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We investigate the boundedness of the strongly singular convolution operators on Herz-type Hardy spaces with variable exponent.

1. Introduction

The theory of function spaces with variable exponents has
been extensively studied by researchers since the work of
Kováčik and Rákosnı́k [1] appeared in 1991. In [2, 3] the
authors defined the Herz-type Hardy spaces with variable
exponent and gave some characterizations for them. In [4–
7], the authors proved the boundedness of some integral
operators on variable function spaces.

Given an open set 𝐸 ⊂ R𝑛 and a measurable function𝑝(⋅) : 𝐸 → [1,∞), 𝐿𝑝(⋅)(𝐸) denotes the set of measurable
functions 𝑓 defined on 𝐸 such that

∫
𝐸
(𝑓 (𝑥)𝜆 )𝑝(𝑥) 𝑑𝑥 < ∞ (1)

holds for some 𝜆 > 0.
The set 𝐿𝑝(⋅)(𝐸) is a Banach function space when it is

equipped with the Luxemburg-Nakano norm as follows:

𝑓𝐿𝑝(⋅)(𝐸) = inf {𝜆 > 0 : ∫
𝐸
(𝑓 (𝑥)𝜆 )𝑝(𝑥) 𝑑𝑥 ≤ 1} . (2)

The space is regarded as the variable 𝐿𝑝 space, since it
generalized the standard 𝐿𝑝 space: if 𝑝(𝑥) = 𝑝 is constant,
then 𝐿𝑝(⋅)(𝐸) is isometrically isomorphic to 𝐿𝑝(𝐸).

The space 𝐿𝑝(⋅)loc (𝐸) is defined by

𝐿𝑝(⋅)loc (𝐸) fl {𝑓 : 𝑓
∈ 𝐿𝑝(⋅) (𝐹) for all compact subsets 𝐹 ⊂ 𝐸} . (3)

DefineP0(𝐸) to be the set of 𝑝(⋅) : 𝐸 → (0,∞) such that𝑝− = ess inf {𝑝 (𝑥) : 𝑥 ∈ 𝐸} > 0,
𝑝+ = ess sup {𝑝 (𝑥) : 𝑥 ∈ 𝐸} < ∞. (4)

DefineP(𝐸) to be the set of 𝑝(⋅) : 𝐸 → [1,∞) such that𝑝− = ess inf {𝑝 (𝑥) : 𝑥 ∈ 𝐸} > 1 (5)

and 𝑝+ = ess sup {𝑝 (𝑥) : 𝑥 ∈ 𝐸} < ∞. (6)

Denote 𝑝(𝑥) = 𝑝(𝑥)/(𝑝(𝑥) − 1).
Let 𝑓 ∈ 𝐿1loc(R𝑛). The Hardy-Littlewood maximal

operator is defined by

𝑀𝑓 (𝑥) = sup
𝑟>0

1𝐵𝑟 (𝑥) ∫𝐵𝑟(𝑥) 𝑓 (𝑦) 𝑑𝑦, (7)

where 𝐵𝑟(𝑥) = {𝑦 ∈ R𝑛 : |𝑥 − 𝑦| < 𝑟}. Let B(R𝑛) be the
set of 𝑝(⋅) ∈ P(R𝑛) such that the Hardy-Littlewood maximal
operator𝑀 is bounded on 𝐿𝑝(⋅)(R𝑛).
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Lemma 1 (see [8]). If 𝑝(⋅) ∈ P(R𝑛) and satisfies𝑝 (𝑥) − 𝑝 (𝑦) ≤ 𝐶− log (𝑥 − 𝑦) , 𝑥 − 𝑦 ≤ 12 (8)

and 𝑝 (𝑥) − 𝑝 (𝑦) ≤ 𝐶
log (|𝑥| + 𝑒) , 𝑦 ≥ |𝑥| , (9)

then (⋅) ∈ B(R𝑛), that is, the Hardy-Littlewood maximal
operator𝑀 is bounded on 𝐿𝑝(⋅)(R𝑛).

In addition, we denote the Lebesgue measure and the
characteristic function of a measurable set𝐴 ⊂ R𝑛 by |𝐴| and𝜒𝐴, respectively. The notation 𝑓 ≈ 𝑔 means that there exist
two constants 𝐶1, 𝐶2 > 0 such that 𝐶1𝑔 ≤ 𝑓 ≤ 𝐶2𝑔.

Next we recall the definition of the Herz spaces with
variable exponent. Let 𝐵𝑘 = {𝑥 ∈ R𝑛 : |𝑥| ≤ 2𝑘} and𝐴𝑘 = 𝐵𝑘 \ 𝐵𝑘−1 for 𝑘 ∈ Z. Denote Z+ and N as the sets of
all positive and nonnegative integers, respectively, 𝜒𝑘 = 𝜒𝐴𝑘
for 𝑘 ∈ Z, 𝜒𝑘 = 𝜒𝑘 if 𝑘 ∈ Z+, and 𝜒0 = 𝜒𝐵0 .
Definition 2 (see [9]). Let 𝛼 ∈ R, 0 < 𝑝 ≤ ∞, and 𝑞(⋅) ∈
P(R𝑛).The homogeneous Herz space with variable exponent�̇�𝛼,𝑝
𝑞(⋅)
(R𝑛) is defined by

�̇�𝛼,𝑝

𝑞(⋅)
(R𝑛)

= {𝑓 ∈ 𝐿𝑞(⋅)loc (R𝑛 \ {0}) : 𝑓�̇�𝛼,𝑝
𝑞(⋅)

(R𝑛) < ∞} , (10)

where

𝑓�̇�𝛼,𝑝
𝑞(⋅)

(R𝑛) = { ∞∑
𝑘=−∞

2𝑘𝛼𝑝 𝑓𝜒𝑘𝑝𝐿𝑞(⋅)(R𝑛)}1/𝑝 . (11)

The nonhomogeneous Herz space with variable exponent𝐾𝛼,𝑝
𝑞(⋅)
(R𝑛) is defined by

𝐾𝛼,𝑝
𝑞(⋅)

(R𝑛) = {𝑓 ∈ 𝐿𝑞(⋅)loc (R𝑛) : 𝑓𝐾𝛼,𝑝
𝑞(⋅)

(R𝑛) < ∞} , (12)

where

𝑓𝐾𝛼,𝑝
𝑞(⋅)

(R𝑛) = {∞∑
𝑘=0

2𝑘𝛼𝑝 𝑓𝜒𝑘𝑝𝐿𝑞(⋅)(R𝑛)}1/𝑝 . (13)

In [2], the authors gave the definition of the Herz-type
Hardy space with variable exponent 𝐻�̇�𝛼,𝑝

𝑞(⋅)
(R𝑛) and the

atomic decomposition characterizations. S(R𝑛) denotes the
space of Schwartz functions, and S(R𝑛) denotes the dual
space of S(R𝑛). Let 𝐺𝑁(𝑓) be the grand maximal function
of 𝑓 defined by𝐺𝑁 (𝑓) (𝑥) = sup

𝜙∈A𝑁

𝜙∗∇ (𝑓) (𝑥) , (14)

where

A𝑁 = {𝜙 ∈ S (R𝑛) : sup
|𝛼|,|𝛽|≤𝑁

𝑥𝛼𝐷𝛽𝜙 (𝑥) ≤ 1} (15)

and 𝑁 > 𝑛 + 1; 𝜙∗∇ is the nontangential maximal operator
defined by

𝜙∗∇ (𝑓) (𝑥) = sup
|𝑦−𝑥|<𝑡

𝜙𝑡 ∗ 𝑓 (𝑦) (16)

with 𝜙𝑡(𝑥) = 𝑡−𝑛𝜙(𝑥/𝑡).
Definition 3 (see [2]). Let 𝛼 ∈ R, 0 < 𝑝 < ∞, 𝑞(⋅) ∈ P(R𝑛),
and𝑁 > 𝑛 + 1.

(i) The homogeneous Herz-type Hardy space with vari-
able exponent𝐻�̇�𝛼,𝑝

𝑞(⋅)
(R𝑛) is defined by

𝐻�̇�𝛼,𝑝
𝑞(⋅) (R𝑛)
= {𝑓 ∈ S

 (R𝑛) : 𝐺𝑁 (𝑓) (𝑥) ∈ �̇�𝛼,𝑝

𝑞(⋅)
(R𝑛)} (17)

and 𝑓𝐻�̇�
𝛼,𝑝

𝑞(⋅)
(R𝑛) = 𝐺𝑁 (𝑓)�̇�𝛼,𝑝

𝑞(⋅)
(R𝑛) . (18)

(ii) The nonhomogeneous Herz-type Hardy space with
variable exponent𝐻𝐾𝛼,𝑝

𝑞(⋅)
(R𝑛) is defined by

𝐻𝐾𝛼,𝑝

𝑞(⋅)
(R𝑛)

= {𝑓 ∈ S
 (R𝑛) : 𝐺𝑁 (𝑓) (𝑥) ∈ 𝐾𝛼,𝑝

𝑞(⋅)
(R𝑛)} (19)

and 𝑓𝐻𝐾
𝛼,𝑝

𝑞(⋅)
(R𝑛) = 𝐺𝑁 (𝑓)𝐾𝛼,𝑝

𝑞(⋅)
(R𝑛) . (20)

For 𝑥 ∈ R, we denote by [𝑥] the largest integer less than
or equal to 𝑥. 𝛿2 is the same as in Lemma 9.

Definition 4 (see [2]). Let 𝑛𝛿2 ≤ 𝛼 < ∞, 𝑞(⋅) ∈ P(R𝑛), and
nonnegative integer 𝑠 ≥ [𝛼 − 𝑛𝛿2].

(i) A function 𝑎 on R𝑛 is said to be a central (𝛼, 𝑞(⋅))-
atom, if it satisfies

(1) supp 𝑎 ⊂ 𝐵(0, 𝑟) = {𝑥 ∈ R𝑛 : |𝑥| < 𝑟}
(2) ‖𝑎‖𝐿𝑞(⋅)(R𝑛) ≤ |𝐵(0, 𝑟)|−𝛼/𝑛
(3) ∫

R𝑛
𝑎(𝑥)𝑥𝛽𝑑𝑥 = 0, |𝛽| ≤ 𝑠

(ii) A function 𝑎 on R𝑛 is said to be a central (𝛼, 𝑞(⋅))-
atom of restricted type, if it satisfies conditions (2), (3)
and

(1 ) supp 𝑎 ⊂ 𝐵(0, 𝑟), 𝑟 ≥ 1
If 𝑟 = 2𝑘 for some 𝑘 ∈ Z in Definition 4, then the

corresponding central (𝛼, 𝑞(⋅))-atom is called a dyadic central(𝛼, 𝑞(⋅))-atom.
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Lemma 5 (see [2]). Let 𝑛𝛿2 ≤ 𝛼 < ∞, 0 < 𝑝 < ∞ and𝑞(⋅) ∈ B(R𝑛). Then 𝑓 ∈ 𝐻�̇�𝛼,𝑝
𝑞(⋅)
(R𝑛) (or 𝐻𝐾𝛼,𝑝

𝑞(⋅)
(R𝑛)) if and

only if

𝑓 = ∞∑
𝑘=−∞

𝜆𝑘𝑎𝑘
(or ∞∑

𝑘=0

𝜆𝑘𝑎𝑘) ,
in the sense of S (R𝑛) ,

(21)

where each 𝑎𝑘 is a central (𝛼, 𝑞(⋅))-atom (or central (𝛼, 𝑞(⋅))-
atom of restricted type) with support contained in 𝐵𝑘 and∑∞

𝑘=−∞ |𝜆𝑘|𝑝 < ∞ (or ∑∞
𝑘=0 |𝜆𝑘|𝑝 < ∞). Moreover,

𝑓𝐻�̇�
𝛼,𝑝

𝑞(⋅)
(R𝑛) ≈ inf ( ∞∑

𝑘=−∞

𝜆𝑘𝑝)1/𝑝

(or 𝑓𝐻𝐾
𝛼,𝑝

𝑞(⋅)
(R𝑛) ≈ inf (∞∑

𝑘=0

𝜆𝑘𝑝)1/𝑝) ,
(22)

where the infimum is taken over all above decomposition of 𝑓.
Let 𝜃 be a smooth radial cut-off function such that 𝜃(𝜉) = 1

if |𝜉| ≥ 1 and 𝜃(𝜉) = 0 if |𝜉| ≤ 1/2. Define the multipliers

𝑇𝑏 : 𝑇𝑏𝑓 (𝜉) = 𝜃 (𝜉) 𝑒𝑖|𝜉|𝑏𝜉𝑛𝑏/2𝑓 (𝜉) , (23)

where 0 < 𝑏 < 1. The kernel for 𝑇𝑏 is very singular. Roughly
speaking, it looks like

𝐾𝑏 (𝑥) = 𝑒𝑖|𝑥|−𝑏|𝑥|𝑛 , (24)

where 𝑏 = 𝑏/(1 − 𝑏). Indeed the cancellation is minimal and if
one makes a quick computation for |𝑥| ≥ 2|𝑦|, we have

𝐾𝑏 (𝑥 − 𝑦) − 𝐾𝑏 (𝑥) ≤ 𝐶 𝑦|𝑥|𝑛+𝑏+1 . (25)

The study of these operators in the context of 𝐿𝑞 spaces
was carried out by Hirschman [10] and Wainger [11]. Sharp
endpoint estimates were obtained by Fefferman and Stein in
[12] via the duality of 𝐻1 and BMO. Weighted 𝐿𝑞 norm and
weak(1,1) estimates were established by Chanillo in [13]. The
boundedness of these operators on the weighted Herz-type
Hardy spaces was proved by Xiaochun Li and Shanzhen Lu in
[14].

Motivated by [2, 14], we will study the boundedness of the
strongly singular convolution operators 𝑇𝑏 on Herz-type Hardy
spaces with variable exponent. The main results are as follows.

Theorem 6. Suppose that 0 < 𝑝 ≤ 1, 𝑞(⋅) ∈ P(R𝑛) satisfies
conditions (8) and (9) in Lemma 1 and 𝛼 = 𝑛𝛿2. Then we have𝑇𝑏 (𝑓)�̇�𝛼,𝑝

𝑞(⋅)
(R𝑛) ≤ 𝐶 𝑓𝐻�̇�

𝛼,𝑝

𝑞(⋅)
(R𝑛) , (26)

where 𝐶 is independent of 𝑓.

Theorem 7. Suppose that 0 < 𝑝 ≤ 1, 𝑞(⋅) ∈ P(R𝑛) satisfies
conditions (8) and (9) in Lemma 1 and 𝑛𝛿2 ≤ 𝛼 ≤ 𝑛𝛿2+1.Then
we have 𝑇𝑏 (𝑓)𝐻𝐾

𝛼,𝑝

𝑞(⋅)
(R𝑛) ≤ 𝐶 𝑓𝐻𝐾

𝛼,𝑝

𝑞(⋅)
(R𝑛) , (27)

where 𝐶 is independent of 𝑓.
2. Preliminary Lemmas

Referring to the variable 𝐿𝑝(⋅) space, there are some important
lemmas as follows.

Lemma 8 (see [1]). Let 𝑝(⋅) ∈ P(R𝑛). If 𝑓 ∈ 𝐿𝑝(⋅)(R𝑛) and𝑔 ∈ 𝐿𝑝(⋅)(R𝑛), then 𝑓𝑔 is integrable on R𝑛 and

∫
R𝑛

𝑓 (𝑥) 𝑔 (𝑥) 𝑑𝑥 ≤ 𝑟𝑝 𝑓𝐿𝑝(⋅)(R𝑛) 𝑔𝐿𝑝(⋅)(R𝑛) , (28)

where

𝑟𝑝 = 1 + 1𝑝− − 1𝑝+ . (29)

The above inequality is named generalized Hölder’s
inequality with respect to the variable 𝐿𝑝 space.
Lemma 9 (see [9]). Let 𝑞(⋅) ∈ B(R𝑛). Then there exists a
positive constant 𝐶 such that, for all balls 𝐵 in R𝑛 and all
measurable subsets 𝑆 ⊂ 𝐵,𝜒𝐵𝐿𝑞(⋅)(R𝑛)𝜒𝑆𝐿𝑞(⋅)(R𝑛) ≤ 𝐶|𝐵||𝑆| ,𝜒𝑆𝐿𝑞(⋅)(R𝑛)𝜒𝐵𝐿𝑞(⋅)(R𝑛) ≤ 𝐶( |𝑆||𝐵|)

𝛿1 , (30)

and 𝜒𝑆𝐿𝑞(⋅)(R𝑛)𝜒𝐵𝐿𝑞(⋅)(R𝑛) ≤ 𝐶( |𝑆||𝐵|)
𝛿2

(31)

hold, where 𝛿1 and 𝛿2 are constants with 0 < 𝛿1, 𝛿2 < 1.
Throughout this paper 𝛿2 is the same as in Lemma 9.

Lemma 10 (see [9]). Suppose 𝑞(⋅) ∈ B(R𝑛). Then there exists
a constant 𝐶 > 0 such that, for all balls 𝐵 in R𝑛,

1|𝐵| 𝜒𝐵𝐿𝑞(⋅)(R𝑛) 𝜒𝐵𝐿𝑞(⋅)(R𝑛) ≤ 𝐶. (32)

Lemma 11 (see [15]). Define a variable exponent 𝑞(⋅) by1/𝑝(𝑥) = 1/𝑞(𝑥) + 1/𝑞 for 𝑥 ∈ R𝑛.Then we have𝑓𝑔𝐿𝑝(⋅)(R𝑛) ≤ 𝐶 𝑓𝐿𝑞(⋅)(R𝑛) 𝑔𝐿𝑞(R𝑛) , (33)

for all measurable functions 𝑓 and 𝑔.
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Lemma 12 (see [16]). Let 𝑝(⋅) ∈ P(R𝑛) satisfy conditions (8)
and (9) in Lemma 1. Then

𝜒𝑄𝐿𝑝(⋅)(R𝑛) ≈ {{{
|𝑄|1/𝑝(𝑥) if |𝑄| ≤ 2𝑛 and 𝑥 ∈ 𝑄,|𝑄|1/𝑝(∞) if |𝑄| ≥ 1 (34)

for every cube (or ball)𝑄 ⊂ R𝑛, where 𝑝(∞) = lim𝑥→∞𝑝(𝑥).
A nonnegative locally integrable function𝜔(𝑥) onR𝑛 is said

to belong to 𝐴𝑝(1 < 𝑝 < ∞), if there is a constant 𝐶 > 0 such
that

sup
𝑄
( 1|𝑄| ∫𝑄𝜔 (𝑥) 𝑑𝑥)( 1|𝑄| ∫𝑄𝜔 (𝑥)1−𝑝 𝑑𝑥)𝑝−1

≤ 𝐶 < ∞, (35)

where 𝑝 = 𝑝/(𝑝 − 1); 𝑄 denotes a cube in R𝑛 with its sides
parallel to the coordinate axes.

The weighted (𝐿𝑝, 𝐿𝑝) boundedness of 𝑇𝑏 has been proved
by Chanillo [13].

Lemma 13 (see [13]). Let 𝜔 ∈ 𝐴𝑝, 1 < 𝑝 < ∞. Then

∫
R𝑛

𝑇𝑏 (𝑓) (𝑥)𝑝 𝜔 (𝑥) 𝑑𝑥 ≤ 𝐶∫
R𝑛

𝑓 (𝑥)𝑝 𝜔 (𝑥) 𝑑𝑥. (36)

Lemma 14 (see [5]). Given a family F and an open set 𝐸 ⊂
R𝑛, assume that for some 𝑝0, 0 < 𝑝0 < ∞ and for every 𝜔 ∈𝐴∞,

∫
𝐸
𝑓 (𝑥)𝑝0 𝜔 (𝑥) 𝑑𝑥 ≤ 𝐶0 ∫

𝐸
𝑔 (𝑥)𝑝0 𝜔 (𝑥) 𝑑𝑥,

(𝑓, 𝑔) ∈ F. (37)

Given 𝑝(⋅) ∈ P0(𝐸) such that 𝑝(⋅) satisfies (8) and (9) in
Lemma 1, then for all (𝑓, 𝑔) ∈ F such that 𝑓 ∈ 𝐿𝑝(⋅)(𝐸)𝑓𝐿𝑝(⋅)(𝐸) ≤ 𝐶 𝑔𝐿𝑝(⋅)(𝐸) . (38)

Since 𝐴𝑝 ⊂ 𝐴∞, by Lemmas 13 and 14 it is easy to get
the (𝐿𝑝(⋅)(R𝑛), 𝐿𝑝(⋅)(R𝑛))-boundedness of the strongly singular
convolution operators 𝑇𝑏.

To prove our main results, we also need the following
lemmas.

Lemma 15 (see [11]). The kernel for the multiplier operator𝑇𝑏(𝑓)(𝑥) is given by

𝐶𝑒𝑖𝛼𝑏 |𝑥|−𝑏|𝑥|𝑛 𝜒 (|𝑥| ≤ 1) + ℎ (𝑥) , 𝑏 = 𝑏(1 − 𝑏) , (39)

with |ℎ(𝑥)| ≤ 𝐶(1+ |𝑥|)−(𝑛+1)+𝐶|𝑥|−𝑛+𝜀𝜒(|𝑥| ≤ 1), 𝜀 > 0. Here𝛼𝑏 = 𝑏𝑏/(1−𝑏) − 𝑏1/(1−𝑏) and 𝜀 depend only on 𝑏.
Lemma 16 (see [13]). Let �̃�𝑏 ,𝑠(𝑥) = 𝑒𝑖𝛼𝑏|𝑥|−𝑏 /|𝑥|𝑛(𝑏+2)/𝑠 and(𝑏 + 2)/𝑠 < 1. Then�̃�𝑏 ,𝑠 ∗ 𝑓𝑠 ≤ 𝐶 𝑓𝑠 , 1𝑠 + 1𝑠 = 1. (40)

3. The Proof of Main Results

Firstly we give the proof of Theorem 6.

Proof of Theorem 6. Let 𝑓 ∈ 𝐻�̇�𝛼,𝑝
𝑞(⋅)
(R𝑛). By Lemma 5, we

have

𝑓 (𝑥) = ∞∑
𝑗=−∞

𝜆𝑗𝑎𝑗, (41)

where

𝑓𝐻�̇�
𝛼,𝑝

𝑞(⋅)
(R𝑛) ≈ inf ( ∞∑

𝑗=−∞

𝜆𝑗𝑝)
1/𝑝 , (42)

the infimum is taken over the above decomposition of 𝑓, and𝑎𝑗 is a dyadic central (𝛼, 𝑞(⋅))-atomwith the support 𝐵𝑗.Then
we have𝑇𝑏 (𝑓)𝑝�̇�𝛼,𝑝

𝑞(⋅)
(R𝑛)

= ∞∑
𝑘=−∞

2𝑘𝛼𝑝 𝑇𝑏 (𝑓) 𝜒𝑘𝑝𝐿𝑞(⋅)(R𝑛)
≤ 𝐶 ∞∑

𝑘=−∞

2𝑘𝛼𝑝( 𝑘−2∑
𝑗=−∞

𝜆𝑗 𝑇𝑏 (𝑎𝑗) 𝜒𝑘𝐿𝑞(⋅)(R𝑛))
𝑝

+ 𝐶 ∞∑
𝑘=−∞

2𝑘𝛼𝑝( ∞∑
𝑗=𝑘−1

𝜆𝑗 𝑇𝑏 (𝑎𝑗) 𝜒𝑘𝐿𝑞(⋅)(R𝑛))
𝑝

š 𝐶𝐼1 + 𝐶𝐼2.

(43)

We first estimate 𝐼2; by 0 < 𝑝 ≤ 1 and the(𝐿𝑞(⋅)(R𝑛), 𝐿𝑞(⋅)(R𝑛))-boundedness of 𝑇𝑏 we have
𝐼2 ≤ 𝐶 ∞∑

𝑘=−∞

2𝑘𝛼𝑝( ∞∑
𝑗=𝑘−1

𝜆𝑗 𝑎𝑗𝐿𝑞(⋅)(R𝑛))
𝑝

≤ 𝐶 ∞∑
𝑘=−∞

( ∞∑
𝑗=𝑘−1

𝜆𝑗 2(𝑘−𝑗)𝛼)
𝑝

≤ 𝐶 ∞∑
𝑗=−∞

𝜆𝑗𝑝 ( 𝑗+1∑
𝑘=−∞

2(𝑘−𝑗)𝛼𝑝) ≤ 𝐶 ∞∑
𝑗=−∞

𝜆𝑗𝑝
≤ 𝐶 𝑓𝐻�̇�

𝛼,𝑝

𝑞(⋅)
(R𝑛) .

(44)

Now we estimate 𝐼1. Let
𝐾𝑏 (𝑥) = 𝐶𝑖𝛼𝑏 |𝑥|−𝑏|𝑥|𝑛 𝜒 (|𝑥| ≤ 1) . (45)

By Lemma 15 and the Minkowski inequality, we have

𝐼1 ≤ ∞∑
𝑘=−∞

2𝑘𝛼𝑝( 𝑘−2∑
𝑗=−∞

𝜆𝑗 (𝐾𝑏 ∗ 𝑎𝑗) 𝜒𝑘𝐿𝑞(⋅)(R𝑛))
𝑝

+ ∞∑
𝑘=−∞

2𝑘𝛼𝑝( 𝑘−2∑
𝑗=−∞

𝜆𝑗 (ℎ ∗ 𝑎𝑗) 𝜒𝑘𝐿𝑞(⋅)(R𝑛))
𝑝

š 𝐼11 + 𝐼12.
(46)
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To estimate the term 𝐼12, we need the pointwise estimate
for ℎ ∗ 𝑎𝑗(𝑥).

Let |𝑥| ≥ 2𝑗. By generalized Hölder’s inequality we have

ℎ ∗ 𝑎𝑗 (𝑥) ≤ ∫
|𝑡|≤𝑟

|ℎ (𝑥 − 𝑡)| 𝑎𝑗 (𝑡) 𝑑𝑡
≤ 𝐶∫

|𝑡|≤𝑟

𝑎𝑗 (𝑡)
⋅ [ 1(1 + |𝑥 − 𝑡|)𝑛+1 + 𝜒 (|𝑥 − 𝑡| ≤ 1)|𝑥 − 𝑡|𝑛−𝜀 ] 𝑑𝑡
≤ 𝐶(∫

|𝑡|≤𝑟

𝑎𝑗 (𝑡) 𝑑𝑡)
⋅ [ 1(1 + |𝑥|)𝑛+1 + 𝜒 (|𝑥| ≤ 2)|𝑥|𝑛−𝜀 ] ≤ 𝐶 𝑎𝑗𝐿𝑞(⋅)(R𝑛)
⋅ 𝜒𝑗𝐿𝑞(⋅)(R𝑛) [ 1(1 + |𝑥|)𝑛+1 + 𝜒 (|𝑥| ≤ 2)|𝑥|𝑛−𝜀 ] .

(47)

Therefore, by 𝑛𝛿2 = 𝛼, 0 < 𝑝 ≤ 1, Lemmas 9 and 10, the
Minkowski inequality, and generalizedHölder’s inequalitywe
have

𝐼12 ≤ 𝐶 ∞∑
𝑘=−∞

2𝑘𝛼𝑝( 𝑘−2∑
𝑗=−∞

𝜆𝑗 𝑎𝑗𝐿𝑞(⋅)(R𝑛) 𝜒𝑗𝐿𝑞(⋅)(R𝑛)
⋅  1(1 + |⋅|)𝑛+1𝜒𝑘 (⋅)

𝐿𝑞(⋅)(R𝑛))
𝑝 + 𝐶 ∞∑

𝑘=−∞

2𝑘𝛼𝑝
⋅ ( 𝑘−2∑

𝑗=−∞

𝜆𝑗 𝑎𝑗𝐿𝑞(⋅)(R𝑛) 𝜒𝑗𝐿𝑞(⋅)(R𝑛) 𝜒 (|⋅| ≤ 2)|⋅|𝑛−𝜀
⋅ 𝜒𝑘 (⋅)𝐿𝑞(⋅)(R𝑛))

𝑝 ≤ 𝐶 ∞∑
𝑘=−∞

( 𝑘−2∑
𝑗=−∞

𝜆𝑗 2𝑘𝛼
⋅ 1(1 + 2𝑘)𝑛+1 𝑎𝑗𝐿𝑞(⋅)(R𝑛) 𝜒𝐵𝑗𝐿𝑞(⋅)(R𝑛)
⋅ 𝜒𝐵𝑘𝐿𝑞(⋅)(R𝑛))

𝑝 + 𝐶 1∑
𝑘=−∞

( 𝑘−2∑
𝑗=−∞

𝜆𝑗 2𝑘𝛼 12𝑘(𝑛−𝜀)
⋅ 𝑎𝑗𝐿𝑞(⋅)(R𝑛) 𝜒𝐵𝑗𝐿𝑞(⋅)(R𝑛) 𝜒𝐵𝑘𝐿𝑞(⋅)(R𝑛))

𝑝

≤ 𝐶 ∞∑
𝑘=−∞

( 𝑘−2∑
𝑗=−∞

𝜆𝑗 2𝑘𝛼+𝑘𝑛−𝑗𝛼(1 + 2𝑘)𝑛+1
𝜒𝐵𝑗𝐿𝑞(⋅)(R𝑛)𝜒𝐵𝑘𝐿𝑞(⋅)(R𝑛))

𝑝

+ 𝐶 1∑
𝑘=−∞

( 𝑘−2∑
𝑗=−∞

𝜆𝑗 2𝑘𝛼+𝑘𝑛−𝑗𝛼2𝑘(𝑛−𝜀)
𝜒𝐵𝑗𝐿𝑞(⋅)(R𝑛)𝜒𝐵𝑘𝐿𝑞(⋅)(R𝑛))

𝑝

≤ 𝐶 ∞∑
𝑘=−∞

( 𝑘−2∑
𝑗=−∞

𝜆𝑗 2𝑘𝑛+(𝑗−𝑘)(𝑛𝛿2−𝛼)(1 + 2𝑘)𝑛+1 )𝑝

+ 𝐶 1∑
𝑘=−∞

( 𝑘−2∑
𝑗=−∞

𝜆𝑗 2𝑘𝑛+(𝑗−𝑘)(𝑛𝛿2−𝛼)2𝑘(𝑛−𝜀) )𝑝

≤ 𝐶 ∞∑
𝑘=−∞

( 𝑘−2∑
𝑗=−∞

𝜆𝑗 2𝑘𝑛(1 + 2𝑘)𝑛+1)
𝑝

+ 𝐶 1∑
𝑘=−∞

( 𝑘−2∑
𝑗=−∞

𝜆𝑗 2𝑘𝑛2𝑘(𝑛−𝜀))
𝑝 ≤ 𝐶 ∞∑

𝑗=−∞

𝜆𝑗𝑝
⋅ ( ∞∑

𝑘=𝑗+2

2𝑘𝑛𝑝(1 + 2𝑘)(𝑛+1)𝑝) + 𝐶 −1∑
𝑗=−∞

𝜆𝑗𝑝
⋅ ( 1∑

𝑘=𝑗+2

2𝑘𝑛𝑝2𝑘(𝑛−𝜀)𝑝) ≤ 𝐶 ∞∑
𝑗=−∞

𝜆𝑗𝑝( 1∑
𝑘=𝑗+2

2𝑘𝑛𝑝
+ ∞∑

𝑘=1

12𝑘𝑝) + 𝐶 −1∑
𝑗=−∞

𝜆𝑗𝑝( 1∑
𝑘=𝑗+2

2𝑘𝜀𝑝)
≤ 𝐶 ∞∑

𝑗=−∞

𝜆𝑗𝑝 .
(48)

What remains is estimating 𝐼11. Let 2𝑗0−1 < 2𝑗(1−𝑏) ≤ 2𝑗0
for some 𝑗0 ∈ Z, where 𝑏 is the same as the above. Then it
follows that

𝐼11
= 𝑗0∑

𝑘=−∞

2𝑘𝛼𝑝( 𝑘−2∑
𝑗=−∞

𝜆𝑗 (𝐾𝑏 ∗ 𝑎𝑗) 𝜒𝑘𝐿𝑞(⋅)(R𝑛))
𝑝

+ ∞∑
𝑘=𝑗0+1

2𝑘𝛼𝑝( 𝑘−2∑
𝑗=−∞

𝜆𝑗 (𝐾𝑏 ∗ 𝑎𝑗) 𝜒𝑘𝐿𝑞(⋅)(R𝑛))
𝑝

š 𝐼13 + 𝐼14.

(49)

To estimate the term 𝐼14, we need the pointwise estimate
for 𝐾𝑏 ∗ 𝑎𝑗(𝑥). Let |𝑥| ≥ 2𝑗. Then, by the vanishing moment
condition on 𝑎𝑗(𝑥), we have
𝐾𝑏 ∗ 𝑎𝑗 (𝑥) ≤ ∫

𝐵𝑗

𝐾𝑏 (𝑥 − 𝑦) − 𝐾𝑏 (𝑥) 𝑎𝑗 (𝑦) 𝑑𝑦. (50)
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From the condition of 𝐾𝑏(𝑥), |𝐾𝑏(𝑥 − 𝑦) − 𝐾𝑏(𝑥)| ≤𝐶(|𝑦|/|𝑥|𝑛+𝑏+1), if |𝑥| ≥ 2|𝑦|, it follows that
𝐾𝑏 ∗ 𝑎𝑗 (𝑥) ≤ 𝐶2𝑗|𝑥|𝑛+𝑏+1 ∫𝐵𝑗 𝑎𝑗 (𝑦) 𝑑𝑦

≤ 𝐶2𝑗|𝑥|𝑛+𝑏+1 𝑎𝑗𝐿𝑞(⋅)(R𝑛) 𝜒𝐵𝑗𝐿𝑞(⋅)(R𝑛) .
(51)

Note that 𝑏 = 𝑏/(1 − 𝑏); that is, (1 − 𝑏)(𝑏 + 1) = 1. Since𝑛𝛿2 = 𝛼, 0 < 𝑝 ≤ 1, and 2𝑗0−1 < 2𝑗(1−𝑏) ≤ 2𝑗0 , then by Lemmas
9 and 10 we have

𝐼14 ≤ 𝐶 ∞∑
𝑘=𝑗0+1

2𝑘𝛼𝑝( 𝑘−2∑
𝑗=−∞

𝜆𝑗 2𝑗2𝑘(𝑛+𝑏+1) 𝑎𝑗𝐿𝑞(⋅)(R𝑛)
⋅ 𝜒𝐵𝑗𝐿𝑞(⋅)(R𝑛) 𝜒𝑘𝐿𝑞(⋅)(R𝑛))

𝑝

≤ 𝐶 ∞∑
𝑘=𝑗0+1

( 𝑘−2∑
𝑗=−∞

𝜆𝑗 2𝑘𝛼−𝑗𝛼2𝑗2𝑘𝑛2𝑘(𝑛+𝑏+1)
⋅ 𝜒𝐵𝑗𝐿𝑞(⋅)(R𝑛)𝜒𝐵𝑘𝐿𝑞(⋅)(R𝑛))

𝑝

≤ 𝐶 ∞∑
𝑗=−∞

𝜆𝑗𝑝 ∞∑
𝑘=𝑗0+1

2𝑗𝑝2𝑘(𝑏+1)𝑝
≤ 𝐶 ∞∑

𝑗=−∞

𝜆𝑗𝑝 2𝑗𝑝2𝑗0(𝑏+1)𝑝 ≤ 𝐶 ∞∑
𝑗=−∞

𝜆𝑗𝑝
⋅ 2𝑗𝑝2𝑗(1−𝑏)(𝑏+1)𝑝 ≤ 𝐶 ∞∑

𝑗=−∞

𝜆𝑗𝑝 .

(52)

Now to estimate 𝐼13, we split𝐾𝑏 ∗ 𝑎𝑗(𝑥) as follows:
𝐾𝑏 ∗ 𝑎𝑗 (𝑥) = 𝐶∫

𝐵𝑗

𝑒𝑖𝛼𝑏 |𝑥−𝑦|−𝑏𝑥 − 𝑦𝑛(𝑏+2)/𝑠
⋅ [[

1𝑥 − 𝑦𝑛(1−(𝑏+2)/𝑠) −
1|𝑥|𝑛(1−(𝑏+2)/𝑠)]]𝑎𝑗 (𝑦) 𝑑𝑦

+ 𝐶 (�̃�𝑏,𝑠 ∗ 𝑎𝑗 (𝑥)) 1|𝑥|𝑛(1−(𝑏+2)/𝑠) š 𝐸 (𝑥) + 𝐹 (𝑥) ,
(53)

where �̃�𝑏 ,𝑠 is the same as in Lemma 16 and let 𝑠 > max{𝑞+, 2}
satisfy (𝑏 + 2)/𝑠 < 1.

Applying the mean value theorem to the term brackets in
the integrand of 𝐸(𝑥), then for |𝑥| ≥ 2𝑗 we have the pointwise
estimate for 𝐸(𝑥) as follows:

|𝐸 (𝑥)| ≤ 𝐶∫
𝐵𝑗

𝑦|𝑥|𝑛+1 𝑎𝑗 (𝑦) 𝑑𝑦
≤ 𝐶 2𝑗|𝑥|𝑛+1 𝑎𝑗𝐿𝑞(⋅)(R𝑛) 𝜒𝐵𝑗𝐿𝑞(⋅)(R𝑛) .

(54)

On the other hand, since 0 < 𝑝 ≤ 1, by the Minkowski
inequality we get

𝐼13 ≤ 𝑗0∑
𝑘=−∞

2𝑘𝛼𝑝 𝑘−2∑
𝑗=−∞

𝜆𝑗𝑝 𝐸𝜒𝑘𝑝𝐿𝑞(⋅)(R𝑛)
+ 𝑗0∑

𝑘=−∞

2𝑘𝛼𝑝 𝑘−2∑
𝑗=−∞

𝜆𝑗𝑝 𝐹𝜒𝑘𝑝𝐿𝑞(⋅)(R𝑛) š 𝐼15 + 𝐼16.
(55)

For 𝐼15, using 𝑛𝛿2 = 𝛼, the pointwise estimate for 𝐸(𝑥), and
Lemmas 9 and 10 we have

𝐼15 ≤ 𝐶 𝑗0∑
𝑘=−∞

2𝑘𝛼𝑝 𝑘−2∑
𝑗=−∞

𝜆𝑗𝑝 2𝑗𝑝2𝑘(𝑛+1)𝑝 𝑎𝑗𝑝𝐿𝑞(⋅)(R𝑛)
⋅ 𝜒𝐵𝑗𝑝𝐿𝑞(⋅)(R𝑛) 𝜒𝑘𝑝𝐿𝑞(⋅)(R𝑛) ≤ 𝐶 ∞∑

𝑗=−∞

𝜆𝑗𝑝

⋅ 𝑗0∑
𝑘=𝑗+2

2𝑗𝑝2𝑘(𝑛+1)𝑝 2(𝑘−𝑗)𝛼𝑝(2𝑘𝑛 𝜒𝐵𝑗𝐿𝑞(⋅)(R𝑛)𝜒𝐵𝑘𝐿𝑞(⋅)(R𝑛))
𝑝

≤ 𝐶 ∞∑
𝑗=−∞

𝜆𝑗𝑝 .

(56)

Finally, we estimate 𝐼16. Noting that 𝑥 ∈ 𝐴𝑘, we get

𝐼16 = 𝑗0∑
𝑘=−∞

2𝑘𝛼𝑝 𝑘−2∑
𝑗=−∞

𝜆𝑗𝑝 𝐹𝜒𝑘𝑝𝐿𝑞(⋅)(R𝑛) ≤ 𝐶 𝑗0∑
𝑘=−∞

2𝑘𝛼𝑝
⋅ 𝑘−2∑
𝑗=−∞

𝜆𝑗𝑝
⋅ (�̃�𝑏 ,𝑠 ∗ 𝑎𝑗 (⋅)) 1|⋅|𝑛(1−(𝑏+2)/𝑠)𝜒𝑘 (⋅)


𝑝

𝐿𝑞(⋅)(R𝑛)

≤ 𝐶 𝑗0∑
𝑘=−∞

2𝑘𝛼𝑝 𝑘−2∑
𝑗=−∞

𝜆𝑗𝑝
⋅ 12𝑘𝑛(1−(𝑏+2)/𝑠)𝑝 (�̃�𝑏,𝑠 ∗ 𝑎𝑗 (⋅)) 𝜒𝑘 (⋅)𝑝𝐿𝑞(⋅)(R𝑛) .

(57)

Noting 𝑠 > max{𝑞+, 2}, 𝑠 < min{𝑞−, 2}, 1/𝑠 + 1/𝑠 = 1, we
denote 𝑞(⋅) > 𝑠/(𝑠 − 2) and 1/𝑞(𝑥) = 1/𝑞(𝑥) + 1/𝑠.

When |𝐵𝑘| ≤ 2𝑛 and 𝑥𝑘 ∈ 𝐵𝑘, by Lemma 12 we have𝜒𝐵𝑘𝐿𝑞(⋅)(R𝑛) ≈ 𝐵𝑘1/𝑞(𝑥𝑘) ≈ 𝜒𝐵𝑘𝐿𝑞(⋅)(R𝑛) 𝐵𝑘−1/𝑠 . (58)

When |𝐵𝑘| ≥ 1 we have𝜒𝐵𝑘𝐿𝑞(⋅)(R𝑛) ≈ 𝐵𝑘1/𝑞(∞) ≈ 𝜒𝐵𝑘𝐿𝑞(⋅)(R𝑛) 𝐵𝑘−1/𝑠 . (59)

So we obtain𝜒𝐵𝑘𝐿𝑞(⋅)(R𝑛) ≈ 𝜒𝐵𝑘𝐿𝑞(⋅)(R𝑛) 𝐵𝑘−1/𝑠 . (60)
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In similar method we can obtain𝜒𝐵𝑗𝐿𝑞(⋅)/(𝑞(⋅)−𝑠 )(R𝑛) ≈ 𝐵𝑗(𝑞(⋅)−𝑠)/𝑞(⋅) (61)

and 𝜒𝐵𝑗𝐿𝑞(⋅)(R𝑛) ≈ 𝐵𝑗1/𝑞(⋅) . (62)

Thus by Lemmas 11, 12, and 16 we have(�̃�𝑏 ,𝑠 ∗ 𝑎𝑗 (⋅)) 𝜒𝑘 (⋅)𝐿𝑞(⋅)(R𝑛)≤ 𝐶 (�̃�𝑏,𝑠 ∗ 𝑎𝑗 (⋅)) 𝜒𝑘 (⋅)𝐿𝑠(R𝑛) 𝜒𝑘𝐿𝑞(⋅)(R𝑛)≤ 𝐶 𝑎𝑗𝐿𝑠 (R𝑛) 𝜒𝐵𝑘𝐿𝑞(⋅)(R𝑛) ≤ 𝐶 𝑎𝑗𝐿𝑠 (R𝑛)
⋅ 𝜒𝐵𝑘𝐿𝑞(⋅)(R𝑛) 𝐵𝑘−1/𝑠 ≤ 𝐶 𝑎𝑗𝑠1/𝑠



𝐿𝑞(⋅)/𝑠

(R𝑛)

⋅ 𝜒𝐵𝑗1/𝑠𝐿𝑞(⋅)/(𝑞(⋅)−𝑠
 )(R𝑛)

𝜒𝐵𝑘𝐿𝑞(⋅)(R𝑛) 𝐵𝑘−1/𝑠
≤ 𝐶 𝑎𝑗𝐿𝑞(⋅)(R𝑛) 𝐵𝑗((𝑞(⋅)−𝑠)/𝑞(⋅))(1/𝑠) 𝜒𝐵𝑘𝐿𝑞(⋅)(R𝑛)
⋅ 𝐵𝑘−1/𝑠 = 𝐶 𝑎𝑗𝐿𝑞(⋅)(R𝑛) 𝐵𝑗1−1/𝑞(⋅) 𝐵𝑗−1/𝑠
⋅ 𝜒𝐵𝑘𝐿𝑞(⋅)(R𝑛) 𝐵𝑘−1/𝑠 ≤ 𝐶 𝑎𝑗𝐿𝑞(⋅)(R𝑛) 𝜒𝐵𝑗𝐿𝑞(⋅)(R𝑛)
⋅ 𝐵𝑗−1/𝑠 𝜒𝐵𝑘𝐿𝑞(⋅)(R𝑛) 𝐵𝑘−1/𝑠 .

(63)

So by using 0 < 𝑝 ≤ 1, 𝑛𝛿2 = 𝛼, 2𝑗0−1 < 2𝑗(1−𝑏) ≤ 2𝑗0 , (1 −𝑏)(𝑏 + 1) = 1, and Lemmas 9 and 10 we have

𝐼16 ≤ 𝐶 𝑗0∑
𝑘=−∞

2𝑘𝛼𝑝 𝑘−2∑
𝑗=−∞

𝜆𝑗𝑝 12𝑘𝑛(1−(𝑏+2)/𝑠)𝑝
× (𝑎𝑗𝐿𝑞(⋅)(R𝑛) 𝜒𝐵𝑗𝐿𝑞(⋅)(R𝑛) 𝐵𝑗−1/𝑠 𝜒𝐵𝑘𝐿𝑞(⋅)(R𝑛)
⋅ 𝐵𝑘−1/𝑠)𝑝 ≤ 𝐶 𝑗0∑

𝑘=−∞

𝑘−2∑
𝑗=−∞

𝜆𝑗𝑝 2(𝑘−𝑗)𝛼𝑝2𝑘𝑛𝑝(𝑏+1)/𝑠

⋅ (𝜒𝐵𝑗𝐿𝑞(⋅)(R𝑛)𝜒𝐵𝑘𝐿𝑞(⋅)(R𝑛))
𝑝 𝐵𝑗−𝑝/𝑠 ≤ 𝐶 ∞∑

𝑗=−∞

𝜆𝑗𝑝

⋅ 𝑗0∑
𝑘=𝑗+2

2𝑘𝑛𝑝(𝑏+1)/𝑠 𝐵𝑗−𝑝/𝑠 ≤ 𝐶 ∞∑
𝑗=−∞

𝜆𝑗𝑝
⋅ 2𝑗0𝑛𝑝(𝑏+1)/𝑠2𝑗𝑛𝑝/𝑠 ≤ 𝐶 ∞∑

𝑗=−∞

𝜆𝑗𝑝 2𝑗𝑛𝑝(1−𝑏)(𝑏+1)/𝑠2𝑗𝑛𝑝/𝑠
≤ 𝐶 ∞∑

𝑗=−∞

𝜆𝑗𝑝 .

(64)

Therefore, by (43), (44), (46), (48), (49), (52), (55), (56),
and (64) we complete the proof of Theorem 6.

Similar to the method of Theorem 6, next we give the
proof of Theorem 7.

Proof ofTheorem7. Let𝑓 ∈ 𝐻𝐾𝛼,𝑝

𝑞(⋅)
(R𝑛). By Lemma5,we have

𝑓 (𝑥) = ∞∑
𝑗=0

𝜆𝑗𝑎𝑗, (65)

where

𝑓𝐻𝐾
𝛼,𝑝

𝑞(⋅)
(R𝑛) ≈ inf (∞∑

𝑗=0

𝜆𝑗𝑝)
1/𝑝 , (66)

the infimum is taken over the above decomposition of 𝑓, and𝑎𝑗 is a dyadic central (𝛼, 𝑞(⋅))-atom of restricted type with the
support 𝐵𝑗. Then we have𝑇𝑏 (𝑓)𝑝𝐻𝐾

𝛼,𝑝

𝑞(⋅)
(R𝑛)

= 𝐺𝑁 (𝑇𝑏𝑓)𝑝𝐾𝛼,𝑝
𝑞(⋅)

(R𝑛)

= ∞∑
𝑘=0

2𝑘𝛼𝑝 𝐺𝑁 (𝑇𝑏𝑓) 𝜒𝑘𝑝𝐿𝑞(⋅)(R𝑛)
≤ 𝐶∞∑

𝑘=0

2𝑘𝛼𝑝(𝑘−1∑
𝑗=0

𝜆𝑗 𝐺𝑁 (𝑇𝑏𝑎𝑗) 𝜒𝑘𝐿𝑞(⋅)(R𝑛))
𝑝

+ 𝐶∞∑
𝑘=0

2𝑘𝛼𝑝(∞∑
𝑗=𝑘

𝜆𝑗 𝐺𝑁 (𝑇𝑏𝑎𝑗) 𝜒𝑘𝐿𝑞(⋅)(R𝑛))
𝑝

š 𝐶𝐽1 + 𝐶𝐽2.

(67)

We first estimate 𝐽2; by 0 < 𝑝 ≤ 1 and the(𝐿𝑞(⋅)(R𝑛), 𝐿𝑞(⋅)(R𝑛))-boundedness of𝑀 and 𝑇𝑏 we have
𝐽2 = ∞∑

𝑘=0

2𝑘𝛼𝑝(∞∑
𝑗=𝑘

𝜆𝑗 𝐺𝑁 (𝑇𝑏𝑎𝑗) 𝜒𝑘𝐿𝑞(⋅)(R𝑛))
𝑝

≤ 𝐶∞∑
𝑘=0

2𝑘𝛼𝑝(∞∑
𝑗=𝑘

𝜆𝑗 𝑀 (𝑇𝑏𝑎𝑗)𝐿𝑞(⋅)(R𝑛))
𝑝

≤ 𝐶∞∑
𝑘=0

2𝑘𝛼𝑝(∞∑
𝑗=𝑘

𝜆𝑗 𝑇𝑏𝑎𝑗𝐿𝑞(⋅)(R𝑛))
𝑝

≤ 𝐶∞∑
𝑘=0

2𝑘𝛼𝑝(∞∑
𝑗=𝑘

𝜆𝑗 𝑎𝑗𝐿𝑞(⋅)(R𝑛))
𝑝

≤ 𝐶∞∑
𝑗=0

𝜆𝑗𝑝 ( 𝑗∑
𝑘=0

2(𝑘−𝑗)𝛼𝑝) ≤ 𝐶 𝑓𝐻𝐾
𝛼,𝑝

𝑞(⋅)
(R𝑛) .

(68)

To estimate 𝐽1, we need the pointwise estimate for𝐺𝑁(𝑇𝑏𝑎𝑗)(𝑥).
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Suppose that 𝑦, 𝑡 satisfy |𝑥 −𝑦| < 𝑡. Let |𝑥| > 2𝑗+2 and 𝜙 ∈
K𝑚, where𝑚 ∈ N andK𝑚 = {𝜙 ∈ S(R𝑛) : sup𝑢∈R𝑛 ,|𝛼|≤𝑚(1 +|𝑢|)𝑚+𝑛|𝐷𝛼𝜙(𝑢)| ≤ 1}. By the vanishing moment condition on𝑎𝑗(𝑥), it is easy to prove that ∫R𝑛 𝑇𝑏𝑎𝑗(𝑥)𝑑𝑥 = 0. So we have(𝑇𝑏𝑎𝑗 ∗ 𝜙𝑡) (𝑦)= ∫R𝑛 𝑡−𝑛𝑇𝑏𝑎𝑗 (𝑧) (𝜙 (𝑦 − 𝑧𝑡 ) − 𝜙 (𝑦𝑡 ))𝑑𝑧

≤ ∫|𝑧|≤2𝑗+1 𝑡−𝑛𝑇𝑏𝑎𝑗 (𝑧) (𝜙 (𝑦 − 𝑧𝑡 ) − 𝜙(𝑦𝑡 )) 𝑑𝑧
+ ∫|𝑧|>2𝑗+1 𝑡−𝑛𝑇𝑏𝑎𝑗 (𝑧) (𝜙 (𝑦 − 𝑧𝑡 ) − 𝜙 (𝑦𝑡 ))𝑑𝑧

š 𝐽11 + 𝐽12.

(69)

For 𝐽11, by Lemma 9, the generalized Hölder inequality,
and the mean value theorem, we obtain

𝐽11 ≤ 𝐶 𝑇𝑏𝑎𝑗𝐿𝑞(⋅)(R𝑛)
⋅ 𝑡−𝑛 (𝜙 (𝑦 − ⋅𝑡 ) − 𝜙 (𝑦𝑡 ))𝜒𝐵𝑗+1𝐿𝑞(⋅)(R𝑛)≤ 𝐶 𝑎𝑗𝐿𝑞(⋅)(R𝑛)
⋅ 𝑡−𝑛  ∑|𝛽|=1

𝐷𝛽𝜙(𝑦 − 𝜃⋅𝑡 ) |⋅|𝑡 𝜒𝐵𝑗
𝐿𝑞(⋅)(R𝑛)

≤ 𝐶 𝑎𝑗𝐿𝑞(⋅)(R𝑛) 
|⋅| 𝜒𝐵𝑗(𝑥 − 𝑦 + 𝑦 − 𝜃⋅)𝑛+1

𝐿𝑞(⋅)(R𝑛)
≤ 𝐶2−𝑗𝛼 1|𝑥|𝑛+1 |⋅| 𝜒𝐵𝑗𝐿𝑞(⋅)(R𝑛) ≤ 𝐶2−𝑗𝛼+𝑗
⋅ 1|𝑥|𝑛+1 𝜒𝐵𝑗𝐿𝑞(⋅)(R𝑛) ,

(70)

where 0 ≤ 𝜃 ≤ 1.
For 𝐽12, by Lemma 15 we have

𝐽12
≤ 𝑡−𝑛 ∫

|𝑧|>2𝑗+1

𝐾𝑏 ∗ 𝑎𝑗 (𝑧) 𝜙 (𝑦 − 𝑧𝑡 ) − 𝜙(𝑦𝑡 ) 𝑑𝑧
+ 𝑡−𝑛 ∫

|𝑧|>2𝑗+1

ℎ ∗ 𝑎𝑗 (𝑧) 𝜙 (𝑦 − 𝑧𝑡 ) − 𝜙 (𝑦𝑡 ) 𝑑𝑧
š 𝐽13 + 𝐽14.

(71)

Noting that 2𝑗 ≥ 1, then |𝑧| > 2𝑗+1 ≥ 2. Since |𝑧 − 𝑤| ≥|𝑧| − |𝑤| > 2𝑗 ≥ 1 for |𝑤| ≤ 2𝑗, we obtain𝐾𝑏 ∗ 𝑎𝑗 (𝑧)
= ∫𝐵𝑗

𝑒𝑖𝛼𝑏|𝑧−𝑤|−𝑏|𝑧 − 𝑤|𝑛 𝜒 (|𝑧 − 𝑤| ≤ 1) 𝑎𝑗 (𝑤) 𝑑𝑤 = 0.
(72)

So we have 𝐽13 = 0.

For 𝐽14, by the pointwise estimate for ℎ∗𝑎𝑗(𝑧) in the proof
of Theorem 6, we obtain

𝐽14 ≤ 𝐶 𝑎𝑗𝐿𝑞(⋅)(R𝑛) 𝜒𝑗𝐿𝑞(⋅)(R𝑛) 𝑡−𝑛
× ∫

|𝑧|>2𝑗+1

𝜙 (𝑦 − 𝑧𝑡 ) − 𝜙 (𝑦𝑡 )
⋅ [ 1(1 + |𝑧|)𝑛+1 + 𝜒 (|𝑧| ≤ 2)|𝑧|𝑛−𝜀 ] 𝑑𝑧
≤ 𝐶 𝑎𝑗𝐿𝑞(⋅)(R𝑛) 𝜒𝑗𝐿𝑞(⋅)(R𝑛)
⋅ 𝑡−𝑛 ∫

|𝑥|/2>|𝑧|>2𝑗+1

𝜙 (𝑦 − 𝑧𝑡 ) − 𝜙(𝑦𝑡 )
⋅ 1(1 + |𝑧|)𝑛+1𝑑𝑧 + 𝐶 𝑎𝑗𝐿𝑞(⋅)(R𝑛) 𝜒𝑗𝐿𝑞(⋅)(R𝑛)
⋅ 𝑡−𝑛 ∫

|𝑧|≥|𝑥|/2

𝜙 (𝑦 − 𝑧𝑡 ) − 𝜙(𝑦𝑡 ) 1(1 + |𝑧|)𝑛+1𝑑𝑧
š 𝐽15 + 𝐽16.

(73)

Using the mean value theorem, we get

𝐽15
≤ 𝐶 𝑎𝑗𝐿𝑞(⋅)(R𝑛) 𝜒𝑗𝐿𝑞(⋅)(R𝑛) ∫|𝑥|/2>|𝑧|>2𝑗+1 ∑|𝛽|=1

𝐷𝛽𝜙(𝑦 − 𝜃𝑧𝑡 )
⋅  𝑧𝑡  𝑡−𝑛(1 + |𝑧|)𝑛+1𝑑𝑧
≤ 𝐶 𝑎𝑗𝐿𝑞(⋅)(R𝑛) 𝜒𝑗𝐿𝑞(⋅)(R𝑛)
⋅ ∫

|𝑥|/2>|𝑧|>2𝑗+1

|𝑧|(𝑥 − 𝑦 + 𝑦 − 𝜃𝑧)𝑛+1 1(1 + |𝑧|)𝑛+1𝑑𝑧
≤ 𝐶 𝑎𝑗𝐿𝑞(⋅)(R𝑛) 𝜒𝑗𝐿𝑞(⋅)(R𝑛) 1|𝑥|𝑛+1
⋅ ∫

|𝑥|/2>|𝑧|>2𝑗+1

|𝑧|(1 + |𝑧|)𝑛+1𝑑𝑧
≤ 𝐶 𝑎𝑗𝐿𝑞(⋅)(R𝑛) 𝜒𝑗𝐿𝑞(⋅)(R𝑛) ln |𝑥||𝑥|𝑛+1 ,

(74)

where 0 ≤ 𝜃 ≤ 1.
For 𝐽16, noting that 𝜙 ∈ K𝑚, we get

𝐽16 ≤ 𝐶 𝑎𝑗𝐿𝑞(⋅)(R𝑛) 𝜒𝑗𝐿𝑞(⋅)(R𝑛)
⋅ 𝑡−𝑛 ∫

|𝑧|≥|𝑥|/2
(𝜙 (𝑦 − 𝑧𝑡 ) + 𝜙 (𝑦𝑡 ))

⋅ 1(1 + |𝑧|)𝑛+1𝑑𝑧 ≤ 𝐶 𝑎𝑗𝐿𝑞(⋅)(R𝑛) 𝜒𝑗𝐿𝑞(⋅)(R𝑛)
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⋅ ( 1|𝑥|𝑛+1 + 𝑡−𝑛(1 + 𝑦 / |𝑡|)𝑛 ∫|𝑧|≥|𝑥|/2 1(1 + |𝑧|)𝑛+1𝑑𝑧)
≤ 𝐶 𝑎𝑗𝐿𝑞(⋅)(R𝑛) 𝜒𝑗𝐿𝑞(⋅)(R𝑛) ( 1|𝑥|𝑛+1
+ 1|𝑥| (𝑥 − 𝑦 + 𝑦)𝑛) ≤ 𝐶 𝑎𝑗𝐿𝑞(⋅)(R𝑛) 𝜒𝑗𝐿𝑞(⋅)(R𝑛)
⋅ 1|𝑥|𝑛+1 .

(75)

Thus, for |𝑥| > 2𝑗+2, we get𝐺𝑁 (𝑇𝑏𝑎𝑗) (𝑥)
≤ 𝐶 𝑎𝑗𝐿𝑞(⋅)(R𝑛) 𝜒𝐵𝑗𝐿𝑞(⋅)(R𝑛) (2𝑗 + ln |𝑥|) 1|𝑥|𝑛+1 . (76)

So by using 0 < 𝑝 ≤ 1, 𝛼 ≤ 1 + 𝑛𝛿2, and Lemmas 9 and 10 we
have

𝐽1 = ∞∑
𝑘=0

2𝑘𝛼𝑝(𝑘−1∑
𝑗=0

𝜆𝑗 𝐺𝑁 (𝑇𝑏𝑎𝑗) 𝜒𝑘𝐿𝑞(⋅)(R𝑛))
𝑝

≤ 𝐶∞∑
𝑘=0

(𝑘−1∑
𝑗=0

𝜆𝑗 2𝑘𝛼 𝑎𝑗𝐿𝑞(⋅)(R𝑛) 𝜒𝐵𝑗𝐿𝑞(⋅)(R𝑛) 2𝑗
⋅ 12𝑘(𝑛+1) 𝜒𝐵𝑘𝐿𝑞(⋅)(R𝑛))

𝑝

+ 𝐶∞∑
𝑘=0

(𝑘−1∑
𝑗=0

𝜆𝑗 2𝑘𝛼 𝑎𝑗𝐿𝑞(⋅)(R𝑛) 𝜒𝐵𝑗𝐿𝑞(⋅)(R𝑛) ln 2𝑘
⋅ 12𝑘(𝑛+1) 𝜒𝐵𝑘𝐿𝑞(⋅)(R𝑛))

𝑝

≤ 𝐶∞∑
𝑘=0

(𝑘−1∑
𝑗=0

𝜆𝑗 2(𝑗−𝑘)(1+𝑛𝛿2−𝛼))
𝑝

+ 𝐶∞∑
𝑘=0

(𝑘−1∑
𝑗=0

𝜆𝑗 2𝑗(𝑛𝛿2−𝛼) 𝑘2𝑘(1+𝑛𝛿2−𝛼))
𝑝

≤ 𝐶∞∑
𝑗=0

𝜆𝑗𝑝 ∞∑
𝑘=𝑗+1

2(𝑗−𝑘)(1+𝑛𝛿2−𝛼)𝑝 + 𝐶∞∑
𝑗=0

𝜆𝑗𝑝
⋅ 2𝑗(𝑛𝛿2−𝛼)𝑝 ∞∑

𝑘=𝑗+1

𝑘𝑝2𝑘(1+𝑛𝛿2−𝛼)𝑝 ≤ 𝐶∞∑
𝑗=0

𝜆𝑗𝑝
+ 𝐶∞∑

𝑗=0

𝜆𝑗𝑝 2𝑗(𝑛𝛿2−𝛼)𝑝 𝑗𝑝2𝑗(1+𝑛𝛿2−𝛼)𝑝 ≤ 𝐶∞∑
𝑗=0

𝜆𝑗𝑝
≤ 𝐶 𝑓𝐻𝐾

𝛼,𝑝

𝑞(⋅)
(R𝑛) .

(77)

Therefore, by (67), (68), and (77) we complete the proof
of Theorem 7.
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and Sobolev Spaces with Variable Exponents, vol. 2017 of Lecture
Notes in Mathematics, Springer, Berlin, Germany, 2011.



Hindawi
www.hindawi.com Volume 2018

Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Problems 
in Engineering

Applied Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Probability and Statistics
Hindawi
www.hindawi.com Volume 2018

Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi
www.hindawi.com Volume 2018

Optimization
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Engineering  
 Mathematics

International Journal of

Hindawi
www.hindawi.com Volume 2018

Operations Research
Advances in

Journal of

Hindawi
www.hindawi.com Volume 2018

Function Spaces
Abstract and 
Applied Analysis
Hindawi
www.hindawi.com Volume 2018

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi
www.hindawi.com Volume 2018

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific 
World Journal

Volume 2018

Hindawi
www.hindawi.com Volume 2018Volume 2018

Numerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical Analysis
Advances inAdvances in Discrete Dynamics in 

Nature and Society
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

Di�erential Equations
International Journal of

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Decision Sciences
Advances in

Hindawi
www.hindawi.com Volume 2018

Analysis
International Journal of

Hindawi
www.hindawi.com Volume 2018

Stochastic Analysis
International Journal of

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/jmath/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/jam/
https://www.hindawi.com/journals/jps/
https://www.hindawi.com/journals/amp/
https://www.hindawi.com/journals/jca/
https://www.hindawi.com/journals/jopti/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/aor/
https://www.hindawi.com/journals/jfs/
https://www.hindawi.com/journals/aaa/
https://www.hindawi.com/journals/ijmms/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ana/
https://www.hindawi.com/journals/ddns/
https://www.hindawi.com/journals/ijde/
https://www.hindawi.com/journals/ads/
https://www.hindawi.com/journals/ijanal/
https://www.hindawi.com/journals/ijsa/
https://www.hindawi.com/
https://www.hindawi.com/

