
Research Article
Numerical Solution of Some Differential Equations with 
Henstock–Kurzweil Functions

D. A. León-Velasco ,1 M. M. Morín-Castillo,2 J. J. Oliveros-Oliveros ,3    
T. Pérez-Becerra ,3 and J. A. Escamilla-Reyna3

1Departamento de Matemáticas Aplicadas y Sistemas, Universidad Autónoma Metropolitana Cuajimalpa, Mexico
2Facultad de Ciencias de la Electrónica, Benemérita Universidad Autónoma de Puebla, Mexico
3Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Mexico

Correspondence should be addressed to D. A. León-Velasco; assaely86@gmail.com

Received 9 August 2019; Accepted 3 October 2019; Published 28 December 2019

Academic Editor: Ismat Beg

Copyright © 2019 D. A. León-Velasco et al. �is is an open access article distributed under the Creative Commons Attribution 
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly 
cited.

In this work, the Finite Element Method is used for �nding the numerical solution of an elliptic problem with Henstock–Kurzweil 
integrable functions. In particular, Henstock–Kurzweil high oscillatory functions were considered. �e weak formulation of the 
problem leads to integrals that are calculated using some special quadratures. De�nitions and theorems were used to guarantee the 
existence of the integrals that appear in the weak formulation. �is allowed us to apply the above formulation for the type of slope 
bounded variation functions. Numerical examples were developed to illustrate the ideas presented in this article.

1. Introduction

�e main concern of this work consists of �nding, using the 
Finite Element Method (FEM), the numerical solution of dif-
ferential equations in which integrable Henstock–Kurzweil 
functions de�ned on the interval [�, �] appear. We will say 
simply �� function. �e space of these functions is denoted 
by ��([�, �]). In particular, we consider functions that are 
highly oscillatory near the singularity (no Lebesgue integra-
ble). For that, some results that guarantee the applications of 
the FEM are necessary. As the �rst step, conditions that guar-
antee that the product of �� functions be an �� function. 
�is is a consequence of the weak formulation of the di�eren-
tial equation. As the second step, numerical methods of inte-
gration for �� functions must be used, in particular, for the 
case of the highly oscillatory functions. �e trapezoid and 
Simpson methods are commonly used for the numerical cal-
culation of integrals. However, when the function is highly 
oscillatory with a singularity, the performance of these meth-
ods can diminish and for the case of �� functions, fail in the 
calculation. For that reason, it is necessary to use quadratures 
which can be capable to handle these di�culties. Di�erent 
quadrature methods have been developed and improved for 

calculating the integral of functions that belong to di�erent 
spaces. Some examples of these methods are the Gauss–Raudi 
[1], Gauss–Legendre and Gauss–Lobatto [2], Newton–Cotes 
(open and closed) and �rst kind of Gauss–Chebyshev quad-
rature rules [3]. In particular, the authors of [2] proposed a 
numerical improvement to the Gauss–Lobatto quadrature. �e 
quadratures used in this work are the Lobatto quadrature 
[1, 2, 4] and the open quadrature de�ned for �� functions 
with a singularity [5]. �e results obtained are compared with 
those given by the trapezoid quadrature. �ese three quadra-
ture methods are described below.

Di�erent authors have been studied di�erential equations 
for �� functions. In [6], considered the Schrödinger equation 
involving the Henstock–Kurzweil integral. �e author proves 
the existence and uniqueness of the initial value problem for 
the Schrödinger equation when the function of the right side 
of the equation is ��. It is proved that the solution of the 
equation and its derivative belong to space ���∗ [7]. One 
example is shown to illustrate the application of these results, 
in which the solution of the problem presented belongs to 
��([�, �]) and this example is not covered by any result using 
the Lebesgue integral. In [8], the Laplace transform for ��
functions is considered on appropriated spaces to guarantee 
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its existence, continuity and di�erentiation but not examples 
of applications were presented in this work. In [9], the 
Henstock–Kurzweil integral is considered from a distribu-
tional analysis and two �xed-point theorems are presented.

�is work is organized as follows: In Section 2, the basic 
elements of the FEM are given; in Section 3, the de�nition of 
the �� function and some basic results, which allow the appli-
cation of the FEM, are given; in Section 4, some quadratures 
for �� functions are described; in Section 5, numerical exam-
ples are presented in order to validate the proposed method-
ology. Finally, in Section 6, the results and perspectives of the 
work are discussed.

2. Preliminars

�e numerical solution of di�erential equations has great 
importance in mathematics and engineering since they appear 
in many applications. �ere are di�erent methods for the 
numerical solution of di�erential equations such as �nite dif-
ferences, FEM, �nite volume method. We are interested in 
the FEM due to the weak formulation of this method, that is, 
the method uses a variational problem associated to the dif-
ferential equation. Since the modeling of many problems is 
made through the variational formulation, the application of 
the FEM is natural.

2.1. Weak Formulation. To illustrate the weak formulation of 
elliptic boundary problems and its resolution by the FEM, we 
consider the following problem:

Find �(�) ∈ � such that

where the set of admissible functions � is de�ned by

�e Equation (1) appears in some physical processes, for 
example, heat conduction or convection on a ©at wall or on a 
bar, ©ow-through channels or pipes, axial deformation of bars, 
among others.

Note: In the analysis carried out in this work, generality is 
not lost if we consider �(�) = 0.

�e weak formulation of the elliptic problem (1)–(3) is 
given by

�e variational problem (5) is also known as the weak form 
or Galerkin form of the di�erential equation. �e linear space 
� is approximated by the discrete space �ℎ (�ℎ ⊂ �), de�ned 
by

(1)− ���(�(�)
��
��) + �(�)� = �, 0 < � < �,

(2)�(0) = 0,

(3)
��
��(�) = 0,

(4)� = {v ∈ �1(0, �)�����v(0) = �v��(�) = 0}.

(5)∫�
0
�(�)��(�)v�(�)�� = ∫�

0
�(�)v(�)�� ∀v ∈ �.

(6)�ℎ = g�� {�1, �2, . . . , ��},

where �� are called base functions. For more details, see  
[10, 11].

2.2. Finite Element Method. �e FEM provides a technique 
in which the domain is represented as a geometrical set of 
simple domains, that are called �nite elements, which leads 
to a derivation of approximate functions on each element, 
usually algebraic polynomials that are chosen based on the 
characteristics of the problem that is being analyzed. �e 
polynomials of degree one are commonly used because 
they are mathematically simple and easy to implement 
computationally.

�en, we can approximate the variational problem (5) for 
the following discrete variational problem:

Find �ℎ ∈ �ℎ such that

with �ℎ(�) = ∑��=1����(�) where �� denote �ℎ(��).
Substituting �ℎ in (7), we get that the discrete variational 

problem is equivalent to calculate �1, �2, . . . �� such that

which is reduced to solve a system of linear equations, where 
the matrix of the problem is symmetric and positive de�nite. 
�e integrals in (8) can be calculated using the trapezoid or 
Simpson rule, when the di�usion parameter �(�) and the 
source �(�), are functions with �nite energy (square integra-
ble), that is, ∫�0[�(�)]2�� < ∞ and ∫�0[�(�)]2�� < ∞. �ese 
classical methods of integration can not be applied for func-
tions in �� [5], therefore it is necessary to apply special quad-
ratures for solving these integrals numerically and then to 
apply the �nite element method for �(�), �(�) ∈ ��.

3. The Henstock–Kurzweil Integral

In this section we will present some of the most elementary 
and important properties of the Henstock–Kurzweil integral; 
speci�cally, we will mention some algebraic properties.

(i) Two compact subintervals �, � ⊂ ℝ are called  
nonoverlapping if int� ∩ int� = 0. �e length of an 
interval � = [�, �], with � ≤ �, is de�ned as

(ii)  A subpartition of [�, �] is a �nite collection {��}��=1 of 
nonoverlapping compact subintervals of [�, �] with 
�� = [��−1, ��]. A partition of [�, �] is a subpartition 
such that [�, �] = �1 ∪ ... ∪ ��.

(iii)  A tagged partition (tagged subpartition) of [�, �] is a 
set of ordered pairs � := {(��, ��) : � = 1, . . . , �} such 
that the collection {��} is a partition (subpartition) 
of [�, �] and �� ∈ ��, where the point �� is called tag 
associated to the subinterval ��, for every � = 1, . . . , �. 
We denoted by P, the set of all tagged partitions 
of [�, �].

(7)
∫�
0
�(�)��ℎ(�)��� (�)�� = ∫

�

0
�(�)��(�)�� � = 1, 2, . . . , �,

(8)
�∑
�=1
(∫�
0
�(�)��� (�)���(�)��)�� = ∫

�

0
�(�)��(�)��,

(9)�(�) := � − �.
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(iv) A function � : [�, �]→ ℝ is called a gauge on [�, �]
if �(�) > 0, for every � ∈ [�, �].

 (v)  Given a gauge � on [�, �] and � a tagged partition 
(subpartition) of [�, �], we say that � is �-�ne if

for every � = 1, . . . , �.
De�nition 1. A function � : [�, �] → ℝ is Henstock–Kurzweil 
integrable on [�, �] (brie©y, �� integrable) and � is its integral 
if for every � > 0 there exists a gauge � = �� on [�, �] such 
that for every �-�ne tagged partition {(��, ��) : � = 1, . . . , �} of 
[�, �] the inequality

 holds.

�e integral � is unique as a consequence of Cousin’s 
Lemma. We denote the space of all Henstock–Kurzweil inte-
grable functions by ��([�, �]) and to the value of the integral 
by (��)∫���.

�e �� integral is not an absolute integral in the sense 
that if � : [�, �]→ ℝ is �� integrable on [�, �], the function 
|�| is not necessarily integrable on [�, �] (see [7]). However, if 
|�| is integrable we have the following:

Theorem 2. If �, |�| : [�, �] → ℝ are �� integrable functions 
on [�, �], then

�e following result characterizes the integrability of a func-
tion when there is no particular value that can be predicted as 
the value of the integral, or it is unknown.

Theorem 3 (Cauchy’s criterion). A function � : [�, �] → ℝ is 
�� integrable on [�, �] if and only if for every � > 0 there exists 
a gauge � on [�, �] such that for every �-�ne tagged partitions 
{(��, ��) : � = 1, . . . , �} and {(��, ��) : � = 1, . . . , �} of [�, �] the 
inequality

holds.

Given the relationship between the concept of measura-
bility and integrability, as in the Lebesgue integral, we cannot 
ignore this concept of great relevance in this work, so in this 
section we will present some important results related to 
measurability.

De�nition 4. A function � : [�, �] → ℝ is called simple on 
[�, �] if there is a �nite sequence �� ⊂ [�, �], � = 1, . . . , � 
of measurable sets such that �� ∩ �� = 0 for � ̸= � and 

(10)�� ⊆ (�� − �(��), �� + �(��)),

(11)
����������
�∑
�=1
�(��)�(��) − �

����������
< �

(12)
���������(��)∫

�

�
�
��������� ≤ (��)∫

�

�

���������.

(13)
�����������
�∑
�=1
�(��)�(��) −

�∑
�=1
�(��)�(��)

�����������
≤ �

[�, �] = ⋃��=1�� where �(�) = �� for � ∈ ��, � = 1, . . . , �, i.e. 
� is constant on the measurable set ��.

De�nition 5. A function � : [�, �] → ℝ is Lebesgue 
measurable on [�, �] if and only if there exists a sequence of 
simple functions (��) on [�, �] such that

Theorem 6. If � : [�, �] → ℝ is �� integrable on [�, �], then 
� is Lebesgue measurable on [�, �].

De�nition 7. Let � : [�, �] → ℝ be a function. �e variation 
of � on [�, �] is

�e function � is of bounded variation on [�, �] if �[�,�]� < ∞. 
�e space of all bounded variation functions is denoted by 
��([�, �]).

De�nition 8. A function � : [�, �] → ℝ satis�es the Lipschitz 
condition if there exists � > 0 such that |�(�) − �(�)|
< �|� − �|, �, � ∈ [�, �], and � is of bounded slope variation 
(brie©y, BSV) on [�, �] if

is bounded for all divisions � = �0 < �1 < ⋅ ⋅ ⋅ < �� = �.
�e basic functions of the MEF belong to ��([�, �]). �is 

fact, together with the following �eorem, guarantees that the 
product of functions that appear when applying the MEF is 
�� integrable, [7].

Theorem 9 (of Multiplication). If g ∈ ��([�, �]) and 
� ∈ ��([�, �]), then g� ∈ ��([�, �]).

Observe that in the variational formulation (5), we required 
the derivative of the solution �, the derivatives of the test func-
tions v and the �� integrability of the product of these deriv-
atives with the function �(�). In [12] p. 11, an example that 
this product do not belongs to ��([�, �]) is presented. By to 
guarantee the existence of those integrals, the following 
�eorem will be used, [7].

Theorem 10. A function � is the primitive of a function 
of bounded variation on [�, �] if and only if � satis�es  
the Lipschitz condition and is of bounded slope variation on 
[�, �].

(14)�(�) = lim�→∞ ��(�), almost everywhere in [�, �].

(15)

�[�,�]� = sup{
�∑
�=1

�����(��) − �(��−1)��������{��}��=0 is a partition of [�, �]}.

(16)
�−2∑
�=0

���������
�(��+2) − �(��+1)
��+2 − ��+1 −

�(��+1) − �(��)
��+1 − ��

���������,
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this quadrature is used to solve the integral in [�, �]. Where, 
in (19) and (20), ��,� is de�ned by

(21)
��,� = � + �(� + 1)�(� + 1) (� − �).

4. Numerical Integration for Some Henstock–
Kurzweil Integrable Functions in One 
Dimension

�e numerical integration arises from the di�culty and/or 
impossibility of solving analytically some integrals that are of 
interest to the sciences. �ese di�culties can be due to the 
integration domain, the complexity of the functions, or both. 
�us, the integral of a function �(�) is approximated as a �nite 
sum of the area of rectangles of height �(�) and width ��,

which is similar to the de�nition of Riemann [1, 12]. To cal-
culate the integral numerically, we need a partition of the 
interval [�, �] of � − 1 subintervals and then make the sum of 
the � values of the function �� = �(��) with a weight ��. If the 
function � is integrable in some sense, it is expected that the 
sum of the right hand of (17) converge to the integral when 
� → ∞. Di�erent weights �� and points �� (called nodes) gen-
erate di�erent integration methods [1]. Furthermore, when �
grows, also the precision of the algorithm grows, except for 
rounding errors. In fact, the accuracy of the approximation 
depends strongly on the type of function �(�) that we want 
to integrate, for example, if the function presents some singu-
larity, it is necessary to remove it or split the interval into 
subintervals to avoid adding the singularity.

In the following, we consider three quadrature methods. 
�e �rst is the trapezoid method, which is one of the Newton-
Cotes rules more used in practice.

Trapezoid method. �is quadrature is well-known and it 
is given by

and the corresponding error is obtained from � =
−(�2(�)/12)(� − �)3, where � ∈ [�, �]. �e trapezoid method 
can be applied to a partition of the interval [�, �].

As we have mentioned previously, classical integration 
methods can not be applied directly. �e trapezoid method is 
not enough to solve the integral with �� functions. In what 
follows, we show three quadratures to calculate the numerical 
integrals of �� functions in one dimension.

Open quadrature. It is denoted by �1�(�), and it is de�ned 
as follows, [5],

�is quadrature is used specially for �� functions with a sin-
gularity in � = � in the interval [�, �] since it avoids the sin-
gularity in that point.

Close quadrature. �e approximation �2�(�) is computed 
as follows

(17)∫�
�
�(�)�� ≈

�∑
�=1
���(��),

(18)∫�
�
�(�)�� ≈ � − �2 {�(�) + �(�)},

(19)�1�(�) = � − ��(� + 1)
�∑
�=2
�[�(��,�−1) + �(��,�)].

(20)

�2�(�) = � − ��(� + 1){[�(��,0) + �(��,1)] +
�∑
�=2
�[�(��,�−1) + �(��,�)]},

Table 1: Numerical results for the example 1 with di�erent values 
of �.

�/Quadrature ��(�, �ℎ)
Trapezoid �1�=100 �2�=100 Lobatto

24 0.1160 0.0129 0.0133 0.0132
25 0.1105 0.0025 0.0025 0.0025
28 0.1366 0.0077 0.0076 0.0076
29 0.1600 0.0042 0.0043 0.0042
57 0.8629 0.0032 0.0032 0.0032
88 7.6738 0.0769 0.0741 0.0731
89 8.1056 0.0103 0.0102 0.0103
100 100.9334 0.0133 0.0135 0.0135
111 10.4801 0.0164 0.0167 0.0164
152 5.2819 0.1396 0.1541 0.1257
171 8.0889 0.0270 0.0293 0.0262
172 7.8753 0.1173 0.1205 0.1133
200 366.3114 4.4905 6.3352 3.0698
201 74.8573 0.9151 0.6741 0.6319
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0.6
0.8
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a(
x)

Plot of a(x), coarse mesh

Figure 1: Di�usion parameter �(�), with � = 100. (a) Coarse 
mesh (ℎ = 0.0101). (b) Fine mesh (ℎ = 0.001001).
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Gauss–Lobatto. �is quadrature is given by, [2],

which is exact for polynomials of degree at most 2� + 1, nodes 
��, weights �� and variables � and � can be determined by the 
undetermined coe�cients method.

(22)∫1
−1
�(�)�� ≃

�∑
�=1
���(��) + ��(−1) + ��(1),

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x

–0.1

0

0.1

0.2

0.3

0.4

0.5

u(
x)

Approximate solution uh

Exact Lobatto
Q2

Q1
n = 100

obtained by di�erent quadratures

Trapezoid n = 100

Figure 2: Exact solution �(�) vs approximate solutions �ℎ, � = 100.
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Plot of a(x), h = 0.005

(a)
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1

a(
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Plot of a(x), h = 0.0025

(b)

Figure 3: Di�usion parameter �(�) with � = 400. (a) Mesh with ℎ = 0.00501. (b) Mesh with ℎ = 0.002501.

Table 2: Relative error for di�erent values of � and ℎ. Example 1.

�/Quadrature Trapezoid �1�=100 �2�=100 Lobatto
ℎ = 0.00501, 200 nodes, 199 elements

100 0.5271 0.0403 0.0404 0.0403
200 4.9267 × 103 0.0252 0.0250 0.0251
300 5.5736 0.0695 0.0686 0.0670
400 3.6986 × 103 89.14032 43.0493 234.5809
500 6.6485 0.0307 0.0295 0.0254
1000 4.9344 × 103 0.0400 0.0235 0.0234

ℎ = 0.002501, 400 nodes, 399 elements
100 0.0959 0.0191 0.0192 0.0191
200 0.5558 0.0157 0.0158 0.0157
300 2.3303 0.0085 0.0090 0.0087
400 2.4877 × 103 0.0119 0.0119 0.0118
500 6.4888 0.0074 0.0073 0.0076
1000 6.8514 0.0133 0.0110 0.0143

Table 3: Relative error for di�erent meshes. Example 2.

Quadrature ℎ1 = 0.0101 ℎ2 = 0.00501 ℎ3 = 0.002501
Trapezoid 125.2442 672.2882 0.3648
�1�=100 0.2025 0.0249 0.0097
�2�=100 0.0659 0.0252 0.0098
Lobatto 0.1307 0.0249 0.0097
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5. Numerical Results

In this section, we present some numerical results obtained 
with the methodology proposed in this work. We will show 
how the classic methods of integration are not enough to solve 
elliptical di�erential equations with ��-functions. To test the 
convergence of the numerical results, di�erent meshes are 
considered for the �nite element discretization of the elliptical 
problems.

In order to present the numerical results, we consider the 
following elliptic problem:

Find � ∈ � such that

(24)− ���(�(�)
��(�)
�� ) = �, 0 < � < ℓ.

�e following result about the integration of �� highly 
oscillatory functions near of the singularity, can be found in 
[5].

Theorem 11. Let {��}→ �+ and � � = ����→∞�1�(�) in 
[��+1, ��], where �0 = �. If ∑∞�=0� � converges, then � is ��
integrable in [�, �] and

(23)∫�
�
� = ∞∑
�=0
� �.

0 0.2 0.4 0.6 0.8 1
x
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0

0.1
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0.5

0.6

u(
x)

Approximate solution uh obtained by di�erent quadratures

Q 2
n = 100

Lobatto
Exact
Trapezoid
Q1

n = 100

Figure 5: Exact solution �(�) vs approximate solutions �ℎ(�), with 
ℎ = 0.002501.

Table 4: Relative error for di�erent meshes. Example 3.

Quadra-
ture ℎ1 = 0.01 ℎ2 = 0.005 ℎ3 = 0.0025 �ℎ1,ℎ2 �ℎ1,ℎ2
Trapezoid — — — — —

�1�=10 0.0019 2.7874 × 10−4 1.6793 × 10−4 2.7685 0.7316
�1�=100 3.3854 × 10−4 1.3874 × 10−4 2.4605 × 10−5 1.2869 2.4954
�2�=10 — — — — —
�2�=100 — — — — —
Lobatto 3.3807 × 10−4 3.3075 × 10−4 1.4451 × 10−4 0.0316 1.1946

Table 5: Relative error for di�erent meshes. Example 4, � = 100.
Quadrature ℎ1 = 0.0101 ℎ2 = 0.005 ℎ3 = 0.0025
Trapezoid 1.5190 0.2337 0.0530

�1�=100 0.0252 4.0611 × 10−5 4.7206 × 10−6

�2�=100 0.0252 9.0833 × 10−5 9.4199 × 10−5
Lobatto 0.0255 7.5734 × 10−11 9.6163 × 10−13
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Figure 4: Di�usion parameter �(�), with the mesh obtained by ℎ = 0.0025.
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� increases the relative errors increase too, therefore it will be 
necessary to use �ner meshes. We note that the trapezoid rule 
in not enough to obtain reasonable results, thus we have to 
apply special quadratures for this type of functions. Figure 1 
shows the di�usion parameter in two di�erent meshes, namely, 
a coarse one (ℎ = 0.0101) and �ne one (ℎ = 0.001001), whereas 
Figure 2 shows the exact solution and the approximated solu-
tions using di�erent quadratures, with � = 100.

Table 2 shows the relative errors for two mesh re�nement. 
In this Table, we observe that using special quadratures for 
highly oscillating functions, it is possible to obtain precision. 
Figure 3 shows the di�usion parameter for the two meshes, 
with � = 400.
Example 2. Now, we consider the following di�usion 
parameter �(�), which is a continuous function de�ned by

and the source is given by

(27)�(�) = {{{
10sin(100��) if 0 ≤ � < 0.25,
2cos(150��) if 0.25 ≤ � < 0.75,
7cos(200��) if 0.75 ≤ � < 1,

Also, we consider the domain Ω = (0, 1), i.e., ℓ = 1.
Example 1. For this �rst example, we discretize the domain 
Ω with 100 nodes and 99 elements, i.e., we consider 
ℎ = 0.0101 as the discretization parameter. We consider the 
di�usion parameter and the source as highly oscillating 
functions, given by �(�) = sin(���) and �(�) = 6�sin(���)
−(1 − 3�2)��cos(���), respectively, with � ≫ 1 and 
� ∈ ℕ. �e exact solution of this elliptical problem is given 
by �(�) = �(1 − �2).

�e numerical results are summarized in Table 1, and the 
following relative errors are included:

�ese results are obtained by the FEM, where the integrals 
that appear in (8) are solved using the integration methods 
seen in the previous Section. In addition, we observe that when 

(25)�(0) = 0 = �(ℓ).

(26)��(�, �ℎ) =
�����(�) − �ℎ(�)�����2(Ω)
‖�(�)‖�2(Ω)

.
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Figure 6: (a) Di�usion parameter �(�). (b) Exact solution �(�) vs approximate solutions �ℎ(�) for ℎ = 0.0025.

Table 6: Relative error for di�erent values of �. Example 4, ℎ = 0.005.

�/Quadrature Trapezoid �1�=100 �2�=100 Lobatto

100 0.2337 4.0611 × 10−5 9.0833 × 10−5 7.5734 × 10−13

150 0.6260 1.5657 × 10−4 1.6824 × 10−4 5.0234 × 10−11

250 3.5168 0.0013 0.0012 1.4335 × 10−9

300 10.1033 0.0040 0.0037 1.9332 × 10−11

500 29.8425 0.0130 0.0123 1.5691 × 10−10
1000 60.9681 0.0420 0.0413 0.0256
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�e relative errors for three di�erent meshes and di�erent 
quadratures, for the case � = 100 are summarized in Table 5. 
In order to apply the trapezoid method is necessary to use 
�ner meshes, which is very expensive computationally 
speaking.

�e numerical results reported in Table 6 have been 
obtained taking di�erent values of � and ℎ = 0.005. �is table 
shows that our proposed methodology works. �e exact solu-
tion and the approximate solutions, where � = 500 and 
ℎ = 0.005, are shown in Figure 7. Again, we can note that the 
trapezoid method does not work for the highly oscillatory 
functions.

Example 5. For the �nal experiment, unlike the previous 
ones, let us consider homogeneous Cauchy and Neumann 
boundary conditions, the constant di�usion parameter 
�(�) = 1 and the source �(�) = 1/√�, that is, the only 
��-function for this di�erential equation is �(�).

�e exact solution of this boundary problem is given by 
�(�) = (4/3)�3/2 − 2�.

�e results for di�erent meshes are summarized in 
Table 7. In this case, the results obtained with the trapezoid 

(29)���(�) = 1√� , 0 < � < 1,

(30)�(0) = 0 = ��(1).

�e exact solution of the di�erential equation (24) and (25) is 
�(�) = �(1 − �2).

�e corresponding numerical results have been summa-
rized in Table 3, these results show convergence with the 
re�ned meshes. As in the previous example, the trapezoidal 
rule is not applicable for this kind of functions unless we use 
very re�ned meshes, which is very expensive computationally 
speaking. �e di�usion parameter �(�) and the approximate 
solutions �ℎ, for ℎ = 0.002501, are shown in the Figures 4  
and 5, respectively.

Example 3. We consider the following highly oscillatory 
functions with singularity in � = 0, �(�) = (1/�)sin(1/�)
and �(�) = �(15� − 8)sin(1/�) + (4 − 5�)cos(1/�). �e 
exact solution of this problem, (24) and (25), is given by 
�(�) = �4(1 − �). To discretize Ω, we will use ℎ1 = 0.01, and 
two re�nements, namely ℎ2 = 0.005 and ℎ3 = 0.0025.

In Table 4, the relative errors and the order of convergence 
obtained by three di�erent meshes to solve the elliptic problem 
are shown. In this case, the trapezoid and close quadratures can-
not be applicable for this kind of functions. Also, we note that 
the open quadrature, �1�, has better convergence. In addition, for 
the �rst mesh re�nement, from ℎ1 to ℎ2, we obtain convergence 
of second order, and convergence superlinear, for � = 10 and 
� = 100, respectively. Figure 6 shows the di�usion parameter 
�(�) and the approximate solution �ℎ, for ℎ = 0.0025.
Example 4. In this example, we use the constant di�usion 
parameter �(�) = 1/10 and the following highly oscillatory 
source �(�) = 1/10(��)2sin(���). �e exact solution of the 
elliptical problem (24) and (25) is also highly oscillatory and 
it is given by �(�) = sin(���), with � ≫ 1 and � ∈ ℕ. To 
discretize Ω we used ℎ1 = 0.0101, and two re�nement of the 
mesh, i.e., ℎ2 = 0.005 and ℎ3 = 0.0025.

(28)

�(�) = {{{{{

−1000�(1 − 3�2)cos(100��) + 60�sin(100��) if 0 ≤ � < 0.25,
300�(1 − 3�2)sin(150��) + 12�cos(150��) if 0.25 ≤ � < 0.75,
−1400�(1 − 3�2)cos(200��) + 42�sin(200��) if 0.75 ≤ � < 1.
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Figure 7: Exact solution �(�) vs approximate solutions �ℎ(�), with � = 500 and ℎ = 0.005.

Table 7: Relative errors for di�erent meshes. Example 5.

Quadrature ℎ1 = 0.01 ℎ2 = 0.005 ℎ3 = 0.0025
Trapezoid 0.0118 0.0059 0.0029
�1�=100 0.0115 0.0057 0.0029
�2�=100 0.0015 0.0057 0.0029
Lobatto 0.0015 0.0057 0.0029
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[6]  S. Sánchez-Perales, “�e initial value problem for the 
Schrödinger equation involving the Henstock–Kurzweil 
integral,” Revista de la Unión Matemática Argentina, vol. 58, 
no. 2, pp. 297–306, 2017.

[7]  L. P. Yee, Lanzhou Lectures on Henstock Integration, Real 
Analysis, vol. 2, World Scienti�c, Singapore, 1989.

[8]  S. Sánchez-Perales and J. F. Tenorio, “Laplace transform 
using the Henstock–Kurzweil integral,” Revista de la Unión 
Matemática Argentina, vol. 55, no. 1, pp. 71–81, 2014.

[9]  W. Liu, G. Ye, and D. Zhao, “�e distributional Henstock–
Kurzweil integral and applications II,” �e Journal of Nonlinear 
Sciences and Applications, vol. 10, no. 1, 2017.

[10]  R. Glowinski, “Finite element methods for incompressible 
viscous ©ow,” in Handbook of Numerical Analysis,   
P. G. Ciarlet and J. L. Lions, Eds., vol. IX, pp. 3–1176, Amsterdam, 
North-Holland, 2003.

[11]  S. C. Brenner and L. R. Scott, �e Mathematical �eory of 
Finite Element Methods, vol. 15, Texts in Applied Mathematics, 
Springer, New York, 3rd edition, 2008.

[12]  W. F. Pfe�er, �e Riemann Approach to Integration: Local 
Geometric �eory, vol. 109, Cambridge University Press, 1993.

[13]  R. Glowinski, Variational Methods for the Numerical Solution of 
Nonlinear Elliptic Problems, SIAM, Philadelphia, 2015.

[14]  C. Swartz, Measure, Integration and Function Spaces, World 
Scienti�c, Singapore, 1994.

quadrature are as good as the results obtained by close, open 
and Lobatto quadratures.

6. Conclusions

�e Finite Element Method (FEM) has been used to solve 
di�erential equations when the functions involved are contin-
uous, or they are square-integrable. In this work, the FEM was 
used to solve elliptical problems where the functions involved 
are �� integrable. �e numerical results, developed in the 
numerical examples, have shown the feasibility of FEM when 
special quadratures to solve these problems are used. �e open 
quadrature and the Lobatto quadratures has shown good 
results. �e existence and uniqueness are not studied for the 
problems considered in this work. �ese points, as well as the 
application to other types of �� functions and other types of 
di�erential equations, will be studied in future works.
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