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We investigate a class of fractional Schrödinger-Poisson system via variational methods. By using symmetric mountain pass
theorem, we prove the existence of multiple solutions. Moreover, by using dual fountain theorem, we prove the above system has a
sequence of negative energy solutions, and the corresponding energy values tend to 0. These results extend some known results in
previous papers.

1. Introduction

We consider the following system via variational methods:

(−Δ)𝛼𝑤 + 𝑉 (𝑥)𝑤 + 𝜙𝑤
= 𝑔 (𝑥, 𝑤) + 𝜆ℎ (𝑥) |𝑤|𝑞−2 𝑤, 𝑥 ∈ 𝑅3,

(−Δ)𝛽 𝜙 = 𝑤2, 𝑥 ∈ 𝑅3,
(SP)

where 𝜆 > 0, 1 < 𝑞 < 2, 𝛼, 𝛽 ∈ (0, 1], 2𝛽 + 4𝛼 > 3. (−Δ)𝛼 and(−Δ)𝛽 represent the Laplace operator of the fractional order. If𝛼 = 𝛽 = 1, then the system (SP) degenerates into the standard
Schrödinger-Poisson system, which describes the interaction
between the same charged particles when the magnetic effect
can be ignored [1]. In recent years, the existence, multiplicity,
and centralization of solutions for the Schrödinger-Poisson
system have been deeply studied via variational methods, and
a great number of works have been obtained, see, for example,
[2–8]. On the other hand, (−Δ)𝛼 is a class of nonlocal pseudo-
differential operators. Since nonlocal differential equations
can better and more fully describe the physical experimental
phenomena than classical local differential operators, the
study of nonlinear fractional Laplace equation has become
one of the most popular research fields in nonlinear analysis.

In the literature [9],Wei considered the following system:

(−Δ)𝛼 𝑤 + 𝑉 (𝑥)𝑤 + 𝜙𝑤 = 𝑔 (𝑥, 𝑤) , 𝑥 ∈ R
3,

(−Δ)𝛼 𝜙 = 𝛾𝛼𝑤2, 𝑥 ∈ R
3. (1)

By using the critical point theory, the author obtained
infinitely many solutions when 𝛼 ∈ (0, 1]. In the literature
[10], Teng studied a system of the form

(−Δ)𝛼 𝑤 + 𝑉 (𝑥)𝑤 + 𝜙𝑤 = 𝜃 |𝑤|𝑞−1 𝑤 + |𝑤|2∗𝛼−2𝑤,
𝑥 ∈ R

3,
(−Δ)𝛽 𝜙 = 𝑤2, 𝑥 ∈ R

3,
(2)

where 𝑞 ∈ (1, (3 + 2𝛼)/(3 − 2𝛼)), 𝛼, 𝛽 ∈ (0, 1), 2𝛽 + 2𝛼 >3. In [11], Zhang, Marcos, and Squassina used perturbation
approach to obtain the existence of solutions for the following
system when the nonlinear term is subcritical or critical

(−Δ)𝛼 𝑤 + 𝜆𝜙𝑤 = 𝑔 (𝑤) , 𝑥 ∈ R
3,

(−Δ)𝛽 𝜙 = 𝜆𝑤2, 𝑥 ∈ R
3, (3)
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where 𝜆 > 0, 𝛼, 𝛽 ∈ [0, 1]. In [12], Duarte and Souto
investigated the following system via variational methods

(−Δ)𝛼𝑤 + 𝑉 (𝑥)𝑤 + 𝜙𝑤 = 𝑔 (𝑤) , 𝑥 ∈ R
3,

(−Δ)𝛽 𝜙 = 𝑤2, 𝑥 ∈ R
3, (4)

where 𝛼 ∈ (3/4, 1), 𝛽 ∈ (0, 1), 𝑉 : R3 󳨀→ R is a periodic
potential. A positive solution and a ground state solutionwere
got in [12]. In [13], Li studied a system of the following form:

(−Δ)𝛼 𝑤 + 𝑉 (𝑥)𝑤 + 𝜙𝑤 = 𝑔 (𝑥, 𝑤) , 𝑥 ∈ R
3,

(−Δ)𝛽 𝜙 = 𝑤2, 𝑥 ∈ R
3, (5)

where 𝛼, 𝛽 ∈ (0, 1], 2𝛽+4𝛼 > 3. Combining the perturbation
method with mountain pass theorem, the existence of non-
trivial solutions was obtained in [13]. In [14], Yu, Zhao, and
Zhao studied the following fractional Schrödinger–Poisson
system with critical growth via variational methods

𝜀2𝛼 (−Δ)𝛼 𝑤 + 𝑉 (𝑥)𝑤 + 𝜙𝑤 = |𝑤|2∗𝛼−2 𝑤 + 𝑔 (𝑤) ,
𝑥 ∈ R

3,
𝜀2𝛼 (−Δ)𝛼 𝜙 = 𝑤2, 𝑥 ∈ R

3,
(6)

where 𝛼 ∈ (3/4, 1), 2∗𝛼 = 6/(3 − 2𝛼), the potential 𝑉
is continuous with positive infimum, 𝑔 is continuous and
subcritical at infinity. Under some Monotone hypothesis on𝑔, the existence of positive ground state solution is got in [14].
For small 𝜀 > 0, a multiple result is also got in [14].

Inspired by [9–16], in this paper, we prove the existence
of multiple solutions for system (SP) by symmetric mountain
pass theorem. Moreover, we prove the system (SP) has
a sequence of negative energy solutions by dual fountain
theorem. The assumptions on 𝑉 and nonlinearity 𝑔 in this
paper are given below:

(V) 𝑉 ∈ 𝐶(R3,R), 𝑉0 fl inf𝑥∈R3 𝑉(𝑥) > 0 and
lim|𝑥|󳨀→+∞ 𝑉(𝑥) = +∞;

(H1) 𝑔 ∈ 𝐶(R3 × R,R), and there exists 𝐶1 > 0 such
that |𝑔(𝑥, 𝑤)| ≤ 𝐶1(|𝑤| + |𝑤|𝑝−1), where 𝑝 ∈ (4, 2∗𝛼), 2∗𝛼 =6/(3 − 2𝛼);

(H2) there exist 𝜅 > 4 and 𝑟 > 0 such that 0 <𝜅𝐺(𝑥,𝑤) fl 𝜅 ∫𝑤
0

𝑔(𝑥, 𝑡)𝑑𝑡 ≤ 𝑔(𝑥, 𝑤)𝑤, for |𝑤| ≥ 𝑟. Moreover,
inf𝑥∈R3 ,|𝑤|=𝑟𝐺(𝑥, 𝑤) > 0;

(H3) 𝑔(𝑥, −𝑤) = −𝑔(𝑥, 𝑤), 𝑥 ∈ R3, 𝑤 ∈ R;
(H4) ℎ : R3 󳨀→ R+, and ℎ ∈ 𝐿2/(2−𝑞)(R3).

2. Preliminaries

For 1 ≤ ] < ∞, 𝐿](R3) denotes the usual Lebesgue space
with norm ‖𝑤‖] = (∫

R3
|𝑤|]𝑑𝑥)1/]. Fix 𝛼 ∈ (0, 1), fractional

Sobolev space 𝐻𝛼(R3) denoted as

𝐻𝛼 (R3)
fl {𝑤 ∈ 𝐿2 (R3) : ∫

R3
(1 + |𝑙|2𝛼) |F𝑤 (𝑙)|2 𝑑𝑙 < ∞} , (7)

equipped with the norm

‖𝑤‖𝐻𝛼 = (∫
R3

(|F𝑤 (𝑙)|2 + |𝑙|2𝛼 |F𝑤 (𝑙)|2) 𝑑𝑙)1/2 , (8)

whereF𝑤 denotes the Fourier transform of function 𝑤. Let𝑔 ∈ 𝐶∞
0 (R3); the fractional Laplacian operator (−Δ)𝛼 :𝐶∞

0 (R3) 󳨀→ (𝐶∞
0 (R3))󸀠 is defined by

(−Δ)𝛼 𝑔 = F
−1 (|𝑙|2𝛼 (F𝑔)) , 𝑙 ∈ R

3. (9)

According to Plancherel theorem [17], one has ‖F𝑤‖2 =‖𝑤‖2, ‖|𝑙|𝛼F𝑤‖2 = ‖(−Δ)𝛼/2𝑤‖2. By (8), we define the
equivalent norm

‖𝑤‖𝐻𝛼 = (∫
R3

(󵄨󵄨󵄨󵄨󵄨(−Δ)𝛼/2 𝑤 (𝑥)󵄨󵄨󵄨󵄨󵄨2 + |𝑤 (𝑥)|2) 𝑑𝑥)1/2 . (10)

𝐷𝛼,2(R3) is denoted as

𝐷𝛼,2 (R3) = {𝑤 ∈ 𝐿2∗𝛼 (R3) : |𝑙|𝛼F𝑤 (𝑙) ∈ 𝐿2 (R3)} . (11)

In particular, 𝐷𝛼,2(R3) is the completion of 𝐶∞
0 (R3), with

respect to the norm

‖𝑤‖𝐷𝛼,2 = (∫
R3

󵄨󵄨󵄨󵄨󵄨(−Δ)𝛼/2 𝑤󵄨󵄨󵄨󵄨󵄨2 𝑑𝑥)
1/2

= (∫
R3

|𝑙|2𝛼 |F𝑤 (𝑙)|2 𝑑𝑙)1/2 .
(12)

𝐿𝑞(R3, ℎ), 𝑞 ∈ (1, 2) represents a weighted Lebesgue space,
that is,

𝐿𝑞 (R3, ℎ) = {𝑤 : R3

󳨀→ R is measurable and ∫
R3

ℎ (𝑥) |𝑤|𝑞 𝑑𝑥
< +∞} ,

(13)

equipped with the norm

‖𝑤‖𝐿𝑞(R3 ,ℎ) = (∫
R3

ℎ (𝑥) |𝑤|𝑞 𝑑𝑥)1/𝑞 . (14)

For convenience, we use 𝐶 to represent any positive
constants which may change from line to line. According to
[18], the embedding 𝐻𝛼(R3) 󳨅→ 𝐿](R3) is continuous for all
] ∈ [2, 2∗𝛼], i.e., there exists 𝑀] > 0 satisfying

‖𝑤‖] ≤ 𝑀] ‖𝑤‖𝐻𝛼 , 𝑤 ∈ 𝐻𝛼 (R3) . (15)

So, the embedding 𝐻𝛼(R3) 󳨅→ 𝐿](R3) is continuous when2𝛽 + 4𝛼 > 3. Fix 𝑤 ∈ 𝐻𝛼(R3); we define the nonlinear
operator 𝐿𝑤 : 𝐷𝛽,2(R3) 󳨀→ R by

𝐿𝑤 (V) = ∫
R3

𝑤2V𝑑𝑥. (16)
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Hence

󵄨󵄨󵄨󵄨𝐿𝑤 (V)󵄨󵄨󵄨󵄨 ≤ (∫
R3

|𝑤 (𝑥)|12/(3+2𝛽) 𝑑𝑥)(3+2𝛽)/6

⋅ (∫
R3

|V (𝑥)|2∗𝛽 𝑑𝑥)1/2∗𝛽

≤ 𝐶(∫
R3

|𝑤 (𝑥)|12/(3+2𝛽) 𝑑𝑥)(3+2𝛽)/6 ‖V‖𝐷𝛽,2
≤ 𝐶 ‖𝑤‖2 ‖V‖𝐷𝛽,2 .

(17)

By Lax-Milgram theorem, we can find a unique 𝜙𝛽𝑤 ∈𝐷𝛽,2(R3) such that

∫
R3

(−Δ)𝛽/2 𝜙𝛽𝑤 (−Δ)𝛽/2 V𝑑𝑥 = ∫
R3

𝑤2V𝑑𝑥,
∀V ∈ 𝐷𝛽,2 (R3) ,

(18)

and 𝜙𝛽𝑤 is expressed as

𝜙𝛽𝑤 (𝑥) = 𝑐𝛽 ∫
R3

𝑤2 (𝑦)󵄨󵄨󵄨󵄨𝑥 − 𝑦󵄨󵄨󵄨󵄨3−2𝛽 𝑑𝑦,

where 𝑐𝛽 = Γ (3/2 − 2𝛽)
𝜋3/222𝛽Γ (𝛽) .

(19)

According to (19), 𝜙𝛽𝑤 ≥ 0 for all 𝑥 ∈ R3. Since 𝛽 ∈ (0, 1],2𝛽 + 4𝛼 > 3, we can also get 12/(3 + 2𝛽) ∈ (2, 2∗𝛼). Together
with (17) and (18),

󵄩󵄩󵄩󵄩󵄩𝜙𝛽𝑤󵄩󵄩󵄩󵄩󵄩𝐷𝛽,2 = ∫
R3

󵄨󵄨󵄨󵄨󵄨(−Δ)𝛽/2 𝜙𝛽𝑤󵄨󵄨󵄨󵄨󵄨2 𝑑𝑥
≤ 𝐶(∫

R3
|𝑤 (𝑥)|12/(3+2𝛽) 𝑑𝑥)(3+2𝛽)/6

≤ 𝐶 ‖𝑤‖2 .
(20)

From Hölder’s inequality and (19),

∫
R3

𝜙𝛽𝑤𝑤2𝑑𝑥
≤ 𝐶(∫

R3
|𝑤 (𝑥)|(12/(3+2𝛼))𝑑𝑥)(3+2𝛼)/6 󵄩󵄩󵄩󵄩󵄩𝜙𝛽𝑤󵄩󵄩󵄩󵄩󵄩𝐷𝛽,2

≤ 𝐶 ‖𝑤‖2 󵄩󵄩󵄩󵄩󵄩𝜙𝛽𝑤󵄩󵄩󵄩󵄩󵄩𝐷𝛽,2 ≤ 𝐶 ‖𝑤‖4 .
(21)

Evidently,

∫
R3

𝜙𝛽𝑤𝑤2𝑑𝑥 ≤ 𝐶 ‖𝑤‖4 . (22)

Substituting (18) into system (SP), system (SP) is equivalent
to

(−Δ)𝛼 𝑤 + 𝑉 (𝑥)𝑤 + 𝜙𝛽𝑤𝑤
= 𝑔 (𝑥, 𝑤) + 𝜆ℎ (𝑥) |𝑤|𝑞−2 𝑤. (S)

For the equation (S), we define the work space 𝐸 as

𝐸 fl {𝑤 ∈ 𝐻𝛼 (R3) : ∫
R3

𝑉 (𝑥)𝑤2𝑑𝑥 < ∞} , (23)

with

‖𝑤‖ = (∫
R3

(󵄨󵄨󵄨󵄨󵄨(−Δ)𝛼/2 𝑤󵄨󵄨󵄨󵄨󵄨2 + 𝑉 (𝑥)𝑤2) 𝑑𝑥)1/2 . (24)

Lemma 1 (see [19]). Assume condition (V) holds, 𝛼 ∈ (0, 1),
] ∈ [2, 2∗𝛼); then the embedding 𝐸 󳨅→ 𝐿](R3) is compact.

From (V) and (H1)-(H4), 𝐼 : 𝐸 󳨀→ R

𝐼 (𝑤) = 12 ∫
R3

(󵄨󵄨󵄨󵄨󵄨(−Δ)𝛼/2 𝑤󵄨󵄨󵄨󵄨󵄨2 + 𝑉 (𝑥)𝑤2) 𝑑𝑥
+ 14 ∫

R3
𝜙𝛽𝑤𝑤2𝑑𝑥 − ∫

R3
𝐺 (𝑥, 𝑤) 𝑑𝑥

− 𝜆𝑞 ∫
R3

ℎ (𝑥) |𝑤|𝑞 𝑑𝑥.
(25)

is well defined. Moreover, by Lemma 1, 𝐼 ∈ 𝐶1(𝐸,R) with
⟨𝐼󸀠 (𝑤) , V⟩

= ∫
R3

((−Δ)𝛼/2 𝑤 (−Δ)𝛼/2 V + 𝑉 (𝑥)𝑤V) 𝑑𝑥
+ ∫

R3
𝜙𝛽𝑤𝑤V𝑑𝑥 − ∫

R3
𝑔 (𝑥, 𝑤) V𝑑𝑥

− 𝜆∫
R3

ℎ (𝑥) |𝑤|𝑞−2 𝑤V𝑑𝑥, V ∈ 𝐸

(26)

Proposition 2. (i) If equation (S) has a solution 𝑤 ∈ 𝐸, then
system (SP) has a solution (𝑤, 𝜙) ∈ 𝐸 × 𝐷𝛽,2(R3).

(ii) If for every V ∈ 𝐸, the following equation
∫
R3

((−Δ)𝛼/2 𝑤 (−Δ)𝛼/2 V + 𝑉 (𝑥)𝑤V) 𝑑𝑥
+ ∫

R3
𝜙𝛽𝑤𝑤V𝑑𝑥 − ∫

R3
𝑔 (𝑥, 𝑤) V𝑑𝑥

− 𝜆∫
R3

ℎ (𝑥) |𝑤|𝑞−2 𝑤V𝑑𝑥 = 0
(27)

holds, then 𝑤 ∈ 𝐸 is a solution of (S).
Set {𝑒𝑖}∞𝑖=1 as a set of normalized orthogonal basis of 𝐸,𝑋𝑖 = 𝑅𝑒𝑖. 𝑌𝑘 = ⊕𝑘𝑖=1𝑋𝑖, 𝑍𝑘 = ⊕∞𝑖=𝑘+1𝑋𝑖, 𝑘 ∈ N. Obviously,𝐸 = 𝑌𝑘 ⊕ 𝑍𝑘.

Definition 3 (see [20, 21]). Set 𝐼 ∈ 𝐶1(𝐸,R), 𝑐 ∈ R. If any
sequence {𝑤𝑛} ⊂ 𝐸 satisfying

𝐼 (𝑤𝑛) 󳨀→ 𝑐,
𝐼󸀠 (𝑤𝑛) 󳨀→ 0,

𝑛 󳨀→ ∞,
(28)
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has a convergent subsequence, then 𝐼 satisfies the (𝑃𝑆)𝑐
condition. Any sequence satisfying (28) is called the (𝑃𝑆)𝑐
sequence.

Definition 4 (see [21, 22]). Set 𝐼 ∈ 𝐶1(𝐸,R), 𝑐 ∈ R. If every
sequence {𝑤𝑛𝑗

} ⊂ 𝐸, satisfying
𝑤𝑛𝑗

∈ 𝑌𝑛𝑗 ,
𝐼 (𝑤𝑛𝑗

) 󳨀→ 𝑐,
𝐼|󸀠𝑌𝑛𝑗 󳨀→ 0,

𝑛 󳨀→ ∞,

(29)

has a convergent subsequence, then 𝐼 satisfies the (𝑃𝑆)∗𝑐
condition.

Proposition 5 (see [23]). Let 𝐸 = 𝑌 ⊕ 𝑍 be a Banach space
with dim𝑌 < ∞. Assume 𝐼 ∈ 𝐶1(𝐸,R) is an even functional
and satisfies the (𝑃𝑆)𝑐 condition and

(A1) there exist 𝜔, 𝜇 > 0 satisfying 𝐼𝜕𝐵𝜔∩𝑍 =
inf𝑤∈𝑍,‖𝑤‖=𝜔 𝐼(𝑤) ≥ 𝜇;

(A2) for every linear subspace 𝑈 ⊂ 𝐸 with dim𝑈 < ∞,
there exists a constant 𝐿 = 𝐿(𝑈) such thatmax𝑤∈𝑈,‖𝑤‖≥𝐿 𝐼(𝑤) <0,

then 𝐼 has a list of unbounded critical points.
Proposition 6 (see [22]). Assume that 𝐼 ∈ 𝐶1(𝐸,R) is an even
functional, 𝑘0 ∈ N. If for any 𝑘 > 𝑘0, there exist 𝑟𝑘 > 𝛾𝑘 > 0
such that

(C1) 𝑏𝑘 = inf{𝐼(𝑤) : 𝑤 ∈ 𝑍𝑘, ‖𝑤‖ = 𝑟𝑘} ≥ 0;
(C2) 𝑎𝑘 = max{𝐼(𝑤) : 𝑤 ∈ 𝑌𝑘, ‖𝑤‖ = 𝛾𝑘} < 0;
(C3) 𝑐𝑘 = inf{𝐼(𝑤) : 𝑤 ∈ 𝑍𝑘, ‖𝑤‖ ≤ 𝑟𝑘} 󳨀→ 0, 𝑘 󳨀→ ∞;
(C4) for every 𝑐 ∈ [𝑐𝑘0 , 0], 𝐼 satisfies the (𝑃𝑆)∗𝑐 condition,

then 𝐼 has a sequence of negative critical points that converge
to 0.
3. Main Results

Lemma 7. If hypotheses (V) and (H1)-(H4) hold, then for any𝑐 ∈ R, 𝐼 satisfies the (𝑃𝑆)𝑐 condition.
Proof. First, we prove the (𝑃𝑆)𝑐 sequence {𝑤𝑛} of 𝐼 is
bounded. According to (H4), it is easy to get that

∫
R3

ℎ (𝑥) 󵄨󵄨󵄨󵄨𝑤𝑛
󵄨󵄨󵄨󵄨𝑞 𝑑𝑥

≤ (∫
R3

|ℎ (𝑥)|2/(2−𝑞) 𝑑𝑥)(2−𝑞)/2 (∫
R3

󵄨󵄨󵄨󵄨𝑤𝑛
󵄨󵄨󵄨󵄨2 𝑑𝑥)𝑞/2

≤ ‖ℎ‖2/(2−𝑞) ‖𝑤‖𝑞2 ≤ 𝑀𝑞
2 ‖ℎ‖2/(2−𝑞) 󵄩󵄩󵄩󵄩𝑤𝑛

󵄩󵄩󵄩󵄩𝑞 .
(30)

By condition (H2), there exists 𝑟 > 0 such that

𝑔 (𝑥, 𝑤)𝑤 ≥ 𝜅𝐺 (𝑥, 𝑤) , |𝑤| ≥ 𝑟. (31)

Moreover, for any given 𝐶0 ∈ (0, (1/16)𝑉0), we can choose a
constant 𝛿 > 0 such that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨 1𝜅𝑔 (𝑥, 𝑤)𝑤 − 𝐺 (𝑥, 𝑤)󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ 𝐶0𝑤2, for |𝑤| ≤ 𝛿. (32)

From condition (H1), when 𝛿 ≤ |𝑢| ≤ 𝑟, one has
󵄨󵄨󵄨󵄨󵄨󵄨󵄨 1𝜅𝑔 (𝑥, 𝑤)𝑤 − 𝐺 (𝑥, 𝑤)󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ 𝐶(1𝛿 + 𝑟𝑝−2)𝑤2. (33)

So, for any |𝑤| ≤ 𝑟,
󵄨󵄨󵄨󵄨󵄨󵄨󵄨 1𝜅𝑔 (𝑥, 𝑤)𝑤 − 𝐺 (𝑥, 𝑤)󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ 𝐶0𝑤2 + 𝐶(1𝛿 + 𝑟𝑝−2)𝑤2. (34)

For lim|𝑥|󳨀→+∞ 𝑉(𝑥) = +∞, there exists 𝐿 > 𝑟 > 0 such that

116𝑉 (𝑥) > 𝐶(1𝛿 + 𝑟𝑝−2) , |𝑥| ≥ 𝐿. (35)

Now (34) implies

14 ∫
𝑅3

𝑉 (𝑥)𝑤2
𝑛𝑑𝑥

+ ∫
|𝑤𝑛(𝑥)|≤𝑟

[1𝜅𝑔 (𝑥, 𝑤𝑛) 𝑤𝑛 − 𝐺 (𝑥, 𝑤𝑛)] 𝑑𝑥
≥ 14 ∫

R3
𝑉 (𝑥)𝑤2

𝑛𝑑𝑥
− ∫

|𝑤𝑛(𝑥)|≤𝑟
[𝐶0

󵄨󵄨󵄨󵄨𝑤𝑛
󵄨󵄨󵄨󵄨2 + 𝐶(1𝛿 + 𝑟𝑝−2) 󵄨󵄨󵄨󵄨𝑤𝑛

󵄨󵄨󵄨󵄨2] 𝑑𝑥
= 18 ∫

R3
𝑉 (𝑥)𝑤2

𝑛𝑑𝑥 − ∫
|𝑤𝑛(𝑥)|≤𝑟

𝐶0
󵄨󵄨󵄨󵄨𝑤𝑛

󵄨󵄨󵄨󵄨2 𝑑𝑥
+ 18 ∫

R3
𝑉(𝑥)𝑤2

𝑛𝑑𝑥
− ∫

|𝑤𝑛(𝑥)|≤𝑟
𝐶(1𝛿 + 𝑟𝑝−2) 󵄨󵄨󵄨󵄨𝑤𝑛

󵄨󵄨󵄨󵄨2 𝑑𝑥
≥ ∫

|𝑤𝑛(𝑥)|≤𝑟
[ 116𝑉0 − 𝐶0]𝑤2

𝑛𝑑𝑥
+ 18 ∫

R3
𝑉(𝑥)𝑤2

𝑛𝑑𝑥 − 𝐶(1𝛿 + 𝑟𝑝−2) 𝑟2
⋅ 𝑚𝑒𝑎𝑠 {𝑥 ∈ R

3 | |𝑥| ≤ 𝐿} ≥ 18 ∫
R3

𝑉 (𝑥)𝑤2
𝑛𝑑𝑥

− 𝐶(1𝛿 + 𝑟𝑝−2) 𝑟2 ⋅ 𝑚𝑒𝑎𝑠 {𝑥 ∈ R
3 | |𝑥| ≤ 𝐿} .

(36)
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Since {𝑤𝑛} is the (𝑃𝑆)𝑐 sequence, when 𝑛 is large enough,
𝑐 + 󵄩󵄩󵄩󵄩𝑤𝑛

󵄩󵄩󵄩󵄩 ≥ 𝐼 (𝑤𝑛) − 1𝜅 ⟨𝐼󸀠 (𝑤𝑛) , 𝑤𝑛⟩
= (12 − 1𝜅)∫

R3
(󵄨󵄨󵄨󵄨∇𝑤𝑛

󵄨󵄨󵄨󵄨2 + 𝑉 (𝑥)𝑤2
𝑛) 𝑑𝑥

+ (14 − 1𝜅)∫
R3

𝜙2𝑤𝑛𝑤2
𝑛𝑑𝑥

+ ∫
R3

[1𝜅𝑔 (𝑥, 𝑤𝑛) 𝑤𝑛 − 𝐺 (𝑥, 𝑤𝑛)] 𝑑𝑥
+ (1𝜅 − 1𝑞)𝜆∫

R3
ℎ (𝑥) 󵄨󵄨󵄨󵄨𝑤𝑛

󵄨󵄨󵄨󵄨𝑞 𝑑𝑥
≥ 14 ∫

R3
(󵄨󵄨󵄨󵄨∇𝑤𝑛

󵄨󵄨󵄨󵄨2 + 𝑉 (𝑥)𝑤2
𝑛) 𝑑𝑥

+ ∫
R3

[1𝜅𝑔 (𝑥, 𝑤𝑛) 𝑤𝑛 − 𝐺 (𝑥, 𝑤𝑛)] 𝑑𝑥
− (1𝑞 − 1𝜅)𝜆𝑀𝑞

2 ‖ℎ‖2/(2−𝑞) 󵄩󵄩󵄩󵄩𝑤𝑛
󵄩󵄩󵄩󵄩𝑞

≥ 14 ∫
R3

󵄨󵄨󵄨󵄨∇𝑤𝑛
󵄨󵄨󵄨󵄨2 𝑑𝑥 + 14 ∫

R3
𝑉 (𝑥)𝑤2

𝑛𝑑𝑥
+ ∫

|𝑤𝑛(𝑥)|≤𝑟
[1𝜅𝑔 (𝑥, 𝑤𝑛) 𝑤𝑛 − 𝐺 (𝑥, 𝑤𝑛)] 𝑑𝑥

− (1𝑞 − 1𝜅)𝜆𝑀𝑞
2 ‖ℎ‖2/(2−𝑞) 󵄩󵄩󵄩󵄩𝑤𝑛

󵄩󵄩󵄩󵄩𝑞 .

(37)

Thus, according to (36), when 𝑛 is large enough,
𝑐 + 󵄩󵄩󵄩󵄩𝑤𝑛

󵄩󵄩󵄩󵄩
≥ 14 ∫

R3

󵄨󵄨󵄨󵄨∇𝑤𝑛
󵄨󵄨󵄨󵄨2 𝑑𝑥 + 14 ∫

R3
𝑉 (𝑥)𝑤2

𝑛𝑑𝑥
+ ∫

|𝑤𝑛(𝑥)|≤𝑟
[1𝜅𝑔 (𝑥, 𝑤𝑛) 𝑤𝑛 − 𝐺 (𝑥, 𝑤𝑛)] 𝑑𝑥

− (1𝑞 − 1𝜅)𝜆𝑀𝑞
2 ‖ℎ‖2/(2−𝑞) 󵄩󵄩󵄩󵄩𝑤𝑛

󵄩󵄩󵄩󵄩𝑞

≥ 18 󵄩󵄩󵄩󵄩𝑤𝑛
󵄩󵄩󵄩󵄩2 − 𝐶(1𝛿 + 𝑟𝑝−2) 𝑟2

⋅ 𝑚𝑒𝑎𝑠 {𝑥 ∈ R
3 | |𝑥| ≤ 𝐿}

− (1𝑞 − 1𝜅)𝜆𝑀𝑞
2 ‖ℎ‖2/(2−𝑞) 󵄩󵄩󵄩󵄩𝑤𝑛

󵄩󵄩󵄩󵄩𝑞 .

(38)

Therefore, {𝑤𝑛} is a bounded sequence in 𝐸. By Lemma 1,
there exists 𝑤 ∈ 𝐸 such that

𝑤𝑛 ⇀ 𝑤 in 𝐸,
𝑤𝑛 󳨀→ 𝑤 in 𝐿] (R3) ,

𝑤𝑛 (𝑥) 󳨀→ 𝑤 (𝑥) a.e. on R
3.

(39)

Next, we define the linear operator 𝐵𝜑 : 𝐸 󳨀→ R as

𝐵𝜑 (V) = (−Δ)𝛼/2 𝜑 (−Δ)𝛼/2 V. (40)

From Hölder’s inequality, we obtain
󵄨󵄨󵄨󵄨󵄨𝐵𝜑 (V)󵄨󵄨󵄨󵄨󵄨 ≤ 󵄩󵄩󵄩󵄩𝜑󵄩󵄩󵄩󵄩 ‖V‖ , V ∈ 𝐸. (41)

Now by Lemma 1 and (22),
󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫R3 𝜙𝛽𝑤𝑛𝑤𝑛 (𝑤𝑛 − 𝑤)𝑑𝑥󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 󵄩󵄩󵄩󵄩󵄩𝜙𝛽𝑤𝑛󵄩󵄩󵄩󵄩󵄩2∗
𝛽

󵄩󵄩󵄩󵄩𝑤𝑛
󵄩󵄩󵄩󵄩12/(3+2𝛽) 󵄩󵄩󵄩󵄩𝑤𝑛 − 𝑤󵄩󵄩󵄩󵄩12/(3+2𝛽)

≤ 𝐶 󵄩󵄩󵄩󵄩󵄩𝜙𝛽𝑤𝑛󵄩󵄩󵄩󵄩󵄩D𝛽,2 󵄩󵄩󵄩󵄩𝑤𝑛
󵄩󵄩󵄩󵄩12/(3+2𝛽) 󵄩󵄩󵄩󵄩𝑤𝑛 − 𝑤󵄩󵄩󵄩󵄩12/(3+2𝛽)

≤ 𝐶 󵄩󵄩󵄩󵄩𝑤𝑛
󵄩󵄩󵄩󵄩312/(3+2𝛽) 󵄩󵄩󵄩󵄩𝑤𝑛 − 𝑤󵄩󵄩󵄩󵄩12/(3+2𝛽)

≤ 𝐶 󵄩󵄩󵄩󵄩𝑤𝑛
󵄩󵄩󵄩󵄩3 󵄩󵄩󵄩󵄩𝑤𝑛 − 𝑤󵄩󵄩󵄩󵄩12/(3+2𝛽) .

(42)

Similarly, we can also prove
󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫R3 𝜙𝛽𝑤𝑤 (𝑤𝑛 − 𝑤)𝑑𝑥󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ 𝐶 ‖𝑤‖3 󵄩󵄩󵄩󵄩𝑤𝑛 − 𝑤󵄩󵄩󵄩󵄩12/(3+2𝛽) . (43)

Since 𝑤𝑛 󳨀→ 𝑤 in 𝐿](R3)(] ∈ [2, 2∗𝛼)), lim𝑛󳨀→∞ ∫
R3

(𝜙𝛽𝑤𝑛𝑤𝑛 −
𝜙𝛽
𝑤
𝑤)(𝑤𝑛 − 𝑤)𝑑𝑥 = 0.
At last, combining Hölder’s inequality with (H1) and

(H4), we can easily get

lim
𝑛󳨀→∞

∫
R3

(𝑔 (𝑥, 𝑤𝑛) − 𝑔 (𝑥, 𝑤)) (𝑤𝑛 − 𝑤) 𝑑𝑥 = 0,
lim
𝑛󳨀→∞

∫
R3

(ℎ (𝑥) 󵄨󵄨󵄨󵄨𝑤𝑛
󵄨󵄨󵄨󵄨𝑞−2 𝑤𝑛 − ℎ (𝑥) |𝑤|𝑞−2 𝑤)

⋅ (𝑤𝑛 − 𝑤) 𝑑𝑥 = 0.
(44)

Thus

𝑜 (1) = ⟨𝐼󸀠 (𝑤𝑛) − 𝐼󸀠 (𝑤) , 𝑤𝑛 − 𝑤⟩
= 𝐵𝑤𝑛 (𝑤𝑛 − 𝑤) − 𝐵𝑤 (𝑤𝑛 − 𝑤)

+ ∫
R3

𝑉 (𝑥)𝑤𝑛 (𝑤𝑛 − 𝑤) − 𝑉 (𝑥)𝑤 (𝑤𝑛 − 𝑤)𝑑𝑥
+ ∫

R3
(𝑔 (𝑥, 𝑤𝑛) − 𝑔 (𝑥, 𝑤)) (𝑤𝑛 − 𝑤) 𝑑𝑥

+ 𝜆∫
R3

ℎ (𝑥) (󵄨󵄨󵄨󵄨𝑤𝑛
󵄨󵄨󵄨󵄨𝑞−2 𝑤𝑛 − |𝑤|𝑞−2𝑤) (𝑤𝑛 − 𝑤) 𝑑𝑥

+ ∫
R3

(𝜙𝛽𝑤𝑛𝑤𝑛 − 𝜙𝛽𝑤𝑤) (𝑤𝑛 − 𝑤) 𝑑𝑥
= 𝐵𝑤𝑛 (𝑤𝑛 − 𝑤) − 𝐵𝑤 (𝑤𝑛 − 𝑤)

+ ∫
R3

𝑉 (𝑥)𝑤𝑛 (𝑤𝑛 − 𝑤) − 𝑉 (𝑥)𝑤 (𝑤𝑛 − 𝑤)𝑑𝑥
+ 𝑜 (1) ,

(45)
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that is,
󵄩󵄩󵄩󵄩𝑤𝑛 − 𝑤󵄩󵄩󵄩󵄩2 = 𝐵𝑤𝑛 (𝑤𝑛 − 𝑤) − 𝐵𝑤 (𝑤𝑛 − 𝑤)

+ ∫
R3

𝑉 (𝑥) (𝑤𝑛 − 𝑤)2 𝑑𝑥 󳨀→ 0. (46)

Lemma 8. If hypotheses (V) and (H1)-(H4) hold, then 𝐼
satisfies (𝑃𝑆)∗𝑐 condition for all 𝑐 ∈ R.

Proof. By Definition 4, we just prove the following fact: if for
any 𝑐 ∈ R, {𝑤𝑛𝑗

} ⊂ 𝐸, and 𝑤𝑛𝑗
∈ 𝑌𝑛𝑗 , 𝐼(𝑤𝑛𝑗

) 󳨀→ 𝑐, 𝐼|󸀠𝑌𝑛𝑗 󳨀→ 0,
as 𝑛𝑗 󳨀→ ∞, then {𝑤𝑛𝑗

} has a convergence subsequence. The
proof method is similar to Lemma 7.

Lemma 9 (see [24]). For 2 ≤ ] < 2∗𝛼, 𝑘 ∈ N, set

𝛽] (𝑘) fl sup {‖𝑤‖] : 𝑤 ∈ 𝑍𝑘, ‖𝑤‖ = 1} , (47)

and then 𝛽](𝑘) 󳨀→ 0, 𝑘 󳨀→ ∞.

Theorem 10. If hypotheses (V) and (H1)-(H4) hold, then we
can find 𝜆0 > 0, such that system (SP) has multiple solutions
for every 𝜆 < 𝜆0. Moreover, the corresponding energy values
tend to infinity.

Proof. According to Lemma 7, 𝐼 satisfies (𝑃𝑆)𝑐 condition. We
only need to prove that 𝐼 satisfies (A1) and (A2). By virtue of
(H1),

|𝐺 (𝑥, 𝑤)| ≤ 𝐶12 |𝑤|2 + 𝐶1𝑝 |𝑤|𝑝 , (𝑥, 𝑤) ∈ R
3 × R. (48)

From Lemma 9, we can get

𝐼 (𝑤) = 12 ∫
R3

(󵄨󵄨󵄨󵄨󵄨(−Δ)𝛼/2 𝑤󵄨󵄨󵄨󵄨󵄨2 + 𝑉 (𝑥)𝑤2) 𝑑𝑥 + 14
⋅ ∫

R3
𝜙𝛽𝑤𝑤2𝑑𝑥 − ∫

R3
𝐺 (𝑥, 𝑤) 𝑑𝑥 − 𝜆𝑞

⋅ ∫
R3

ℎ (𝑥) |𝑤|𝑞 𝑑𝑥 ≥ 12 ‖𝑤‖2 − 𝐶12 ∫
R3

|𝑤|2 𝑑𝑥
− 𝐶1𝑝 ∫

R3
|𝑤|𝑝 𝑑𝑥 − 𝑀𝑞

2𝜆 ‖ℎ‖2/(2−𝑞) ‖𝑤‖𝑞 ≥ 12 ‖𝑤‖2

− 𝐶12 𝛽22 (𝑘) ‖𝑤‖2 − 𝐶1𝑝 𝑀𝑝
𝑝 ‖𝑤‖𝑝 − 𝑀𝑞

2𝜆 ‖ℎ‖2/(2−𝑞)
⋅ ‖𝑤‖𝑞 ≥ ‖𝑤‖2 [12 − 𝐶12 𝛽22 (𝑘) − 𝐶1𝑀𝑝

𝑝 ‖𝑤‖𝑝−2
− 𝑀𝑞

2𝜆 ‖ℎ‖2/(2−𝑞) ‖𝑤‖𝑞−2] .

(49)

Take a sufficiently large 𝑘 such that 𝛽22(𝑘) < 1/2𝐶1.
Combining the above inequality, we obtain

𝐼 (𝑤) ≥ ‖𝑤‖2
⋅ [14 − 𝐶1𝑀𝑝

𝑝 ‖𝑤‖𝑝−2 − 𝑀𝑞
2𝜆 ‖ℎ‖2/(2−𝑞) ‖𝑤‖𝑞−2] . (50)

Set

𝜂 (𝑡) = 14 − 𝐶1𝑀𝑝
𝑝𝑡𝑝−2 − 𝑀𝑞

2𝜆 ‖ℎ‖2/(2−𝑞) 𝑡𝑞−2, 𝑡 > 0. (51)

Since 1 < 𝑞 < 2 < 𝑝, there exists

𝜔𝜆 fl (𝜆 (2 − 𝑞)𝑀𝑞
2 ‖ℎ‖2/(2−𝑞)𝐶1𝑀𝑝

𝑝 (𝑝 − 2) )
1/(𝑝−𝑞)

> 0, (52)

such that max𝑡∈R+ 𝜂(𝑡) = 𝜂(𝜔𝜆). Therefore, for every 𝜆 <𝜆0 fl ((2−𝑞)/4𝐶1𝑀𝑝
𝑝(𝑝−𝑞))(𝑝−𝑞)/(𝑝−2) ⋅(𝐶1(𝑝−2)𝑀𝑝

𝑝/𝑀𝑞
2 (2−𝑞)‖ℎ‖2/(2−𝑞)),

𝐼 (𝑤) ≥ 𝜔2
𝜆𝜂 (𝜔𝜆) fl 𝜇 > 0, with ‖𝑤‖ = 𝜔𝜆. (53)

On the other hand, by conditions (H1) and (H2), there
exist positive constants 𝐶2, 𝐶3 such that

𝐺 (𝑥, 𝑤) ≥ 𝐶2 |𝑤|𝜅 − 𝐶3 |𝑤|2 , (𝑥, 𝑤) ∈ R
3 ×R. (54)

Since all the norms are equivalent in every finite linear
subspace 𝑈 ⊂ 𝐸, then for 𝑤 ∈ 𝑈

𝐼 (𝑤) = 12 ∫
R3

(󵄨󵄨󵄨󵄨󵄨(−Δ)𝛼/2 𝑤󵄨󵄨󵄨󵄨󵄨2 + 𝑉 (𝑥)𝑤2) 𝑑𝑥
+ 14 ∫

R3
𝜙𝛽𝑤𝑤2𝑑𝑥 − ∫

R3
𝐺 (𝑥, 𝑤) 𝑑𝑥

− 𝜆𝑞 ∫
R3

ℎ (𝑥) |𝑤|𝑞 𝑑𝑥
≤ 12 ‖𝑤‖2 + 𝐶 ‖𝑤‖4 − 𝐶2 ‖𝑤‖𝜅𝜅 − 𝐶3 ‖𝑤‖22

− 𝜆𝑞 ‖𝑤‖𝑞
𝐿𝑞(R3 ,ℎ)

.

(55)

For 𝑞 < 2 < 4 < 𝜅, 𝐼(𝑤) 󳨀→ −∞ as ‖𝑤‖ 󳨀→ ∞. Then
there exists 𝐿 = 𝐿(𝑈) > 0 such that max𝑤∈𝑈,‖𝑤‖≥𝐿 𝐼(𝑤) < 0.
Thus, according to Proposition 5, the system (SP) has a list of
solutions {(𝑤𝑛, 𝜙𝑛)} ⊂ 𝐸 × 𝐷𝛽,2(R3), and the corresponding
energy values tend to infinity.

Theorem 11. If hypotheses (V) and (H1)-(H4) hold, then the
system (SP) has a sequence of negative energy solutions for all𝜆 > 0, and the energy values tend to 0.
Proof. By Lemma 8, for all 𝑐 ∈ R, 𝐼 satisfies the (𝑃𝑆)∗𝑐
condition. It now remains to show that (C1)-(C3) are satisfied.
According to Lemma 9, for every ] ∈ [2, 2∗𝛼), 𝛽](𝑘) 󳨀→ 0, as𝑘 󳨀→ ∞. Thus there exists 𝑘1 > 0 such that 𝛽2(𝑘) ≤ √1/2𝐶1

for 𝑘 > 𝑘1. For 4 < 𝑝 < 2∗𝛼 , there exists 𝐿 ∈ (0, 1) such that

18 ‖𝑤‖2 ≥ 𝐶1𝑝 𝑀𝑝
𝑝 ‖𝑤‖𝑝 , with ‖𝑤‖ ≤ 𝐿. (56)
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Hence, for 𝑤 ∈ 𝑍𝑘 with ‖𝑤‖ ≤ 𝐿, it follows that
𝐼 (𝑤) = 12 ∫

R3
(󵄨󵄨󵄨󵄨󵄨(−Δ)𝛼/2 𝑤󵄨󵄨󵄨󵄨󵄨2 + 𝑉 (𝑥)𝑤2) 𝑑𝑥

+ 14 ∫
R3

𝜙𝛽𝑤𝑤2𝑑𝑥 − ∫
R3

𝐺 (𝑥, 𝑤) 𝑑𝑥
− 𝜆𝑞 ∫

R3
ℎ (𝑥) |𝑤|𝑞 𝑑𝑥

≥ 12 ‖𝑤‖2 − 𝐶12 ∫
R3

|𝑤|2 𝑑𝑥 − 𝐶1𝑝 ∫
R3

|𝑤|𝑝 𝑑𝑥
− 𝜆𝑞 ∫

R3
ℎ (𝑥) |𝑤|𝑞 𝑑𝑥

≥ 12 ‖𝑤‖2 − 𝐶12 𝛽22 (𝑘) ‖𝑢‖2 − 𝐶1𝑝 𝑀𝑝
𝑝 ‖𝑤‖𝑝

− 𝜆𝑞 ∫
R3

ℎ (𝑥) |𝑤|𝑞 𝑑𝑥
≥ 14 ‖𝑤‖2 − 𝐶1𝑝 𝑀𝑝

𝑝 ‖𝑤‖𝑝

− 𝜆𝑞 ‖ℎ‖2/(2−𝑞) 𝛽𝑞2 (𝑘) ‖𝑤‖𝑞

≥ 18 ‖𝑤‖2 − 𝜆𝑞 ‖ℎ‖2/(2−𝑞) 𝛽𝑞2 (𝑘) ‖𝑤‖𝑞 .

(57)

For every 𝑘 > 𝑘1, let 𝑟𝑘 = ((8/𝑞)𝜆‖ℎ‖2/(2−𝑞)𝛽𝑞2(𝑘))1/(2−𝑞). By
Lemma 9, 𝑟𝑘 󳨀→ 0, as 𝑘 󳨀→ ∞. Thus, there exists 𝑘0 > 𝑘1,
such that for every 𝑘 ≥ 𝑘0, 𝐼(𝑤) ≥ 0, for𝑤 ∈ 𝑍𝑘 with ‖𝑤‖ = 𝑟𝑘.

Secondly, since for every fixed 𝑘 ∈ N, the norms are
equivalent in 𝑌𝑘, when 𝑘 is sufficiently large, there exists a
small enough 𝛾𝑘 such that 0 < 𝛾𝑘 < 𝑟𝑘 and 𝐼(𝑤) < 0 for𝑤 ∈ 𝑌𝑘 with ‖𝑤‖ = 𝛾𝑘.

Finally, according to (C3), when 𝑘 ≥ 𝑘0, for 𝑢 ∈ 𝑍𝑘, with‖𝑤‖ ≤ 𝑟𝑘, one has
𝐼 (𝑤) ≥ −𝜆𝑞 ‖ℎ‖2/(2−𝑞) 𝛽𝑞2 (𝑘) ‖𝑤‖𝑞

≥ −𝜆𝑞 ‖ℎ‖2/(2−𝑞) 𝛽𝑞2 (𝑘) 𝑟𝑞𝑘 .
(58)

Since 𝛽2(𝑘) 󳨀→ 0, 𝑟𝑘 󳨀→ 0, as 𝑘 󳨀→ ∞, therefore (C3) holds.
By Proposition 6, 𝐼 has a list of solutions {(𝑤𝑛, 𝜙𝑛)} ⊂ 𝐸 ×𝐷𝛽,2(R3) such that

12 ∫
R3

(󵄨󵄨󵄨󵄨󵄨(−Δ)𝛼/2 𝑤𝑛

󵄨󵄨󵄨󵄨󵄨2 + 𝑉 (𝑥)𝑤2
𝑛) 𝑑𝑥

+ 14 ∫
R3

𝜙𝛽𝑛𝑤2
𝑛𝑑𝑥 − ∫

R3
𝐺 (𝑥, 𝑤𝑛) 𝑑𝑥

− 𝜆𝑞 ∫
R3

ℎ (𝑥) 󵄨󵄨󵄨󵄨𝑤𝑛
󵄨󵄨󵄨󵄨𝑞 𝑑𝑥 󳨀→ 0.

(59)
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1996.

[22] T. Bartsch and M. Willem, “On an elliptic equation with
concave and convex nonlinearities,”Proceedings of the American
Mathematical Society, vol. 123, no. 11, pp. 3555–3561, 1995.

[23] P. Bartolo, V. Benci, and D. Fortunato, “Abstract critical point
theorems and applications to some nonlinear problems with
‘strong’ resonance at infinity,”Nonlinear Analysis.Theory, Meth-
ods & Applications, vol. 7, no. 9, pp. 981–1012, 1983.

[24] Z. Binlin, G. Molica Bisci, and R. Servadei, “Superlinear
nonlocal fractional problems with infinitely many solutions,”
Nonlinearity, vol. 28, no. 7, pp. 2247–2264, 2015.



Hindawi
www.hindawi.com Volume 2018

Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Problems 
in Engineering

Applied Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Probability and Statistics
Hindawi
www.hindawi.com Volume 2018

Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi
www.hindawi.com Volume 2018

Optimization
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Engineering  
 Mathematics

International Journal of

Hindawi
www.hindawi.com Volume 2018

Operations Research
Advances in

Journal of

Hindawi
www.hindawi.com Volume 2018

Function Spaces
Abstract and 
Applied Analysis
Hindawi
www.hindawi.com Volume 2018

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi
www.hindawi.com Volume 2018

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific 
World Journal

Volume 2018

Hindawi
www.hindawi.com Volume 2018Volume 2018

Numerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical Analysis
Advances inAdvances in Discrete Dynamics in 

Nature and Society
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

Di�erential Equations
International Journal of

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Decision Sciences
Advances in

Hindawi
www.hindawi.com Volume 2018

Analysis
International Journal of

Hindawi
www.hindawi.com Volume 2018

Stochastic Analysis
International Journal of

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/jmath/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/jam/
https://www.hindawi.com/journals/jps/
https://www.hindawi.com/journals/amp/
https://www.hindawi.com/journals/jca/
https://www.hindawi.com/journals/jopti/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/aor/
https://www.hindawi.com/journals/jfs/
https://www.hindawi.com/journals/aaa/
https://www.hindawi.com/journals/ijmms/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ana/
https://www.hindawi.com/journals/ddns/
https://www.hindawi.com/journals/ijde/
https://www.hindawi.com/journals/ads/
https://www.hindawi.com/journals/ijanal/
https://www.hindawi.com/journals/ijsa/
https://www.hindawi.com/
https://www.hindawi.com/

