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We investigate the boundedness of the strongly singular convolution operators on Herz-type Hardy spaces with variable exponent.

1. Introduction

The theory of function spaces with variable exponents has
been extensively studied by researchers since the work of
Kovacik and Rdkosnik [1] appeared in 1991. In [2, 3] the
authors defined the Herz-type Hardy spaces with variable
exponent and gave some characterizations for them. In [4-
7], the authors proved the boundedness of some integral
operators on variable function spaces.

Given an open set E ¢ R” and a measurable function
p() : E — [1,00), LPY(E) denotes the set of measurable
functions f defined on E such that

px)
JE ( lf/(\x)| ) dx < 00 1

holds for some A > 0.
The set LPY(E) is a Banach function space when it is
equipped with the Luxemburg-Nakano norm as follows:

X p(x)
=i pro: [ (L) o]

The space is regarded as the variable L? space, since it
generalized the standard L’ space: if p(x) = p is constant,
then L?"(E) is isometrically isomorphic to LP(E).

The space Lfé;)(E) is defined by

Ll ®) = {f: f

e PV (F) for all compact subsets F C E}

3)

Define 2°(E) to be the set of p(:) : E — (0, 00) such that

p =essinf{p(x):x € E}>0,
4)
p"=esssup{p(x):x € E} < co.

Define 9(E) to be the set of p(-) : E — [1, 00) such that
p =essinf{p(x):x € E} >1 (5)
and

p' =esssup{p(x): x € E} < oco. (6)

Denote p’(x) = p(x)/(p(x) - 1).
Let f € L;,.(R"). The Hardy-Littlewood maximal
operator is defined by

1
Mf (x) = su —J dy, 7
f r>g|Br(-x)| B,(x) |f(y)| y ( )
where B,(x) = {y € R" : |x — y| < r}. Let B(R") be the
set of p(-) € P(R") such that the Hardy-Littlewood maximal
operator M is bounded on L? OR™).
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Lemmal (see [8]). If p(-) € P(R") and satisfies

C 1
lp(x)_P(y)ls—logqx—yD’ |x_y|55 (®)
and
C
[p(x)-p(y) < g (x 70’ ly| = Ixl, 9)

then () € SB(R"), that is, the Hardy-Littlewood maximal
operator M is bounded on LPOR™).

In addition, we denote the Lebesgue measure and the
characteristic function of a measurable set A ¢ R" by |A| and
X 4> respectively. The notation f = g means that there exist
two constants C;,C, > O such that C,g < f < C,g.

Next we recall the definition of the Herz spaces with
variable exponent. Let B, = {x € R" : [x| < 2K} and
Ay, = B\ B;_, for k € Z. Denote Z, and N as the sets of
all positive and nonnegative integers, respectively, x; = xa,
fork € Z, y = xcifk € Z,,and x = xp, -

Definition 2 (see [9]). Leta € R, 0 < p < 00, and g(-) €
@(R”) The homogeneous Herz space with variable exponent

q( )(IR") is defined by

3 @)
(10)
= {7 €L ® N\ 1) | fles o < 0}

where

1/p
17 s =‘l Z 2P| e W)]» RNGY)

The nonhomogeneous Herz space with variable exponent
q( )(IR”) is defined by

Ky R = {f € L@ s oy <o}, (12

where

1/p
e = {32 Ul | - 09

In [2], the authors gave the definition of the Herz-type
Hardy space with variable exponent HK:("I;(R”) and the
atomic decomposition characterizations. &(R") denotes the
space of Schwartz functions, and & '(R") denotes the dual
space of §(R"). Let Gy(f) be the grand maximal function

of f defined by
Gy (f) (%) = s o5 (f) ()], (14)

where

lal | BI<N

= {¢ eS(R"): sup 'x Dﬁgb (x)' < 1} 15)
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and N > n + 1; ¢y is the nontangential maximal operator
defined by

¢y (f) () = sup [¢ = f(y)l (16)

|y—x|<t

with ¢,(x) = t""P(x/t).

Definition 3 (see [2]). Leta € R, 0 < p < 00, g(+) € P(R"),
and N >n+ 1.

(i) The homogeneous Herz-type Hardy space with vari-
able exponent H K;(‘l; (R™) is defined by

HES) (R)
. (17)
= { fes (R"): Gy (f) (x) e K3 (IR”)}
and
| leriee ey = 1Gr ()l - (18)

)

(ii) The nonhomogeneous Herz-type Hardy space with
variable exponent HK;‘(’jl)7 (R™) is defined by

HIGH ()
(19)
={f e &' (R"): Gy (f) () € KF (R")}
and
“f"HKZ(’j‘;(R" "GN (f) KPR - (20)

For x € R, we denote by [x] the largest integer less than
or equal to x. 8, is the same as in Lemma 9.

Definition 4 (see [2]). Letnd, < a < 00, g(-) € P(R"), and
nonnegative integer s > [« — nd,].

(i) A function a on R” is said to be a central (e, g(-))-

atom, if it satisfies

(1) suppa ¢ B(0,r) ={x e R":
) llall oo gy < 1BCO,7)[™/"
(3) [ge a(x)xPdx =0, 1Bl < s

|x| <}

(ii) A function a on R" is said to be a central («,q(-))-
atom of restricted type, if it satisfies conditions (2), (3)
and

1) supp a € B(0,7), r > 1

If r = 2 for some k € Z in Definition 4, then the
corresponding central («, g(-))-atom is called a dyadic central
(a,q(+))-atom.
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Lemma 5 (see [2]). Let nd, < o < 00, 0 < p < 00 and
q() € B(R™. Then f € HK;‘(’?)’(R") (or HK;‘(’?)’(R")) if and
only if

/= z Ak
k=—0c0

<or OZO:Akak> , @)
k=0

in the sense of &’ (R"),

where each ay is a central («, q(-))-atom (or central (a, q(-))-
atom of restricted type) with support contained in B, and
e oo [Ail? < 00 (or Y120 IAIP < 00). Moreover,

- 1p
e =it ( 3 Wup)

k=—00

. 1p
(o g s (S0) ).

where the infimum is taken over all above decomposition of f.
Let 6 be a smooth radial cut-off function such that (&) = 1
if I€] = 1 and 0(&) = 0 if |&] < 1/2. Define the multipliers

(22)

e

Wf ), (23)
where 0 < b < 1. The kernel for T, is very singular. Roughly
speaking, it looks like

e

T,:T,f (§) =00

il
Kb’ (x) = — (24)

lxl"

where b’ = b/(1 - b). Indeed the cancellation is minimal and if
one makes a quick computation for |x| > 2|y|, we have

Cly|

|x|‘rl+b’+1 :

le/ (.X - y) - Ky (x)| < (25)

The study of these operators in the context of L7 spaces
was carried out by Hirschman [10] and Wainger [11]. Sharp
endpoint estimates were obtained by Fefferman and Stein in
[12] via the duality of H' and BMO. Weighted LI norm and
weak(11) estimates were established by Chanillo in [13]. The
boundedness of these operators on the weighted Herz-type
Hardy spaces was proved by Xiaochun Li and Shanzhen Lu in
[14].

Motivated by [2, 14], we will study the boundedness of the
strongly singular convolution operators T, on Herz-type Hardy
spaces with variable exponent. The main results are as follows.

Theorem 6. Suppose that 0 < p < 1, q(-) € P(R") satisfies
conditions (8) and (9) in Lemma I and « = né,. Then we have

|T, (f)||f<;g;<w) <C "f“HKZ(’j‘;(R") )

where C is independent of f.

(26)

Theorem 7. Suppose that 0 < p < 1, q(-) € P(R") satisfies
conditions (8) and (9) in Lemma 1 and nd, < o < nd,+1. Then
we have

IT, (f)"HK:;(’_‘;(R") <C “f"HK;*('?;(R") , (27)

where C is independent of f.

2. Preliminary Lemmas

Referring to the variable L? (') space, there are some important
lemmas as follows.

Lemma 8 (see [1]). Let p(-) € PR"). If f € LFO(R") and
g€ LPO(R™), then fg is integrable on R" and

jR" |f ) g ) dx <7 | flpo@n l9lro@n > (28)

where

11
rp= 1+ —— —.

29
4 pop 29)

The above inequality is named generalized Holder’s

inequality with respect to the variable L space.

Lemma 9 (see [9]). Let q(-) € RB(R"). Then there exists a
positive constant C such that, for all balls B in R" and all
measurable subsets S C B,

"XB"L‘i(')(R") - |B|

Txslsoeey 18I
(30)
Mﬂﬁﬂﬁgc<ﬁwa,
||XB||M<->(R") 1Bl
and
Mﬁﬂﬂﬂgcoﬂfz Q)
||XB“L’4’(')(R") 1Bl

hold, where 8, and &, are constants with 0 < §,,8, < 1.
Throughout this paper J, is the same as in Lemma 9.

Lemma 10 (see [9]). Suppose q(-) € B(R"). Then there exists
a constant C > 0 such that, for all balls B in R",

1
ﬁ “XB“L'%(')(R") XB“Lq'(-)(Rn) <C. (32)

Lemma 11 (see [15]). Define a variable exponent g(-) by
1/p(x) = 1/4(x) + 1/q for x € R". Then we have

”fg"LP(')(R") <C ||f||m‘<->(w) 9“m(R")’ (33)

for all measurable functions f and g.



Lemma 12 (see [16]). Let p(-) € P(R") satisfy conditions (8)
and (9) in Lemma 1. Then

[QIVP™ if |Ql<2" and x € Q,

Ixallzroge = {lQI”f"“’) if Q=1 o

for every cube (or ball) Q c R", where p(co) = lim,_, ., p(x).

A nonnegative locally integrable function w(x) on R" is said
to belong to A ,(1 < p < ©0), if there is a constant C > 0 such
that

SuP(IQI J © dx) (61| JQw(x)l_P, dx>p_l (35)

< C < 00,

where p’ = p/(p — 1); Q denotes a cube in R" with its sides
parallel to the coordinate axes.

The weighted (L¥, L?) boundedness of T}, has been proved
by Chanillo [13].

Lemma 13 (see [13]). Letw € A, 1< p<oo. Then

JW IT, () ()] @ (x) dx < C jR" If @ ©(x)dx. (36)

Lemma 14 (see [5]). Given a family F and an open set E C
R", assume that for some p,,0 < p, < 0o and for every w €
A

(ool

J f(x)P"w(x)dngOJ g(x)P"w(x)dx,
E E

(f9) € 7.
Given p(-) € P°E) such that p(-) satisfies (8) and (9) in
Lemma 1, then for all (f, g) € F such that f € LP(E)
“f"LP(')(E) <C ||9||LP<->(E)- (38)

Since A, C A, by Lemmas 13 and 14 it is easy to get

the (LPY)(R™), LPY)(R™))-boundedness of the strongly singular
convolution operators Ty,

(37)

To prove our main results, we also need the following
lemmas.

Lemma 15 (see [11]). The kernel for the multiplier operator
T, (f)(x) is given by

iogy b
v (39)
(1-b)

Ce|7)((|x| <D+hx), b=
X

with [h(x)| < C(1+ )"V + Clx| ™ x(Ix| < 1),& > 0. Here
oy = b0 _p0) gnd e depend only on b

Lemma 16 (see [13]). Let I?b/,s(x) = el /|x|"(b’+2)/S and
(b' +2)/s < 1. Then

[y sl <Clfles s+ =1 @o)
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3. The Proof of Main Results
Firstly we give the proof of Theorem 6.

ﬁroof of Theorem 6. Let f € HKZ(’_")’(R"). By Lemma 5, we
ave

fx) = Z Ajaj, (41)

where

(o) 1/p
. p
"f”HK;*('_f;(R") ~ inf < Z 'Aj' ) , (42)
j=—c0

the infimum is taken over the above decomposition of f, and

a;isa dyadic central («, g(-))-atom with the support B - Then

we have

“Tb (f)"p[(;"(vl;(Rn) = Z 2k“p “Tb (f) Xk"iq()(R )
’ k=—00
(o) . k=2 p
<52 5 lIn o) uhe,
k=-00 j=—00 (43)

- P
i Z zk“P<;1|Aj| |7, (“j)Xk“m(')(R")>
J=k=

k=—00
= CI, + CI,.

We first estimate I,; by 0 < p < 1 and the

(L1O(R™), L1 (R™))-boundedness of T, we have

P
L <C Z 2kap< Z |AJ||| Gjllpac >(R")>

<CZ (1 1|A|2"J)"‘>p )
e ¥ py <_002<"1"‘P><CZ i

j=—00

<C ”f"HK‘;(’f;(R") .

Now we estimate I;. Let

Ky (x)=C bllll

By Lemma 15 and the Minkowski inequality, we have

X (x|l < 1). (45)

P
(R

00 o k-2 P (46)
e P(z A1)l
=—0c0 j=—00

=1, +1,.
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To estimate the term I,,, we need the pointwise estimate
for h = aj(x).

Let |x| > 2/. By generalized Holder’s inequality we have

I+ a; () < JItISr I (x - 0)l]a, (0] dt

]l

. [ 1
1+ |x —t)"*!

<C <ng |a; @) dt)

1 (Ix] £2)
[ 252 ] = oo

1 x (x| <2)
’"XJ'“UJ’(-)(R") [(1 )T + I ]

x(lx—tl_sl)]dt
|x_t|n €
(47)

Therefore, by nd, = «, 0 < p < 1, Lemmas 9 and 10, the
Minkowski inequality, and generalized Holder’s inequality we
have

il a0 (wm) "Xj L7O®Rn)

00 k-2
e $ 2 (5 pk
k=-00 j=—00

P o0
. C kap
H(1+||)n+1Xk() q<->(R")> i k:z—:ooz
k-2
x(I1<2)
5 ol ol [

X ()

p 0 k-2
) <e$ (5
11O (R") k=00 \ j=—00

1
' (1 + zk)”+1 “aJ" OR" illza' O (rry

ko

1
-mmmﬁ+cz(
P

Tl MMMMMWQ

P
k-2 X oy
o8 (5 i e
=—00 \ j=—00 (1 )(R")

+29" [

ka+kn—jo

5
C i kf A 2 10 o P
+ .
L\ A ke " X5, ||m’<-> -
o /[ k=2 Skt (jK)(n0,-a) P
<C i\
< k;w (j;oo| J| (1 +2k)n+1 )
1 k=2 QK+ (j—K) (18,00 P
+C Z < Z |AJ 2k(n—s) )
k=-00 \ j=—00
00 k-2 2kn P
<C A ——m——
< k:z_:oo (j_z—:oo| ]| (1 + 2k)‘rl+l >
1 o0 »
+CZ <Z | ]'2kns> SCZ 'A]'
k= j=—0c0
(52 ) e s
. _ C
f ]+2(1 ) (n+1)
1 1
'<22k(ne)p> CZ |A| <sznp
k k=j+2
1
S)ees hr(£2)
=j
o0
<cy
j=—00
(48)

What remains is estimating I,,. Let 2007t < 2170 < oo
for some j, € Z, where b is the same as the above. Then it
follows that

Ill
p
(5 b el
© k-2 ? )
L | R
k=j,+1 J=7%
= 113 + 114.

To estimate the term I, we need the pointwise estimate
for Ky a;(x). Let |x| > 2/, Then, by the vanishing moment
condition on aj(x), we have

Ky + a, () < L‘ Ky (x = y) = Ky ()| |a; ()] dy. (50



From the condition of Ky (x), |[Ky(x — y) — Ky(x)| <
C(|y|/|x|"+b 1), if |x| > 2|y|, it follows that

c2/
|Kb’ * a; (x)' < W Lj |‘1j (J’)' dy

) (51)
C2/
= |x|n+b’+1 “af“m(‘)(R") XB; 17 ORny
Note that b’ = b/(1 — b); that is, (1 — b)(¥' + 1) = 1. Since

nd, = a,0 < p<l,and 27! < 2J(1-b)
9 and 10 we have

m<cz

k=jo+1

< 2%, then by Lemmas

j
( 5 Il s [

P
Xk||m<->(R") >

Z ' 'Zkoc ]lx2]2kn
j

’ HXBj

14 O(R")

¥

k=jor1 \ j=—oo 2k(n+b'+1)
(52)
“XBJ‘ 14 O(R")
Tl | =€ Z 3
“XBk “Iﬂ’(')(Rn) j 2k(b +1)p
<CZ |A]| 2] b’+1 CZ |A|
21(1 b)(b’+1 <C Z |)t |
Now to estimate I3, we split Ky * a;(x) as follows:
eiablx—yrb,
Kisay9=C [, RNTCEE
: ! 53
—(b'+2)/s) a;(y)dy (53)

|x yl |x|n(1—(b’+2)/s)

+C (K *a;(x)) = E(x)+F(x),

|x|n(1—(b'+2)/s)
where Eb,)s is the same as in Lemma 16 and let s > max{q", 2}
satisfy (' +2)/s < 1.

Applying the mean value theorem to the term brackets in

the integrand of E(x), then for |x| > 2/ we have the pointwise
estimate for E(x) as follows:

IE (x)| < CJ . lﬁlﬂ a; (y)|dy

(54)

27
cC2|q, |
1 17l @y XB; 140 @y
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On the other hand, since 0 < p < 1, by the Minkowski
inequality we get

Z Zkap z 'A’ ' "EXk“Lq() R")

(55)

I?L 1Bl

+ Z Zk“P

For I}s, using nd, = «, the pointwise estimate for E(x), and
Lemmas 9 and 10 we have

2]1’
I;<C Z 2k Z ' J' 2k(n+1)p “ J'"iq(-)(Rn)

= Ii5 + L.

P p 0 »
' “XBJ Lq,(')(R") Xk"Lq(‘)(Rn) < Cz 'A]'
j=—00
i , p  (56)
Y _2]‘0 (k=j)ep kn XBJ‘ 140 (rm)
Sk(n1)p 2V
k:j+2 ||XBk ||L‘i,(') (R™)
v P
scy
j=—00

Finally, we estimate ;5. Noting that x € A, we get

Jo
I - Z Hkap Z '/\ | “PXk“Lq()(Rn <C Z kep
k=—0c0

k-2 »
- ]yl
j=—00

1 ! (57)
m)(k )

H(Kb, xa; ("))

Lq(l)(Rn)
e re Y

k=-c0 j=—00

1 7 P

" Skn(1-(6'+2)/5)p “( b * ) ('))X’f (')“L«MR")'
Noting s > max{q+,2},s’ < min{q,2},1/s + 1/s' =1, we
denote g(-) > s/(s — 2) and 1/g(x) = 1/g(x) + 1/s.

When |B,| < 2" and x;, € B, by Lemma 12 we have

s Loy = VB = ooy 1B 59)
When |B,| > 1 we have
“XBk“ﬂ(-)(R") = [B " ||XBk“Lq()(R” B 69)
So we obtain
s oy = Doy 1B (60)
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In similar method we can obtain

|(q(-)—5')/q(-)

|B (61)

i |l L)/ (a()—s )

and

|1/q’<»> .

(62)

J Lq'(l)(Rn) - | J

Thus by Lemmas 11, 12, and 16 we have
“(Eb”s * aj ()) Xk (')"Lq(')(R")
<C “(Eb’,s * aj ()) Xk (.)“LS(RVI) “Xk“]ﬁ(')(RW)

<C "aj“LS’(R")

< Clafys oy ln

LIV (R")

-1/s

<CH| |

' "XBk "L‘i(')(R") |Bk| L0 (R

1/s'

"XBk“Lq(-)(R" |Bk|_1/S (63)

i [l La0@O=s") (rmy

<C “ s)/g()/s)

L1O(R™) |BJ' XBk“qu)(Rn)

—1/s

[ Byl

=l 1

L0 R)|BJ| BJ'|_1/S

-1/s

<Claj

: "XBk 140 (R") |Bk| LIO(R") illza O re)

=1/s 1/s

|Bj|

XBk"Lq()(R |Bk|

So by using 0 < p < 1,nd, = a, 20071 < 21070 < 2Jo (1 -
b)(b' + 1) = 1, and Lemmas 9 and 10 we have

Jjo kap k-2 » 1
o
Le=C Z 2 Z '/\f| 2kn(1-(b'+2)/s)p
k=—00 j=—00

-1/
(- ™

|Bk| l/s) <C Z Z 'A | 2(k ]ocpzknp(b'+l)/s

k=—c0j=—00

p
i L‘i,(')(Rn) -pls (0] p
' B " <c Y (64)
||XBk "Lq’(-)(Rn) j=—00

& knp(b'+1)/s -pls © P
2 B[ <c )
k=j+2 j=—00

i1l O @) |Bj XBk“L‘Z(')(Rn)

zjonp b +1)/s 2jnp(1—b)(b’+1)/s
zjnp/s <C Z '/\ 'P W
v P
<scy "
j=—c0

Therefore, by (43), (44), (46), (48), (49), (52), (55), (56),
and (64) we complete the proof of Theorem 6. O

Similar to the method of Theorem 6, next we give the
proof of Theorem 7.

Proof of Theorem 7. Let f € HKZ(’.I;(IR"). By Lemma 5, we have

fx) = leaj, (65)
=)

where

. p
s - mf<z|Aj| ) R
=0

the infimum is taken over the above decomposition of f, and
a;isa dyadic central (a, g(-))-atom of restricted type with the
support B;. Then we have

“Tb f)"HK"‘P(R "GN (be)“i;"(’_})’(R")

= szap "GN (be) Xk“iq(-)(Rn)
k=0

) k-1 p
< C];)zk(xp <2} |A]| "GN (Tbaj) Xk“Lq(‘)(R")> (67)
= j=

+ C];)z ap <2}; |)tj' HGN (Tbaj) Xk||m<->(nv)>
- =

=CJ, +CJ,.

We first estimate J,; by 0 < p < 1 and the
(L1O(R™), L1Y(R™))-boundedness of M and T,, we have

p
1= 520 (S 1o o) e )

p
1.4¢ )(R )>

P
< csz“P ( A HTb“j||m<-><W>> o

P
( ol
J

J R
( Zz(k—ﬁaﬁ) < Cllf sy

To estimate J;, we need the pointwise estimate for
Gy(Tpa))(x).

ccS (S I o)

I/\
Ii M8
Mg TV

]
kal

|/\
n Mg



Suppose that y, t satisfy [x — y| < t. Let |x| > 2/**and ¢ €
H y» wherem € Nand Z,,, = {¢p € S(R") : sup,,cgn o<l +
[ul)™™|D%p(u)| < 1}. By the vanishing moment condition on
aj(x), it is easy to prove that I[R{" Tbaj(x)dx = 0. So we have

(Toa; = ) (7))

=[J, e @ (0(57) -4 (3)

Joan i@ (0(557) -0 (5)) 22
Jop 7@ (8 (255 ) - 0(3)) 0=

= Ji +Jip

For J,;, by Lemma 9, the generalized Hélder inequality,
and the mean value theorem, we obtain

<

+

<C ||Tb‘11 "Lq O (RM)
)+,
<C||“J|| J(R")
3 ot (20|,
=1 o .

HXBj
(Ix -y + |y -o)""

< .
<C "aJ ||L‘i('>(R") ,
L9 O(R")

<C27 c27*ti

|x|7l+1 ||'|XBj Lq’(')(Rn)

‘XBJ

T LO@n’

where0 <0< 1.
For J,,, by Lemma 15 we have

Ji2
=t le|>2i+1 Ky xa; (Z)'|¢<y_ )_¢<%)|dz
(71)
o e @l (557) -o(5)]
= Ji3 + Jia-

Noting that 2/ > 1, then |z| > 2/*' > 2. Since |z — w| >

lz| = lw| > 2/ > 1 for |w| < 27, we obtain
Ky * a; ()|

iag | z—wl (72)
_ ¢ _ (w)d
_ J oo Azl < Da w)dw

=0.

B;

Sowehave J;; =0

Journal of Function Spaces

For J,4, by the pointwise estimate for /1 * a;(z) in the proof
of Theorem 6, we obtain

—n

t

L1O(R") XJ"L‘* )(R™)

o=l
o(57)-2(7)

“

|z|>27

[ 1 +X(|Z|S2)]d
(1+ [z |2["*

<Cllajf

LIO(R™)

St J
|x]/2>|z|>2/*1

Xj "L‘i (R

o)+ (%)

dz +Claj] 0

(73)

LIO(R™) XJ"LWR")

¢@%ﬁf¢(%ﬂa:ﬁyﬁ”

(1+ 2™

" J
|z|=]x|/2

= Ji5 + J16:

Using the mean value theorem, we get

]15

-0z
<C ”af”L‘i(')(R”) "Xj"Lq,(')(Rn) J'\xl/2>|z|>21+l IBl=1 ‘Dﬁ(p ( . t )

z t"
| ’ n+1dz
tH(1+z)

<C ||a “L”l() "XJ‘"Lq’@(R")
|| 1 ., (74)
+ |y _ 92|)n+1 (1 + Izl)n+1

1
< I P

' L|/2>|z|>2m (-

|z|
. LX|/2>|Z|>2j+l Wdz
1
=C “aj”m() "XJ"Lq "o/®R) lnllilv

where0 <0 < 1.
For J,4, noting that ¢ € %, we get

Jis=C "aJ"L‘i @y X “Lq "O(R™)
o y-z Y
s P )N
a+ |Z|)n+1dz = C"“J'||Lq(->(w) XJ'||L‘1’<')(R")
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< L, £ j ;dz>
™ (T [ 16 etttz (L [2)™

1
< o ol (e
1
" m> =C ”aj"Lq(')(R“) XJ'HLq’<'>(R")
L
|x|n+1 :
(75)
Thus, for |x| > 27*%, we get
|G (Tya;) ()]
‘ (76)
<C "aj"L‘i")(R") By | ') (g (2/ +1nx|) T

Sobyusing 0 < p < 1, < 1 +nd,, and Lemmas 9 and 10 we

have
p
Lq(')(R") >

0 k-1
o= St (z G (1) e
k=0 j=0

) cz( EREY 1Y NN P Y
1 p
g '|X3k||m.)(w)>
0o (k-1 . k
o
+CZ (Z |Aj'2 "aj“m(')(R") Xs, Lq’o)(Rn)ln
k=0 \ j=0
1 p
' W “XBk“L‘Z(')(Rn)>
S (5 (j-K)(1+n8,-t) g (77)
<C 2| 2R +ndy—a
3 P
+C};}<Z |A '2] "Sz—a)m>
< CZ |A | Z 2 (j=k)(1+nd,~« +C§: 'A1|p
k=j+1 =
. 9itndy-a)p Z‘rlZ" 1+n52 CZ |)L 'p
k=j
&) 3 p j(néz—a)pi 0 N ,
+c2}' il 2 By (R sc2)| |
j= Z

<C “f"HK"P(R" .

Therefore, by (67), (68), and (77) we complete the proof
of Theorem 7. ([
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