝑓 fl sup
𝑧∈D
(1 − |𝑧|2)𝛼 󵄨󵄨󵄨󵄨󵄨𝑓󸀠 (𝑧)󵄨󵄨󵄨󵄨󵄨 < ∞. (8)

The correspondence 𝑓 󳨃󳨀→ 𝛽𝛼𝑓 is a seminorm and B𝛼 is a
Banach space under the norm

󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩B𝛼 = 󵄨󵄨󵄨󵄨𝑓 (0)󵄨󵄨󵄨󵄨 + 𝛽𝛼𝑓. (9)

For 𝛼 = 1, B𝛼 is with the classical Bloch space B. Thus the𝛼-Bloch spaceB𝛼 can be considered as the space of functions𝑓 ∈ 𝐻(D) such that 𝑓󸀠 is in the growth space A−𝛼, defined
as the collection of functions 𝑔 ∈ 𝐻(D) satisfying the growth
condition

󵄨󵄨󵄨󵄨𝑔 (𝑧)󵄨󵄨󵄨󵄨 = 𝑂 ((1 − |𝑧|)−𝛼) . (10)

The subspace B𝛼0 of B𝛼 consisting of the functions 𝑓
satisfying the condition

lim
|𝑧|󳨀→1

(1 − |𝑧|2)𝛼 󵄨󵄨󵄨󵄨󵄨𝑓󸀠 (𝑧)󵄨󵄨󵄨󵄨󵄨 = 0, (11)

known as the little 𝛼-Bloch space, is the closure in B𝛼 of
the polynomials and hence separable. Again, this subspace
can be viewed as the collection of functions in 𝐻(D) whose
derivative is in the little growth space A−𝛼0 , whose members𝑓 satisfy the “little oh” version of (10) as |𝑧| 󳨀→ 1.

Zhu proved that for a positive number 𝛼 ̸= 1, the 𝛼-Bloch
spaceB𝛼 can be identified with one of two families of spaces,
depending on whether 0 < 𝛼 < 1 or 𝛼 > 1. Specifically, (see
Proposition 9 in [4]) if 0 < 𝛼 < 1, then an analytic function𝑓 on D belongs toB𝛼 if and only if

sup
𝑧 ̸=𝑤

󵄨󵄨󵄨󵄨𝑓 (𝑧) − 𝑓 (𝑤)󵄨󵄨󵄨󵄨|𝑧 − 𝑤|1−𝛼 < ∞. (12)

In particular, the spaceB𝛼 is contained in the disk algebra.
In Proposition 7 of [4] it was shown that for 𝛼 >1, the space B𝛼 (respectively, B𝛼0 ) is the growth space

A1−𝛼 (respectively, the little growth space A1−𝛼0 ) and the
corresponding norms are equivalent, where for 𝛾 > 0 the
norm of a function 𝑓 ∈ A−𝛾 is defined as

󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩A−𝛾 fl sup
𝑧∈D
(1 − |𝑧|2)𝛾 󵄨󵄨󵄨󵄨𝑓 (𝑧)󵄨󵄨󵄨󵄨 . (13)

For more information on the growth spaces we refer the
interested reader to [15].

The following result proved by Zhu in [4] shows that, for
any integer 𝑛 ≥ 2, the elements of the 𝛼-Bloch space can be
characterized in terms of their 𝑛𝑡ℎ derivative and a certain
Bergman weight dependent of 𝑛 and 𝛼.
Theorem 1 ([4], Proposition 8). Let 𝛼 > 0, 𝑛 ≥ 2 be an integer,
and 𝑓 ∈ 𝐻(D). Then

(i) 𝑓 ∈B𝛼 if and only if
𝛽𝛼𝑓,𝑛 fl sup

𝑧∈D
(1 − |𝑧|2)𝛼+𝑛−1 󵄨󵄨󵄨󵄨󵄨𝑓(𝑛) (𝑧)󵄨󵄨󵄨󵄨󵄨 < ∞. (14)

(ii) 𝑓 ∈B𝛼0 if and only if
lim
|𝑧|󳨀→1

(1 − |𝑧|2)𝛼+𝑛−1 󵄨󵄨󵄨󵄨󵄨𝑓(𝑛) (𝑧)󵄨󵄨󵄨󵄨󵄨 = 0. (15)
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Given 𝑅 > 0, we recall the Poisson integral representation
of bounded real-valued harmonic functions on the disk
D(0, 𝑅) fl {𝑧 ∈ C : |𝑧| < 𝑅} with continuous boundary
values (see, e.g., [16], (2.13), p. 260), extended in the obvious
way to harmonic mappings.

Theorem 2. For 𝑅 > 0, a complex-valued continuous function
ℎ on D(0, 𝑅) and harmonic on D(0, 𝑅), admits the Poisson
integral representation:

ℎ (𝑧) = 1
2𝜋 ∫
𝜋

−𝜋

𝑅2 − |𝑧|2󵄨󵄨󵄨󵄨𝑅𝑒𝑖𝑡 − 𝑧󵄨󵄨󵄨󵄨2 ℎ (𝑅𝑒
𝑖𝑡) 𝑑𝑡 (16)

for |𝑧| < 𝑅.
This representation yields the following integral formulas

for the complex partial derivatives of a harmonic mapping on
D(0, 𝑅) with continuous extension to D(0, 𝑅).
Theorem3. Let ℎ be a complex-valued continuous function on
D(0, 𝑅) and harmonic on D(0, 𝑅). Then for 𝑧 ∈ D(0, 𝑅),

ℎ𝑧 (𝑧) = 1
2𝜋 ∫
𝜋

−𝜋

𝑅𝑒𝑖𝑡
(𝑅𝑒𝑖𝑡 − 𝑧)2 ℎ (𝑅𝑒

𝑖𝑡) 𝑑𝑡, (17)

ℎ𝑧 (𝑧) = 1
2𝜋 ∫
𝜋

−𝜋

𝑅𝑒−𝑖𝑡
(𝑅𝑒−𝑖𝑡 − 𝑧)2 ℎ (𝑅𝑒

𝑖𝑡) 𝑑𝑡. (18)

Proof. Let us evaluate the partial derivatives with respect to 𝑧
and 𝑧 of the Poisson kernel:

𝜕
𝜕𝑧
𝑅2 − |𝑧|2󵄨󵄨󵄨󵄨𝑅𝑒𝑖𝑡 − 𝑧󵄨󵄨󵄨󵄨2 =

𝑅𝑒𝑖𝑡
𝑅𝑒−𝑖𝑡 − 𝑧

𝑅𝑒−𝑖𝑡 − 𝑧
(𝑅𝑒𝑖𝑡 − 𝑧)2 =

𝑅𝑒𝑖𝑡
(𝑅𝑒𝑖𝑡 − 𝑧)2 , (19)

𝜕
𝜕𝑧
𝑅2 − |𝑧|2󵄨󵄨󵄨󵄨𝑅𝑒𝑖𝑡 − 𝑧󵄨󵄨󵄨󵄨2 =

𝑅𝑒−𝑖𝑡
𝑅𝑒𝑖𝑡 − 𝑧

𝑅𝑒𝑖𝑡 − 𝑧
(𝑅𝑒−𝑖𝑡 − 𝑧)2

= 𝑅𝑒−𝑖𝑡
(𝑅𝑒−𝑖𝑡 − 𝑧)2 .

(20)

The results follow by applying (19) and (20) after differentiat-
ing (16) with respect to 𝑧 and 𝑧 under the integral sign.
Remark 4. In the special case when the function ℎ is constant
on the unit circle, the harmonic extension toD is constant as
well, so its complex partial derivatives are identically 0.

With the goal of characterizing functions in B𝛼 by a
Lipschitz type condition, Zhu proved the following result.

Proposition 5 ([4], Proposition 16). For 𝛼 > 0, and 𝑧, 𝑤 ∈ D,
let

𝑑𝛼 (𝑧, 𝑤) = sup {󵄨󵄨󵄨󵄨𝑓 (𝑧) − 𝑓 (𝑤)󵄨󵄨󵄨󵄨 : 𝛽𝛼𝑓 ≤ 1} . (21)

Then 𝑑𝛼 defines a distance on D.

In [4], Zhu observed that for 𝛼 = 1, the metric 𝑑𝛼
is precisely the hyperbolic metric 𝜌. To the best of our

knowledge, an explicit formula of 𝑑𝛼 for the case 𝛼 ̸= 1 has
not been determined.

The following result shows that the ratio of the distance𝑑𝛼 between two points inD to their Euclidean distance yields
in the limit the reciprocal of the Bergman weight of order 𝛼.
Theorem 6 ([4], Theorem 17). For any 𝛼 > 0 and 𝑧 ∈ D,

lim
𝑤󳨀→𝑧

𝑑𝛼 (𝑧, 𝑤)|𝑧 − 𝑤| = (1 − |𝑧|2)
−𝛼 . (22)

This leads to the following Lipschitz-type characteriza-
tion of analytic functions inB𝛼.

Theorem 7 ([4], Theorem 18). For 𝛼 > 0 and 𝑓 ∈ 𝐻(D) the
following statements are equivalent:

(1) 𝑓 ∈B𝛼.
(2) There exists a constant 𝑐 > 0 such that for all 𝑧, 𝑤 ∈ D

󵄨󵄨󵄨󵄨𝑓 (𝑧) − 𝑓 (𝑤)󵄨󵄨󵄨󵄨 ≤ 𝑐𝑑𝛼 (𝑧, 𝑤) . (23)

Moreover, for each 𝑓 ∈B𝛼,
𝛽𝛼𝑓 = sup

𝑧 ̸=𝑤

󵄨󵄨󵄨󵄨𝑓 (𝑧) − 𝑓 (𝑤)󵄨󵄨󵄨󵄨𝑑𝛼 (𝑧, 𝑤) . (24)

In the next section, after giving the notions of harmonic
growth space and of harmonic 𝛼-Bloch space, we follow
a similar framework that will then allow us to extend
Theorem 7 to harmonic mappings.

3. Harmonic Growth Spaces
and 𝛼-Bloch Spaces

For 𝛼 > 0, we define the harmonic growth space A−𝛼𝐻 as the
collection of all harmonic mappings ℎ on D such that

‖ℎ‖A−𝛼𝐻 fl sup
𝑧∈D
(1 − |𝑧|2)𝛼 |ℎ (𝑧)| < ∞. (25)

Theorem 8. The mapping ℎ 󳨃󳨀→ ‖ℎ‖A−𝛼𝐻 defines a Banach
space structure on A−𝛼𝐻 that extends the corresponding struc-
ture onA−𝛼.

Proof. It is straightforward to verify that ‖ ⋅ ‖A−𝛼𝐻 is a norm.
The spaceA−𝛼 is clearly a subspace ofA−𝛼𝐻 and the respective
norms coincide. To prove completeness, assume (ℎ𝑛) is a
Cauchy sequence inA−𝛼𝐻 . Fix 𝑧 ∈ D and 𝜀 > 0. Choose𝑁 ∈ N
such that

󵄩󵄩󵄩󵄩ℎ𝑛 − ℎ𝑚󵄩󵄩󵄩󵄩A−𝛼𝐻 < 𝜀
(1 − |𝑧|2)−𝛼 + 1 (26)

for all 𝑛,𝑚 ≥ 𝑁. Then for all 𝑛,𝑚 ≥ 𝑁,

󵄨󵄨󵄨󵄨ℎ𝑛 (𝑧) − ℎ𝑚 (𝑧)󵄨󵄨󵄨󵄨 ≤ (1 − |𝑧|2)−𝛼 󵄩󵄩󵄩󵄩ℎ𝑛 − ℎ𝑚󵄩󵄩󵄩󵄩A−𝛼𝐻 < 𝜀. (27)

Thus, (ℎ𝑛(𝑧)) is a Cauchy sequence in C, which is complete,
and we may define ℎ(𝑧) fl lim𝑛󳨀→∞ℎ𝑛(𝑧). Then ℎ is
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continuous on D and since harmonic mappings satisfy the
mean value property, for each 𝑧 ∈ D and 𝑟 ∈ (0, 1 − |𝑧|) and𝑛 ∈ N,

ℎ𝑛 (𝑧) = 1
2𝜋 ∫
2𝜋

0
ℎ𝑛 (𝑧 + 𝑟𝑒𝑖𝑡) 𝑑𝑡. (28)

Passing to the limit as 𝑛 󳨀→ ∞, it follows that ℎ satisfies
the mean value property. By Theorem 2.11 in [16] extended
to complex-valued functions, ℎ is harmonic.

SinceCauchy sequences are bounded,𝐿 fl sup𝑛∈N‖ℎ𝑛‖A−𝛼𝐻
is finite. Fixing 𝑧 ∈ D, we have
(1 − |𝑧|2)𝛼 |ℎ (𝑧)| = lim

𝑛󳨀→∞
(1 − |𝑧|2)𝛼 󵄨󵄨󵄨󵄨ℎ𝑛 (𝑧)󵄨󵄨󵄨󵄨 ≤ 𝐿. (29)

Therefore, ℎ ∈ A−𝛼𝐻 and ‖ℎ‖A−𝛼𝐻 ≤ 𝐿.
To prove that ℎ𝑛 converges to ℎ in norm, note that for 𝑧 ∈

D, and 𝑛,𝑚 ≥ 𝑁,

(1 − |𝑧|2)𝛼 󵄨󵄨󵄨󵄨ℎ𝑛 (𝑧) − ℎ𝑚 (𝑧)󵄨󵄨󵄨󵄨 ≤ 󵄩󵄩󵄩󵄩ℎ𝑛 − ℎ𝑚󵄩󵄩󵄩󵄩A−𝛼𝐻 < 𝜀. (30)

Fixing 𝑛 ≥ 𝑁 and letting 𝑚 󳨀→∞, we get

(1 − |𝑧|2)𝛼 󵄨󵄨󵄨󵄨ℎ𝑛 (𝑧) − ℎ (𝑧)󵄨󵄨󵄨󵄨 ≤ 𝜀. (31)

Taking the supremum over all 𝑧 ∈ D, we obtain ‖ℎ𝑛 −ℎ‖A−𝛼𝐻 󳨀→ 0, as desired.
Define the little harmonic growth spaceA−𝛼𝐻,0 as the sub-

space ofA−𝛼𝐻 whose elements ℎ satisfy
lim
|𝑧|󳨀→1

(1 − |𝑧|2)𝛼 |ℎ (𝑧)| = 0. (32)

It is evident from the definition that if 𝑓, 𝑔 ∈ A−𝛼

(respectively, A−𝛼0 ), then 𝑓 + 𝑔 ∈ A−𝛼𝐻 (respectively, A−𝛼𝐻,0).
We shall prove that the converse holds as well.

For 𝛼 > 0, we now define the harmonic 𝛼-Bloch space
B𝛼𝐻 and in Section 4, we shall prove that in analogy to the
analytic case, for 𝛼 > 1, as sets,B𝛼𝐻 and the harmonic growth
spaceA−(𝛼−1)𝐻 are equal, whereas for 0 < 𝛼 < 1, the spaceB𝛼𝐻
is the Lipschitz space of harmonic mappings of order 1 − 𝛼.
Definition 9. For 𝛼 > 0, we define the harmonic 𝛼-Bloch space
B𝛼𝐻 as the collection of all harmonic mappings ℎ on D such
that

𝛽𝛼ℎ fl sup
𝑧∈D
(1 − |𝑧|2)𝛼 (󵄨󵄨󵄨󵄨ℎ𝑧 (𝑧)󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨ℎ𝑧 (𝑧)󵄨󵄨󵄨󵄨) < ∞. (33)

Clearly, when 𝛼 = 1 this definition agrees with expression (7).
The harmonic little 𝛼-Bloch space is defined as the sub-

spaceB𝛼𝐻,0 ofB
𝛼
𝐻 consisting of the mappings ℎ such that

lim
|𝑧|󳨀→1

(1 − |𝑧|2)𝛼 (󵄨󵄨󵄨󵄨ℎ𝑧 (𝑧)󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨ℎ𝑧 (𝑧)󵄨󵄨󵄨󵄨) = 0. (34)

Observe that if ℎ = 𝑓 + 𝑔 with 𝑓, 𝑔 ∈ 𝐻(D), then ℎ𝑧 = 𝑓󸀠
and ℎ𝑧 = 𝑔󸀠. Thus

𝛽𝛼ℎ = sup
𝑧∈D
(1 − |𝑧|2)𝛼 (󵄨󵄨󵄨󵄨󵄨𝑓󸀠 (𝑧)󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑔󸀠 (𝑧)󵄨󵄨󵄨󵄨󵄨) . (35)

This implies that

1
2 (𝛽𝛼𝑓 + 𝛽𝛼𝑔) ≤ max {𝛽𝛼𝑓, 𝛽𝛼𝑔} ≤ 𝛽𝛼ℎ ≤ 𝛽𝛼𝑓 + 𝛽𝛼𝑔 . (36)

We deduce the following result.

Proposition 10. Let 𝛼 > 0 and let ℎ be a harmonic mapping,ℎ = 𝑓 + 𝑔 with 𝑓, 𝑔 ∈ 𝐻(D). Then ℎ ∈ B𝛼𝐻 (respectively,ℎ ∈B𝛼𝐻,0) if and only if 𝑓 and 𝑔 are inB𝛼 (respectively, 𝑓 and𝑔 are inB𝛼0 ).
In particular, since for 0 < 𝛼 < 1, the space B𝛼 is

contained in the disk algebra, the space B𝛼𝐻 is contained in
the space of complex-valued harmonic functions in D which
are continuous on D.

It is straightforward to verify that the mapping

ℎ 󳨃󳨀→ ‖ℎ‖B𝛼𝐻 fl |ℎ (0)| + 𝛽𝛼ℎ (37)

defines a Banach space structure on B𝛼𝐻, which extends to
harmonic mappings the norm onB𝛼.

A natural question that arises is whether Theorems 6 and
7 extend to harmonic mappings. We shall show that this is
indeed the case. We make use of the following result whose
proof is elementary.

Proposition 11. For 𝛼 > 0, the function 𝑑𝐻,𝛼 defined by
𝑑𝐻,𝛼 (𝑧, 𝑤)
= sup {|ℎ (𝑧) − ℎ (𝑤)| : ℎ ∈B𝛼𝐻, 𝛽𝛼ℎ ≤ 1} ,

for 𝑧, 𝑤 ∈ D,
(38)

is a distance on D.

Theorem 12. For any 𝛼 > 0 and 𝑧 ∈ D,
lim
𝑤󳨀→𝑧

𝑑𝐻,𝛼 (𝑧, 𝑤)|𝑧 − 𝑤| = (1 − |𝑧|2)−𝛼 . (39)

Proof. ByTheorem 17 of [4], for 𝑧 ∈ D,
lim
𝑤󳨀→𝑧

𝑑𝛼 (𝑧, 𝑤)|𝑧 − 𝑤| = (1 − |𝑧|2)
−𝛼 . (40)

From the definitions of 𝑑𝐻,𝛼 and 𝑑𝛼, it is immediate to see that𝑑𝐻,𝛼(𝑧, 𝑤) ≥ 𝑑𝛼(𝑧, 𝑤), for all 𝑧, 𝑤 ∈ D. Hence, fixing 𝑧 ∈ D,
we have

lim inf
𝑤󳨀→𝑧

𝑑𝐻,𝛼 (𝑧, 𝑤)|𝑧 − 𝑤| ≥ lim
𝑤󳨀→𝑧

𝑑𝛼 (𝑧, 𝑤)|𝑧 − 𝑤| = (1 − |𝑧|2)
−𝛼 . (41)

Therefore, to prove the result, it suffices to show that for each𝑧 ∈ D,
lim sup
𝑤󳨀→𝑧

𝑑𝐻,𝛼 (𝑧, 𝑤)|𝑧 − 𝑤| ≤ (1 − |𝑧|2)−𝛼 . (42)

Fix 𝑧 ∈ D and let ℎ ∈ B𝛼𝐻 with 𝛽𝛼ℎ ≤ 1. Replacing ℎ with ℎ −ℎ(0), we may assume ℎ(0) = 0, so that ‖ℎ‖B𝛼𝐻 = 𝛽𝛼ℎ . Represent
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ℎ as 𝑓+𝑔 with 𝑓, 𝑔 analytic and 𝑓(0) = 𝑔(0) = 0. Proceeding
as in the proof of Theorem 17 of [4], fix 𝑧 ∈ D and let 𝑟 =(1 − |𝑧|)/2. Then for |𝑤 − 𝑧| < 𝑟,

ℎ (𝑤) = ℎ (𝑧) + 𝑓󸀠 (𝑧) (𝑤 − 𝑧) + 𝑔󸀠 (𝑧) (𝑤 − 𝑧)
+ 𝑓2 (𝑧) (𝑤 − 𝑧)2 + 𝑔2 (𝑧) (𝑤 − 𝑧)2 ,

(43)

where

𝑓2 (𝑤) = 1
2𝜋𝑖 ∫|𝜁−𝑧|=𝑟

𝑓 (𝜁)
(𝜁 − 𝑧)2 (𝜁 − 𝑤)𝑑𝜁

and 𝑔2 (𝑤) = 1
2𝜋𝑖 ∫|𝜁−𝑧|=𝑟

𝑔 (𝜁)
(𝜁 − 𝑧)2 (𝜁 − 𝑤)𝑑𝜁.

(44)

By Proposition 5 of [4], there exists some positive constant 𝐶
only dependent on 𝑧 such that

󵄨󵄨󵄨󵄨𝑓2 (𝑤)󵄨󵄨󵄨󵄨 ≤ 𝐶 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩B𝛼
and 󵄨󵄨󵄨󵄨𝑔2 (𝑤)󵄨󵄨󵄨󵄨 ≤ 𝐶 󵄩󵄩󵄩󵄩𝑔󵄩󵄩󵄩󵄩B𝛼

(45)

for |𝑤−𝑧| < 𝑟.Therefore, since the assumption 𝛽𝛼ℎ ≤ 1 implies
that

󵄨󵄨󵄨󵄨󵄨𝑓󸀠 (𝑧)󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑔󸀠 (𝑧)󵄨󵄨󵄨󵄨󵄨 ≤ (1 − |𝑧|2)−𝛼 , (46)

and noting that by (36), ‖𝑓‖B𝛼 + ‖𝑔‖B𝛼 ≤ 2‖ℎ‖B𝛼𝐻 ≤ 2, using
(46) we obtain

|ℎ (𝑧) − ℎ (𝑤)| ≤ |𝑧 − 𝑤| (󵄨󵄨󵄨󵄨󵄨𝑓󸀠 (𝑧)󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑔󸀠 (𝑧)󵄨󵄨󵄨󵄨󵄨)
+ 𝐶 |𝑧 − 𝑤|2 (󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩B𝛼 + 󵄩󵄩󵄩󵄩𝑔󵄩󵄩󵄩󵄩B𝛼)

≤ |𝑧 − 𝑤| (1 − |𝑧|2)−𝛼 + 2𝐶 |𝑧 − 𝑤|2 .
(47)

Hence,
|ℎ (𝑧) − ℎ (𝑤)|
|𝑧 − 𝑤| ≤ (1 − |𝑧|2)−𝛼 + 2𝐶 |𝑧 − 𝑤| . (48)

Taking the supremum over all such mappings ℎ, we obtain
𝑑𝐻,𝛼 (𝑧, 𝑤)|𝑧 − 𝑤| ≤ (1 − |𝑧|2)−𝛼 + 2𝐶 |𝑧 − 𝑤| (49)

for |𝑤 − 𝑧| < 𝑟. Letting 𝑤 󳨀→ 𝑧, we obtain
lim sup
𝑤󳨀→𝑧

𝑑𝐻,𝛼 (𝑧, 𝑤)|𝑧 − 𝑤| ≤ (1 − |𝑧|2)−𝛼 , (50)

as desired.

We can now prove one of our main results in this section.

Theorem 13. Let ℎ be a harmonic mapping on D and 𝛼 > 0.
Then ℎ ∈ B𝛼𝐻 if and only if there exists a constant 𝐶 > 0 such
that for all 𝑧, 𝑤 ∈ D

|ℎ (𝑧) − ℎ (𝑤)| ≤ 𝐶𝑑𝐻,𝛼 (𝑧, 𝑤) . (51)

Moreover, for each ℎ ∈B𝛼𝐻,
𝛽𝛼ℎ = sup

𝑧 ̸=𝑤

|ℎ (𝑧) − ℎ (𝑤)|
𝑑𝐻,𝛼 (𝑧, 𝑤) . (52)

Proof. Assume ℎ ∈ B𝛼𝐻 and let 𝑀𝛼ℎ denote the right-hand
side of (52). If ℎ is constant, then𝑀𝛼ℎ = 0 = 𝛽𝛼ℎ , and we are
done. So assume ℎ is nonconstant so that 𝛽𝛼ℎ > 0. Then, the
mapping defined by

ℎ̃ = 1
𝛽𝛼ℎ ℎ (53)

is inB𝛼𝐻 and has seminorm 1, so, fixing distinct points 𝑧, 𝑤 ∈
D, by the definition of 𝑑𝐻,𝛼, we have
|ℎ (𝑧) − ℎ (𝑤)| = 𝛽𝛼ℎ 󵄨󵄨󵄨󵄨󵄨ℎ̃ (𝑧) − ℎ̃ (𝑤)󵄨󵄨󵄨󵄨󵄨 ≤ 𝛽𝛼ℎ𝑑𝐻,𝛼 (𝑧, 𝑤) . (54)

Dividing by 𝑑𝐻,𝛼(𝑧, 𝑤) and taking the supremum over all
distinct points 𝑧 and 𝑤, we obtain𝑀𝛼ℎ ≤ 𝛽𝛼ℎ .

Next, note that fixing 𝑧 ∈ D,
𝑀𝛼ℎ ≥ lim sup

𝑤󳨀→𝑧

|ℎ (𝑧) − ℎ (𝑤)|
𝑑𝐻,𝛼 (𝑧, 𝑤)

= lim sup
𝑤󳨀→𝑧

|ℎ (𝑧) − ℎ (𝑤)|
|𝑧 − 𝑤| lim

𝑤󳨀→𝑧

|𝑧 − 𝑤|
𝑑𝐻,𝛼 (𝑧, 𝑤) .

(55)

For 𝑤 = 𝑧 + 𝑟𝑒𝑖𝜃 with 0 < 𝑟 < 1 − |𝑧| and 𝜃 ∈ R fixed,
|ℎ (𝑤) − ℎ (𝑧)|
|𝑤 − 𝑧|
= 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑤) − 𝑓 (𝑧)
𝑤 − 𝑧 + 𝑔 (𝑤) − 𝑔 (𝑧)𝑤 − 𝑧 𝑒−2𝑖𝜃󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󳨀→ 󵄨󵄨󵄨󵄨󵄨𝑓󸀠 (𝑧) + 𝑔󸀠 (𝑧)𝑒−2𝑖𝜃󵄨󵄨󵄨󵄨󵄨

(56)

as 𝑟 󳨀→ 0. Taking the supremum over 𝜃, we obtain
lim sup
𝑤󳨀→𝑧

|ℎ (𝑧) − ℎ (𝑤)|
|𝑧 − 𝑤| = 󵄨󵄨󵄨󵄨󵄨𝑓󸀠 (𝑧)󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑔󸀠 (𝑧)󵄨󵄨󵄨󵄨󵄨 . (57)

Hence, by Theorem 12, from (55) we obtain

𝑀𝛼ℎ ≥ (󵄨󵄨󵄨󵄨󵄨𝑓󸀠 (𝑧)󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑔󸀠 (𝑧)󵄨󵄨󵄨󵄨󵄨) (1 − |𝑧|2)𝛼 . (58)

Taking the supremum over all 𝑧 ∈ D, we conclude that𝑀𝛼ℎ ≥𝛽𝛼ℎ , completing the proof.

In [17], the norm of the point-evaluation functional on
the Bloch space was calculated precisely. Specifically, it was
shown that for 𝑧 ∈ D, the quantity

sup
𝑓∈B,‖𝑓‖B≤1

󵄨󵄨󵄨󵄨𝑓 (𝑧)󵄨󵄨󵄨󵄨 = max {1, 𝜌 (𝑧, 0)} , (59)

where we recall that 𝜌 is the distance 𝑑𝛼 for 𝛼 = 1.
We now provide a point-evaluation estimate for the

harmonic 𝛼-Bloch space in terms of the metric 𝑑𝐻,𝛼 valid for
all 𝛼 > 0. For the case 𝛼 = 1 we obtain an extension of (59) to
the harmonic Bloch spaceB𝐻.

Theorem 14. For ℎ ∈B𝛼𝐻 and 𝑧 ∈ D,
|ℎ (𝑧)| ≤ max {1, 𝑑𝐻,𝛼 (𝑧, 0)} ‖ℎ‖B𝛼𝐻 . (60)

In the case when 𝛼 = 1, for all 𝑧 ∈ D,
sup

ℎ∈B𝐻,‖ℎ‖B𝐻≤1

|ℎ (𝑧)| = max {1, 𝜌 (𝑧, 0)} . (61)
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Proof. Let ℎ ∈ B𝛼𝐻 and fix 𝑧 ∈ D. The inequality is clear for𝑧 = 0. So assume 𝑧 ̸= 0. Then, by (52), we have

|ℎ (𝑧)| ≤ |ℎ (0)| + |ℎ (𝑧) − ℎ (0)|
= |ℎ (0)| + |ℎ (𝑧) − ℎ (0)|𝑑𝐻,𝛼 (𝑧, 0) 𝑑𝐻,𝛼 (𝑧, 0)
≤ |ℎ (0)| + 𝛽𝛼ℎ𝑑𝐻,𝛼 (𝑧, 0)
= |ℎ (0)| + (‖ℎ‖B𝛼𝐻 − |ℎ (0)|) 𝑑𝐻,𝛼 (𝑧, 0)
= (1 − 𝑑𝐻,𝛼 (𝑧, 0)) |ℎ (0)| + 𝑑𝐻,𝛼 (𝑧, 0) ‖ℎ‖B𝛼𝐻
= max {1, 𝑑𝐻,𝛼 (𝑧, 0)} ‖ℎ‖B𝛼𝐻

(62)

proving the estimate.
When 𝛼 = 1, by (59), we have

max {1, 𝜌 (𝑧, 0)} = sup
𝑓∈B,‖𝑓‖B𝛼≤1

󵄨󵄨󵄨󵄨𝑓 (𝑧)󵄨󵄨󵄨󵄨
≤ sup
ℎ∈B𝐻,‖ℎ‖B𝛼

𝐻
≤1

|ℎ (𝑧)| , (63)

which, combined with (62), yields the conclusion.

We now prove that for each 𝛼 > 0, the map ℎ 󳨀→ 𝛽𝛼ℎ is
lower semicontinuous on the spaceB𝛼𝐻.

Theorem 15. Let (ℎ𝑛) be a sequence in B𝛼𝐻 converging
uniformly on compact subsets of D to some function ℎ. If the
sequence (𝛽𝛼ℎ𝑛) is bounded, then ℎ ∈B𝛼𝐻 and

𝛽𝛼ℎ ≤ lim inf
𝑛󳨀→∞

𝛽𝛼ℎ𝑛 . (64)

Proof. Let (ℎ𝑛) be as in the statement of the theorem.
Applying the mean value property of harmonic mappings to
each ℎ𝑛 and then passing to the limit as 𝑛 󳨀→ ∞, we see that ℎ
also satisfies the mean value property and hence it is likewise
harmonic. Set

𝛽 = lim inf
𝑛󳨀→∞

𝛽𝛼ℎ𝑛 . (65)

Then, there exists a subsequence (𝛽𝛼ℎ𝑛𝑘 ) converging to 𝛽. We
wish to show that for all 𝑧, 𝑤 ∈ D,

|ℎ (𝑧) − ℎ (𝑤)| ≤ 𝛽𝑑𝐻,𝛼 (𝑧, 𝑤) . (66)

Fix 𝑧, 𝑤 ∈ D. Since the above inequality is trivial if 𝑧 = 𝑤,
assume 𝑧 ̸= 𝑤 and fix 𝜀 > 0. Since 𝛽𝛼ℎ𝑛𝑘 󳨀→ 𝛽, there exists
] ∈ N such that for all 𝑘 ≥ ]

𝛽𝛼ℎ𝑛𝑘 < 𝛽 +
𝜀

2𝑑𝐻,𝛼 (𝑧, 𝑤) ,
󵄨󵄨󵄨󵄨󵄨ℎ𝑛𝑘 (𝑧) − ℎ (𝑧)󵄨󵄨󵄨󵄨󵄨 < 𝜀4 ,

and 󵄨󵄨󵄨󵄨󵄨ℎ𝑛𝑘 (𝑤) − ℎ (𝑤)󵄨󵄨󵄨󵄨󵄨 < 𝜀4 .
(67)

Therefore, for 𝑘 ≥ ], and having shown inTheorem 13 that the
seminorm inB𝛼𝐻 equals the Lipschitz number with respect to
the distance 𝑑𝐻,𝛼 and the Euclidean distance in C, we have

|ℎ (𝑧) − ℎ (𝑤)| ≤ 󵄨󵄨󵄨󵄨󵄨ℎ (𝑧) − ℎ𝑛𝑘 (𝑧)󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨ℎ𝑛𝑘 (𝑧) − ℎ𝑛𝑘 (𝑤)󵄨󵄨󵄨󵄨󵄨
+ 󵄨󵄨󵄨󵄨󵄨ℎ𝑛𝑘 (𝑤) − ℎ (𝑤)󵄨󵄨󵄨󵄨󵄨

< 𝜀2 + 𝛽𝛼ℎ𝑛𝑘𝑑𝐻,𝛼 (𝑧, 𝑤)
< 𝜀2 + (𝛽 +

𝜀
2𝑑𝐻,𝛼 (𝑧, 𝑤))𝑑𝐻,𝛼 (𝑧, 𝑤)

= 𝜀 + 𝛽𝑑𝐻,𝛼 (𝑧, 𝑤) .

(68)

Since 𝜀 is arbitrary, we conclude that |ℎ(𝑧) − ℎ(𝑤)| ≤𝛽𝑑𝐻,𝛼(𝑧, 𝑤) for all 𝑧, 𝑤 ∈ D.
This implies that the Lipschitz number of ℎ is no greater

than 𝛽. In particular, ℎ ∈ B𝛼𝐻 and 𝛽𝛼ℎ ≤ 𝛽, completing the
proof.

4. Characterizations of the 𝛼-Bloch
Harmonic Mappings (𝛼 ≠ 1)

We now introduce the space of harmonic Lipschitz mappings
and prove that it is a complex Banach space.

For 𝛼 > 0, let Lip𝛼𝐻 denote the collection of harmonic
mappings ℎ on D satisfying the condition

‖ℎ‖𝛼 fl sup
𝑧 ̸=𝑤

|ℎ (𝑧) − ℎ (𝑤)|
|𝑧 − 𝑤|𝛼 < ∞. (69)

Define ‖ℎ‖Lip𝛼𝐻 fl |ℎ(0)| + ‖ℎ‖𝛼.
Theorem 16. For 𝛼 > 0, under the above norm, 𝐿𝑖𝑝𝛼𝐻 is a
Banach space.

Proof. It is immediate to verify that Lip𝛼𝐻 is a normed linear
space. To prove completeness, suppose (ℎ𝑛) is a Cauchy
sequence in Lip𝛼𝐻. Fix 𝑧 ∈ D and 𝜀 > 0. Choose 𝑁 ∈ N such
that

󵄩󵄩󵄩󵄩ℎ𝑛 − ℎ𝑚󵄩󵄩󵄩󵄩Lip𝛼𝐻 < 𝜀
|𝑧|𝛼 + 1 (70)

for all 𝑛,𝑚 ≥ 𝑁. Then for all 𝑛,𝑚 ≥ 𝑁,
󵄨󵄨󵄨󵄨ℎ𝑛 (𝑧) − ℎ𝑚 (𝑧)󵄨󵄨󵄨󵄨 ≤ 󵄨󵄨󵄨󵄨ℎ𝑛 (𝑧) − ℎ𝑚 (𝑧) − ℎ𝑛 (0) − ℎ𝑚 (0)󵄨󵄨󵄨󵄨

+ 󵄨󵄨󵄨󵄨ℎ𝑛 (0) − ℎ𝑚 (0)󵄨󵄨󵄨󵄨
≤ 󵄩󵄩󵄩󵄩ℎ𝑛 − ℎ𝑚󵄩󵄩󵄩󵄩𝛼 |𝑧|𝛼 + 󵄨󵄨󵄨󵄨ℎ𝑛 (0) − ℎ𝑚 (0)󵄨󵄨󵄨󵄨
≤ (|𝑧|𝛼 + 1) 󵄩󵄩󵄩󵄩ℎ𝑛 − ℎ𝑚󵄩󵄩󵄩󵄩Lip𝛼𝐻 < 𝜀.

(71)

Thus, (ℎ𝑛(𝑧)) is a Cauchy sequence in C, which is complete,
and so ℎ(𝑧) fl lim𝑛󳨀→∞ℎ𝑛(𝑧) exists. Arguing as in the proof
of Theorem 8, we see that ℎ is harmonic.

Since Cauchy sequences are bounded,

𝐿 fl sup
𝑘∈N

󵄩󵄩󵄩󵄩ℎ𝑘󵄩󵄩󵄩󵄩𝛼 ≤ sup
𝑘∈N

󵄩󵄩󵄩󵄩ℎ𝑘󵄩󵄩󵄩󵄩Lip𝛼𝐻 < ∞. (72)
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Then for 𝑧 ̸= 𝑤 fixed in D, we have

|ℎ (𝑧) − ℎ (𝑤)|
|𝑧 − 𝑤|𝛼 = lim

𝑛󳨀→∞

󵄨󵄨󵄨󵄨ℎ𝑛 (𝑧) − ℎ𝑛 (𝑤)󵄨󵄨󵄨󵄨|𝑧 − 𝑤|𝛼 ≤ 𝐿. (73)

Taking the supremum over all pairs of distinct points 𝑧, 𝑤 ∈
D, we obtain ℎ ∈ Lip𝛼𝐻 and ‖ℎ‖Lip𝛼𝐻 ≤ 𝐿.

Lastly, to show that ‖ℎ𝑛 − ℎ‖Lip𝛼𝐻 󳨀→ 0, note that with
𝑧 ∈ D fixed, for 𝑤 ∈ D, with 𝑤 ̸= 𝑧, and 𝑛,𝑚 ≥ 𝑁,

󵄨󵄨󵄨󵄨ℎ𝑛 (0) − ℎ𝑚 (0)󵄨󵄨󵄨󵄨
+ 󵄨󵄨󵄨󵄨ℎ𝑛 (𝑧) − ℎ𝑚 (𝑧) − (ℎ𝑛 (𝑤) − ℎ𝑚 (𝑤))󵄨󵄨󵄨󵄨|𝑧 − 𝑤|𝛼 < 𝜀. (74)

Letting 𝑚 󳨀→∞, we get

󵄨󵄨󵄨󵄨ℎ𝑛 (0) − ℎ (0)󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨ℎ𝑛 (𝑧) − ℎ (𝑧) − (ℎ𝑛 (𝑤) − ℎ (𝑤))󵄨󵄨󵄨󵄨|𝑧 − 𝑤|𝛼

≤ 𝜀,
(75)

whence ‖ℎ𝑛 − ℎ‖Lip𝛼𝐻 󳨀→ 0.
Theorem 17. For 0 < 𝛼 < 1, as sets, B𝛼𝐻 = Lip1−𝛼𝐻 , and the
respective norms are equivalent.

Proof. First, assume ℎ ∈ B𝛼𝐻 and let 𝑓, 𝑔 ∈ 𝐻(D) such thatℎ = 𝑓 + 𝑔 with 𝑔(0) = 0. Then 𝑓, 𝑔 ∈ B𝛼, so by Proposition
9 in [4], 𝑓 and 𝑔 belong to the Lipschitz space of analytic
functions of order 1 − 𝛼. Thus, for 𝑧 ̸= 𝑤,
|ℎ (𝑧) − ℎ (𝑤)|
|𝑧 − 𝑤|1−𝛼 ≤ 󵄨󵄨󵄨󵄨𝑓 (𝑧) − 𝑓 (𝑤)󵄨󵄨󵄨󵄨|𝑧 − 𝑤|1−𝛼 + 󵄨󵄨󵄨󵄨𝑔 (𝑧) − 𝑔 (𝑤)󵄨󵄨󵄨󵄨|𝑧 − 𝑤|1−𝛼

≤ 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩1−𝛼 + 󵄩󵄩󵄩󵄩𝑔󵄩󵄩󵄩󵄩1−𝛼 .
(76)

Taking the supremum over all pairs of distinct points 𝑧, 𝑤 ∈
D, we obtain

‖ℎ‖1−𝛼 ≤ 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩1−𝛼 + 󵄩󵄩󵄩󵄩𝑔󵄩󵄩󵄩󵄩1−𝛼 . (77)

Hence ℎ ∈ Lip1−𝛼𝐻 . Since the space B𝛼 and the space Lip1−𝛼
of analytic functions on D which are Lipschitz of order 1 − 𝛼
have equivalent norms, where for 𝑓 ∈ Lip1−𝛼,

󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩Lip1−𝛼 = 󵄨󵄨󵄨󵄨𝑓 (0)󵄨󵄨󵄨󵄨 + 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩1−𝛼 , (78)

using the equalities ℎ(0) = 𝑓(0) and 𝑔(0) = 0 and (36), we
deduce that

‖ℎ‖Lip1−𝛼𝐻 = |ℎ (0)| + ‖ℎ‖1−𝛼
≤ 󵄨󵄨󵄨󵄨𝑓 (0)󵄨󵄨󵄨󵄨 + 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩1−𝛼 + 󵄩󵄩󵄩󵄩𝑔󵄩󵄩󵄩󵄩1−𝛼
= 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩Lip1−𝛼 + 󵄩󵄩󵄩󵄩𝑔󵄩󵄩󵄩󵄩Lip1−𝛼 ≤ 𝐶 (󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩B𝛼 + 󵄩󵄩󵄩󵄩𝑔󵄩󵄩󵄩󵄩B𝛼)
≤ 2𝐶 (󵄨󵄨󵄨󵄨𝑓 (0)󵄨󵄨󵄨󵄨 +max {𝛽𝛼𝑓, 𝛽𝛼𝑔})
≤ 2𝐶 (|ℎ (0)| + 𝛽𝛼ℎ) = 2𝐶 ‖ℎ‖B𝛼𝐻

(79)

for some positive constant 𝐶.

Conversely, assume ‖ℎ‖1−𝛼 < ∞. Fix 𝑧 = |𝑧|𝑒𝑖𝜏 ∈ D. By
Theorem 3, making a change of variable and using Remark 4,
and since |𝑒𝑖(𝑡+𝜏) − 𝑧|2 = |𝑒𝑖𝑡 − |𝑧||2 = |𝑒−𝑖(𝑡+𝜏) − 𝑧|2, we have

󵄨󵄨󵄨󵄨ℎ𝑧 (𝑧)󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨ℎ𝑧 (𝑧)󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
1
2𝜋 ∫
2𝜋

0

𝑒𝑖𝑡
(𝑒𝑖𝑡 − 𝑧)2 ℎ (𝑒

𝑖𝑡) 𝑑𝑡
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
1
2𝜋 ∫
2𝜋

0

𝑒−𝑖𝑡
(𝑒−𝑖𝑡 − 𝑧)2 ℎ (𝑒

𝑖𝑡) 𝑑𝑡
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
1
2𝜋 ∫
2𝜋

0

𝑒𝑖𝑡
(𝑒𝑖𝑡 − 𝑧)2 (ℎ (𝑒

𝑖𝑡) − ℎ (𝑒𝑖𝜏)) 𝑑𝑡
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
1
2𝜋 ∫
2𝜋

0

𝑒−𝑖𝑡
(𝑒−𝑖𝑡 − 𝑧)2 (ℎ (𝑒

𝑖𝑡) − ℎ (𝑒𝑖𝜏)) 𝑑𝑡
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 1
2𝜋 ∫
𝜋

−𝜋

󵄨󵄨󵄨󵄨󵄨ℎ (𝑒𝑖(𝑡+𝜏)) − ℎ (𝑒𝑖𝜏)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑒𝑖(𝑡+𝜏) − 𝑧󵄨󵄨󵄨󵄨2 𝑑𝑡

+ 12𝜋 ∫
𝜋

−𝜋

󵄨󵄨󵄨󵄨󵄨ℎ (𝑒𝑖(𝑡+𝜏)) − ℎ (𝑒𝑖𝜏)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑒−𝑖(𝑡+𝜏) − 𝑧󵄨󵄨󵄨󵄨2 𝑑𝑡.

= 1𝜋 ∫
𝜋

−𝜋

󵄨󵄨󵄨󵄨󵄨ℎ (𝑒𝑖(𝑡+𝜏)) − ℎ (𝑒𝑖𝜏)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑒𝑖𝑡 − |𝑧|󵄨󵄨󵄨󵄨2 𝑑𝑡.

(80)

By the definition of ‖ℎ‖1−𝛼 , and expanding 𝑒𝑖𝑡 as a power series
in 𝑡 about 0, for |𝑡| ≤ 𝜋, we have

󵄨󵄨󵄨󵄨󵄨ℎ (𝑒𝑖(𝑡+𝜏)) − ℎ (𝑒𝑖𝜏)󵄨󵄨󵄨󵄨󵄨 ≤ 󵄨󵄨󵄨󵄨󵄨𝑒𝑖(𝑡+𝜏) − 𝑒𝑖𝜏󵄨󵄨󵄨󵄨󵄨1−𝛼 ‖ℎ‖1−𝛼
= 󵄨󵄨󵄨󵄨󵄨𝑒𝑖𝑡 − 1󵄨󵄨󵄨󵄨󵄨1−𝛼 ‖ℎ‖1−𝛼
≤ |𝑡|1−𝛼 (𝑒𝜋 − 1)

1−𝛼

𝜋1−𝛼 ‖ℎ‖1−𝛼 .
(81)

From (80) and (81), noting that for 0 ≤ 𝑡 ≤ 𝜋,
󵄨󵄨󵄨󵄨󵄨𝑒𝑖𝑡 − |𝑧|󵄨󵄨󵄨󵄨󵄨2 = (1 − |𝑧|)2 + 4 |𝑧| sin2 𝑡2

≥ (1 − |𝑧|)2 + 4 |𝑧| 𝑡2𝜋2 ,
(82)

we deduce

󵄨󵄨󵄨󵄨ℎ𝑧 (𝑧)󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨ℎ𝑧 (𝑧)󵄨󵄨󵄨󵄨 ≤ (𝑒
𝜋 − 1)1−𝛼 ‖ℎ‖1−𝛼𝜋2−𝛼

⋅ ∫𝜋
−𝜋

|𝑡|1−𝛼󵄨󵄨󵄨󵄨𝑒𝑖𝑡 − |𝑧|󵄨󵄨󵄨󵄨2𝑑𝑡 ≤
2 (𝑒𝜋 − 1)1−𝛼 ‖ℎ‖1−𝛼𝜋2−𝛼

⋅ ∫𝜋
0

𝑡1−𝛼
(1 − |𝑧|)2 + 4 |𝑧| (𝑡2/𝜋2)𝑑𝑡.

(83)
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If |𝑧| ≤ 1/2, then (1 − |𝑧|)2 ≥ 1/4, so
∫𝜋
0

𝑡1−𝛼
(1 − |𝑧|)2 + 4 |𝑧| (𝑡2/𝜋2)𝑑𝑡 ≤ ∫

𝜋

0

𝑡1−𝛼
(1 − |𝑧|)2𝑑𝑡

≤ 4∫𝜋
0
𝑡1−𝛼 𝑑𝑡 = 4𝜋2−𝛼2 − 𝛼 ,

(84)

so from (83), we obtain

(1 − |𝑧|2)𝛼 (󵄨󵄨󵄨󵄨ℎ𝑧 (𝑧)󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨ℎ𝑧 (𝑧)󵄨󵄨󵄨󵄨)
≤ 8 (𝑒𝜋 − 1)

1−𝛼

2 − 𝛼 ‖ℎ‖1−𝛼 .
(85)

Next assume 1/2 ≤ |𝑧| < 1. From (83), making the
substitution 𝑠 = 𝑡/(1 − |𝑧|), and noting that 1 > 4|𝑧|/𝜋2, we
have

󵄨󵄨󵄨󵄨ℎ𝑧 (𝑧)󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨ℎ𝑧 (𝑧)󵄨󵄨󵄨󵄨 ≤ 2 (𝑒
𝜋 − 1)1−𝛼 ‖ℎ‖1−𝛼𝜋2−𝛼 (1 − |𝑧|)−𝛼

⋅ ∫∞
0

𝑠1−𝛼
1 + 4 |𝑧| (𝑠2/𝜋2)𝑑𝑠

≤ 2 (𝑒𝜋 − 1)
1−𝛼 ‖ℎ‖1−𝛼𝜋2−𝛼 (1 − |𝑧|)−𝛼

⋅ ∫∞
0

𝑠1−𝛼
(4 |𝑧| /𝜋2) (1 + 𝑠2)𝑑𝑠

= 𝜋𝛼 (𝑒𝜋 − 1)
1−𝛼 ‖ℎ‖1−𝛼2 |𝑧| (1 − |𝑧|)−𝛼 ∫∞

0

𝑠1−𝛼
1 + 𝑠2𝑑𝑠

= 𝐶 (1 − |𝑧|2)−𝛼 ‖ℎ‖1−𝛼
⋅ (∫1
0

𝑠1−𝛼
1 + 𝑠2 𝑑𝑠 + ∫

∞

1

𝑠1−𝛼
1 + 𝑠2 𝑑𝑠) ≤ 𝐶 (1 − |𝑧|2)

−𝛼

⋅ ‖ℎ‖1−𝛼 (𝜋4 + ∫
∞

1

𝑠1−𝛼
1 + 𝑠2𝑑𝑠) ,

(86)

where 𝐶 = 𝜋𝛼(𝑒𝜋 − 1)1−𝛼. Noting that
∫∞
1

𝑠1−𝛼
1 + 𝑠2 𝑑𝑠 ≤ ∫

∞

1

1
𝑠1+𝛼 𝑑𝑠 =

1
𝛼 , (87)

it follows from (86) that for 1/2 ≤ |𝑧| < 1,
(1 − |𝑧|2)𝛼 (󵄨󵄨󵄨󵄨ℎ𝑧 (𝑧)󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨ℎ𝑧 (𝑧)󵄨󵄨󵄨󵄨) ≤ 𝐶 ‖ℎ‖1−𝛼 . (88)

Therefore, combining the results in the two cases |𝑧| ≤ 1/2
and 1/2 ≤ |𝑧| < 1, we obtain

sup
𝑧∈D
(1 − |𝑧|2)𝛼 (󵄨󵄨󵄨󵄨ℎ𝑧 (𝑧)󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨ℎ𝑧 (𝑧)󵄨󵄨󵄨󵄨) ≤ const. ‖ℎ‖1−𝛼 . (89)

This proves that ℎ ∈B𝛼𝐻 and
‖ℎ‖B𝛼𝐻 ≤ const. (|ℎ (0)| + ‖ℎ‖1−𝛼) = const. ‖ℎ‖Lip1−𝛼𝐻 . (90)

Combining (79) and (90), we obtain the equivalence of the
norms ‖ ⋅ ‖B𝛼𝐻 and ‖ ⋅ ‖Lip1−𝛼𝐻 .

We next show that, in analogy to the analytic case, for 𝛼 >1 the space B𝛼𝐻 can be identified with the harmonic growth
spaceA1−𝛼𝐻 .

Theorem 18. For 𝛼 > 1, as sets, B𝛼𝐻 = A1−𝛼𝐻 , and the
respective norms are equivalent. The little subspaces B𝛼𝐻,0 and
A1−𝛼𝐻,0 are equal as well.

Proof. First, assume ℎ ∈ B𝛼𝐻 and let 𝑓, 𝑔 ∈ 𝐻(D) such thatℎ = 𝑓 + 𝑔 and 𝑔(0) = 0. Then 𝑓, 𝑔 ∈ B𝛼, so by Proposition 7
in [4], 𝑓 and 𝑔 belong to the growth spaceA1−𝛼. Thus,

sup
𝑧∈D
(1 − |𝑧|2)𝛼−1 |ℎ (𝑧)|
≤ sup
𝑧∈D
(1 − |𝑧|2)𝛼−1 󵄨󵄨󵄨󵄨𝑓 (𝑧)󵄨󵄨󵄨󵄨

+ sup
𝑧∈D
(1 − |𝑧|2)𝛼−1 󵄨󵄨󵄨󵄨𝑔 (𝑧)󵄨󵄨󵄨󵄨 ,

(91)

which is finite. Therefore, ℎ ∈ A1−𝛼𝐻 . The inclusion B𝛼𝐻,0 ⊆
A1−𝛼𝐻,0 follows as well.

Moreover, from (91), since the norms in B𝛼 and A1−𝛼

are equivalent, ℎ(0) = 𝑓(0) and 𝑔(0) = 0, for some positive
constant 𝐶, we have
‖ℎ‖A1−𝛼𝐻 ≤ 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩A1−𝛼 + 󵄩󵄩󵄩󵄩𝑔󵄩󵄩󵄩󵄩A1−𝛼 ≤ 𝐶 (󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩B𝛼 + 󵄩󵄩󵄩󵄩𝑔󵄩󵄩󵄩󵄩B𝛼)

= 𝐶 (󵄨󵄨󵄨󵄨𝑓 (0)󵄨󵄨󵄨󵄨 + 𝛽𝛼𝑓 + 𝛽𝛼𝑔)
≤ 2𝐶 (|ℎ (0)| +max {𝛽𝛼𝑓, 𝛽𝛼𝑔})
≤ 2𝐶 (|ℎ (0)| + 𝛽𝛼ℎ) = 2𝐶 ‖ℎ‖B𝛼𝐻 .

(92)

Conversely, suppose ℎ ∈ A1−𝛼𝐻 . Fix 𝑧 ∈ D and set 𝑅 =√(1 + |𝑧|2)/2. So 1/√2 ≤ 𝑅 < 1. Using (17) and (18), we have

󵄨󵄨󵄨󵄨ℎ𝑧 (𝑧)󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨ℎ𝑧 (𝑧)󵄨󵄨󵄨󵄨 ≤ 𝑅𝜋 ∫
𝜋

−𝜋

󵄨󵄨󵄨󵄨󵄨ℎ (𝑅𝑒𝑖𝑡)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑅𝑒𝑖𝑡 − 𝑧󵄨󵄨󵄨󵄨2𝑑𝑡.
(93)

Since ℎ ∈ A1−𝛼𝐻 , we have

󵄨󵄨󵄨󵄨󵄨ℎ (𝑅𝑒𝑖𝑡)󵄨󵄨󵄨󵄨󵄨 ≤
‖ℎ‖A1−𝛼𝐻
(1 − 𝑅2)𝛼−1 . (94)

Since by our choice of 𝑅, 𝑅2 = (1 + |𝑧|2)/2, we have

1 − 𝑅2 = 𝑅2 − |𝑧|2 = 1 − |𝑧|22 . (95)

By these facts and multiplying (93) by (1 − |𝑧|2)𝛼, it follows
that
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(1 − |𝑧|2)𝛼 (󵄨󵄨󵄨󵄨ℎ𝑧 (𝑧)󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨ℎ𝑧 (𝑧)󵄨󵄨󵄨󵄨)

≤ 𝑅𝜋 ∫
𝜋

−𝜋

‖ℎ‖A1−𝛼𝐻 (1 − 𝑅2)󵄨󵄨󵄨󵄨𝑅𝑒𝑖𝑡 − 𝑧󵄨󵄨󵄨󵄨2 (1 − |𝑧|21 − 𝑅2 )
𝛼

𝑑𝑡.

≤ 2𝛼 ‖ℎ‖A1−𝛼𝐻 1
𝜋 ∫
𝜋

−𝜋

𝑅2 − |𝑧|2󵄨󵄨󵄨󵄨𝑅𝑒𝑖𝑡 − 𝑧󵄨󵄨󵄨󵄨2 𝑑𝑡.
= 2𝛼+1 ‖ℎ‖A1−𝛼𝐻 ,

(96)

where we used the identity

1
2𝜋 ∫
𝜋

−𝜋

𝑅2 − |𝑧|2󵄨󵄨󵄨󵄨𝑅𝑒𝑖𝑡 − 𝑧󵄨󵄨󵄨󵄨2𝑑𝑡 = 1, (97)

since the mean of the Poisson kernel for the disk of radius 𝑅
over the circle of radius R is 1. Therefore, ℎ ∈B𝛼𝐻.

Finally, since |ℎ(0)| ≤ ‖ℎ‖A1−𝛼𝐻 , from (96) it follows that

‖ℎ‖B𝛼𝐻 ≤ (1 + 2𝛼+1) ‖ℎ‖A1−𝛼𝐻 , (98)

which, combined with (92), proves that the norms ofB𝛼𝐻 and
A1−𝛼𝐻 are equivalent.

Lastly, assume ℎ ∈ A1−𝛼𝐻,0 . Fix 𝜀 > 0 and let 𝑟 ∈ (0, 1) be
chosen so that

|ℎ (𝑧)| < 𝜀
(1 − |𝑧|2)𝛼−1 (99)

whenever 𝑟 < |𝑧| < 1. Choosing 𝑧 with 𝑟 < |𝑧| < 1 and
defining 𝑅 in terms of 𝑧 as done previously, from (93) arguing
as above, we see that

(1 − |𝑧|2)𝛼 (󵄨󵄨󵄨󵄨ℎ𝑧 (𝑧)󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨ℎ𝑧 (𝑧)󵄨󵄨󵄨󵄨)

< 𝑅𝜋 ∫
𝜋

−𝜋

𝜀 (1 − 𝑅2)
󵄨󵄨󵄨󵄨𝑅𝑒𝑖𝑡 − 𝑧󵄨󵄨󵄨󵄨2 (

1 − |𝑧|2
1 − 𝑅2 )

𝛼

𝑑𝑡 ≤ 2𝛼+1𝜀. (100)

Hence, ℎ ∈B𝛼𝐻,0.
Given 𝛼 > 0, 𝑛 ∈ N, and ℎ harmonic on D, let us define

𝛽𝛼ℎ,𝑛 fl sup
𝑧∈D
(1 − |𝑧|2)𝛼+𝑛−1 (󵄨󵄨󵄨󵄨󵄨𝑓(𝑛) (𝑧)󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑔(𝑛) (𝑧)󵄨󵄨󵄨󵄨󵄨) . (101)

The following result shows that, in analogy to the analytic
case, for any integer 𝑛 ≥ 2, the elements of the harmonic𝛼-Bloch space and its subspace B𝛼𝐻,0 can be characterized
in terms of the 𝑛𝑡ℎ derivatives of 𝑓 and 𝑔 and the Bergman
weight 𝑧 󳨃󳨀→ (1 − |𝑧|2)𝛾, whose exponent 𝛾 is a certain
function of 𝑛 and 𝛼.
Theorem 19. Suppose 𝛼 > 0, 𝑛 ≥ 2 is an integer, and ℎ is a
harmonic mapping on D. Then

(i) ℎ ∈B𝛼𝐻 if and only if 𝛽𝛼ℎ,𝑛 < ∞.
(ii) ℎ ∈B𝛼𝐻,0 if and only if
lim
|𝑧|󳨀→1

(1 − |𝑧|2)𝛼+𝑛−1 (󵄨󵄨󵄨󵄨󵄨𝑓(𝑛) (𝑧)󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑔(𝑛) (𝑧)󵄨󵄨󵄨󵄨󵄨) = 0. (102)

Proof. To prove (i), assume ℎ ∈ B𝛼𝐻. By Theorem 1, there
exists 𝐶 > 0 such that for each 𝑓 analytic on D, 𝛽𝛼𝑓,𝑛 ≤ 𝐶𝛽𝛼𝑓.

Let ℎ ∈B𝛼𝐻 such that ℎ = 𝑓+𝑔 for some𝑓, 𝑔 ∈B𝛼.Then
byTheorem 1 and the inequality (36)

𝛽𝛼ℎ,𝑛 ≤ 𝛽𝛼𝑓,𝑛 + 𝛽𝛼𝑔,𝑛 ≤ 𝐶 (𝛽𝛼𝑓 + 𝛽𝛼𝑔) ≤ 2𝐶𝛽𝛼ℎ . (103)

In particular, if ℎ ∈B𝛼𝐻, then 𝛽𝛼ℎ,𝑛 is finite.
Conversely, assume 𝛽𝛼ℎ,𝑛 < ∞. Then 𝛽𝛼𝑓,𝑛 ≤ 𝛽𝛼ℎ,𝑛 and𝛽𝛼𝑔,𝑛 ≤ 𝛽𝛼ℎ,𝑛. Thus, 𝛽𝛼𝑓,𝑛 and 𝛽𝛼𝑔,𝑛 are finite. Therefore, again by

Theorem 1, 𝑓, 𝑔 ∈B𝛼, and thus by Proposition 10, ℎ ∈B𝛼𝐻.
To prove (ii), assume first that ℎ ∈B𝛼𝐻,0. Then 𝑓, 𝑔 ∈B𝛼0 ,

so byTheorem 1,

lim
|𝑧|󳨀→1

(1 − |𝑧|2)𝛼+𝑛−1 (󵄨󵄨󵄨󵄨󵄨𝑓(𝑛) (𝑧)󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑔(𝑛) (𝑧)󵄨󵄨󵄨󵄨󵄨)
≤ lim
|𝑧|󳨀→1

(1 − |𝑧|2)𝛼+𝑛−1 󵄨󵄨󵄨󵄨󵄨𝑓(𝑛) (𝑧)󵄨󵄨󵄨󵄨󵄨
+ lim
|𝑧|󳨀→1

(1 − |𝑧|2)𝛼+𝑛−1 󵄨󵄨󵄨󵄨󵄨𝑔(𝑛) (𝑧)󵄨󵄨󵄨󵄨󵄨 = 0,
(104)

proving that (102) holds.
Conversely, suppose (102) holds. Then

lim
|𝑧|󳨀→1

(1 − |𝑧|2)𝛼+𝑛−1 󵄨󵄨󵄨󵄨󵄨𝑓(𝑛) (𝑧)󵄨󵄨󵄨󵄨󵄨
≤ lim
|𝑧|󳨀→1

(1 − |𝑧|2)𝛼+𝑛−1 (󵄨󵄨󵄨󵄨󵄨𝑓(𝑛) (𝑧)󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑔(𝑛) (𝑧)󵄨󵄨󵄨󵄨󵄨)
= 0

(105)

and the same property holds for 𝑔(𝑛). Therefore, 𝑓, 𝑔 ∈ B𝛼0 ,
hence ℎ ∈B𝛼𝐻,0.
5. Remarks on the Harmonic Growth Spaces

An immediate consequence of the identification of the
harmonic 𝛼-Bloch space with the harmonic growth space of
order 𝛼 − 1 is the following result.
Corollary 20. Given 𝛼 > 0 and 𝑓, 𝑔 ∈ 𝐻(D), 𝑓 + 𝑔 ∈
A−𝛼𝐻 (respectively, 𝑓 + 𝑔 ∈ A−𝛼𝐻,0) if and only if 𝑓, 𝑔 ∈ A−𝛼

(respectively, 𝑓, 𝑔 ∈ A−𝛼0 ).
Proof. We only need to prove the necessity. Assume ℎ :=𝑓 + 𝑔 ∈ A−𝛼𝐻 . Then by Theorem 18, ℎ ∈ B𝛼+1𝐻 . So by
Proposition 10, 𝑓, 𝑔 ∈ B𝛼+1. Therefore, by Proposition 7
of [4], 𝑓, 𝑔 ∈ A−𝛼. The proof for the little spaces case is
similar.

We now apply this result to prove a property of the
harmonic growth spaces and their “little” subspaces.

Proposition 21. Let 𝛼 > 0 and 𝜙, 𝑓, 𝑔 ∈ 𝐻(D).
(a) If 𝜙 is bounded and 𝑓 + 𝑔 ∈ A−𝛼𝐻 (respectively, A−𝛼𝐻,0),

then 𝜙𝑓 + 𝜙𝑔 ∈ A−𝛼𝐻 (respectively,A−𝛼𝐻,0).
(b) If𝜙 is bounded away from0near the unit circle and𝜙𝑓+

𝜙𝑔 ∈ A−𝛼𝐻 (respectively,A−𝛼𝐻,0), then 𝑓 + 𝑔 ∈ A−𝛼𝐻 (respectively,
A−𝛼𝐻,0).
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Proof. Assume 𝜙 is bounded and 𝑓 + 𝑔 ∈ A−𝛼𝐻 . Then by
Corollary 20, 𝑓, 𝑔 ∈ A−𝛼, so by the triangle inequality,

sup
𝑧∈D
(1 − |𝑧|2)𝛼 󵄨󵄨󵄨󵄨󵄨𝜙 (𝑧) 𝑓 (𝑧) + 𝜙 (𝑧)𝑔 (𝑧)󵄨󵄨󵄨󵄨󵄨 ≤ 󵄩󵄩󵄩󵄩𝜙󵄩󵄩󵄩󵄩∞
⋅ (sup
𝑧∈D
(1 − |𝑧|2)𝛼 󵄨󵄨󵄨󵄨𝑓 (𝑧)󵄨󵄨󵄨󵄨

+ sup
𝑧∈D
(1 − |𝑧|2)𝛼 󵄨󵄨󵄨󵄨𝑔 (𝑧)󵄨󵄨󵄨󵄨) ,

(106)

which is finite.
Next, assume 𝑓 + 𝑔 ∈ A−𝛼𝐻,0. Then 𝑓, 𝑔 ∈ A−𝛼0 , so by the

triangle inequality and the boundedness of 𝜙,
lim
|𝑧|󳨀→1

(1 − |𝑧|2)𝛼 󵄨󵄨󵄨󵄨󵄨𝜙 (𝑧) 𝑓 (𝑧) + 𝜙 (𝑧)𝑔 (𝑧)󵄨󵄨󵄨󵄨󵄨 ≤ 󵄩󵄩󵄩󵄩𝜙󵄩󵄩󵄩󵄩∞
⋅ ( lim
|𝑧|󳨀→1

(1 − |𝑧|2)𝛼 󵄨󵄨󵄨󵄨𝑓 (𝑧)󵄨󵄨󵄨󵄨
+ lim
|𝑧|󳨀→1

(1 − |𝑧|2)𝛼 󵄨󵄨󵄨󵄨𝑔 (𝑧)󵄨󵄨󵄨󵄨) = 0.
(107)

Therefore, 𝜙𝑓 + 𝜙𝑔 ∈ A−𝛼𝐻,0, proving (a).
Next, assume 𝜙𝑓 + 𝜙𝑔 ∈ A−𝛼𝐻 , where 𝜙 is bounded away

from zero. Then, again by Corollary 20, the functions 𝜙𝑓 and𝜙𝑔 are in A−𝛼, and there exist constants 𝑟 ∈ (0, 1) and 𝛿 > 0
such that |𝜙(𝑧)| > 𝛿 whenever 𝑟 < |𝑧| < 1.

We now show that 𝑓, 𝑔 ∈ A−𝛼. Since 𝑓 is analytic, it is
bounded on each compact subset of D, and thus

sup
|𝑧|≤𝑟

(1 − |𝑧|2)𝛼 󵄨󵄨󵄨󵄨𝑓 (𝑧)󵄨󵄨󵄨󵄨 ≤ max
|𝑧|=𝑟

󵄨󵄨󵄨󵄨𝑓 (𝑧)󵄨󵄨󵄨󵄨 < ∞. (108)

On the other hand,

sup
𝑟<|𝑧|<1

(1 − |𝑧|2)𝛼 󵄨󵄨󵄨󵄨𝑓 (𝑧)󵄨󵄨󵄨󵄨
= sup
𝑟<|𝑧|<1

1󵄨󵄨󵄨󵄨𝜙 (𝑧)󵄨󵄨󵄨󵄨 (1 − |𝑧|
2)𝛼 󵄨󵄨󵄨󵄨𝜙 (𝑧) 𝑓 (𝑧)󵄨󵄨󵄨󵄨

≤ 1𝛿 sup
𝑟<|𝑧|<1

(1 − |𝑧|2)𝛼 󵄨󵄨󵄨󵄨𝜙 (𝑧) 𝑓 (𝑧)󵄨󵄨󵄨󵄨 < ∞.
(109)

Therefore, combining (108) and (109), we have

sup
𝑧∈D
(1 − |𝑧|2)𝛼 󵄨󵄨󵄨󵄨𝑓 (𝑧)󵄨󵄨󵄨󵄨
≤ sup
|𝑧|≤𝑟

(1 − |𝑧|2)𝛼 󵄨󵄨󵄨󵄨𝑓 (𝑧)󵄨󵄨󵄨󵄨
+ sup
𝑟<|𝑧|<1

(1 − |𝑧|2)𝛼 󵄨󵄨󵄨󵄨𝑓 (𝑧)󵄨󵄨󵄨󵄨 < ∞,
(110)

proving that 𝑓 ∈ A−𝛼. The same argument shows that 𝑔 ∈
A−𝛼. Therefore, by Corollary 20, 𝑓 + 𝑔 ∈ A−𝛼𝐻 .

Next, assume 𝜙𝑓 + 𝜙𝑔 ∈ A−𝛼𝐻,0. Then, by Corollary 20,
the functions 𝜙𝑓 and 𝜙𝑔 are in A−𝛼0 . Fix 𝜀 > 0 and choose

𝑟 ∈ (0, 1) and 𝛿 > 0 such that |𝜙(𝑧)| > 𝛿 and (1 −|𝑧|2)𝛼|𝜙(𝑧)𝑓(𝑧)| < 𝜀 whenever 𝑟 < |𝑧| < 1. Then, for𝑟 < |𝑧| < 1,
(1 − |𝑧|2)𝛼 󵄨󵄨󵄨󵄨𝑓 (𝑧)󵄨󵄨󵄨󵄨 ≤ 1𝛿 (1 − |𝑧|2)

𝛼 󵄨󵄨󵄨󵄨𝜙 (𝑧) 𝑓 (𝑧)󵄨󵄨󵄨󵄨 < 𝜀𝛿 , (111)

proving that 𝑓 ∈ A−𝛼0 . Arguing similarly, we see that 𝑔 ∈
A−𝛼0 . Therefore, again by Corollary 20, we have 𝑓+𝑔 ∈ A−𝛼𝐻,0,
completing the proof of (b).

The following result is an immediate consequence of
Proposition 21.

Corollary 22. Let 𝛼 > 0, 𝑓, 𝑔 ∈ 𝐻(D), and 𝑝 a polynomial
in 𝑧 with no zeros on the unit circle. Then, 𝑓 + 𝑔 ∈ A−𝛼𝐻
(respectively,A−𝛼𝐻,0) if and only if 𝑝𝑓 + 𝑝𝑔 ∈ A−𝛼𝐻 (respectively,
A−𝛼𝐻,0).

The results of Proposition 21 and its corollary do not hold
if 𝜙 is unbounded or 𝜙(𝑧) is not bounded away from 0 as 𝑧
approaches the unit circle. For example, if 𝜙(𝑧) = 𝑓(𝑧) =𝑔(𝑧) = (1 − 𝑧)−𝛼, then

𝑓 (𝑧) + 𝑔 (𝑧) = 2Re [(1 − 𝑧)−𝛼] , (112)

which is inA−𝛼𝐻 , but 𝜙𝑓+𝜙𝑔 ∉ A−𝛼𝐻 . On the other hand, if we
choose 𝜙(𝑧) = (1 − 𝑧)𝛼 and 𝑓(𝑧) = 𝑔(𝑧) = (1 − 𝑧)−2𝛼, then
𝜙𝑓 + 𝜙𝑔 ∈ A−𝛼𝐻 while, 𝑓 + 𝑔 ∉ A−𝛼𝐻 .
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