
Research Article
On the Weak Characteristic Function Method for a Degenerate
Parabolic Equation

Huashui Zhan

School of Applied Mathematics, Xiamen University of Technology, Xiamen, 361024, China

Correspondence should be addressed to Huashui Zhan; huashuizhan@163.com

Received 20 May 2019; Revised 28 July 2019; Accepted 4 August 2019; Published 26 August 2019

Academic Editor: Alberto Fiorenza

Copyright © 2019 Huashui Zhan.This is an open access article distributed under the Creative CommonsAttribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

For a nonlinear degenerate parabolic equation, how to impose a suitable boundary value condition to ensure the well-posedness
of weak solutions is a very important problem. It is well known that the classical Fichera-Oleinik theory has perfectly solved the
problem for the linear case, and the optimal boundary value condition matching up with a linear degenerate parabolic equation
can be depicted out by Fechira function. In this paper, a new method, which is called the weak characteristic function method, is
introduced. By this new method, the partial boundary condition matching up with a nonlinear degenerate parabolic equation can
be depicted out by an inequality from the diffusion function, the convection function, and the geometry of the boundary 𝜕Ω itself.
Though, by choosing different weak characteristic function, one may obtain the differential partial boundary value conditions, an
optimal partial boundary value condition can be prophetic. Moreover, the new method works well in any kind of the degenerate
parabolic equations.

1. Introduction

For the earliest movement differential equation of a particle

𝑑𝑥𝑑𝑡 = 𝑓 (𝑡, 𝑥) , (1)

the initial value

𝑥 (0) = 𝑥0 (2)

is the initial position of the particle. For a second order
ordinary differential equation

𝑑2𝑥𝑑𝑡2 = 𝑓(𝑡, 𝑥, 𝑑𝑥𝑑𝑡 ) , (3)

if we regard it as a its accelerated speed differential equation,
we should impose the initial value conditions as

𝑥 (0) = 𝑥0,
𝑑𝑥𝑑𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=0 = V0, (4)

where V0 is the initial velocity. If we regard it as describing the
motion of a vibrating string, we should impose the boundary
value conditions

𝑥 (0) = 0,
𝑥 (1) = 0, (5)

which implies that the two ends of the string are fixed at 𝑥 = 0
and 𝑥 = 1. Or even one can impose the following boundary
value condition:

𝑥 (0) = 𝑥 (1) − 𝑥 (0.5) = 0, (6)

which is called three points boundary value problem. The-
oretically, all these conditions are called definite conditions.
In other words, in order to solve an explicit differential
equation, it is important to find a suitable definite condition.
For example, considering the well-known heat conduction
equation

𝑢𝑡 = Δ𝑢, (𝑥, 𝑡) ∈ Ω × (0, 𝑇) , (7)

besides the initial value

𝑢 (𝑥, 0) = 𝑢0 (𝑥) , 𝑥 ∈ Ω, (8)
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where 𝑢0 is the initial temperature, one of the following
boundary value conditions should be imposed.

(i) Dirichlet condition

𝑢 (𝑥, 𝑡) = 0, (𝑥, 𝑡) ∈ 𝜕Ω × (0, 𝑇) . (9)

(ii) Neumann condition

𝜕𝑢𝜕𝑛 = 0, (𝑥, 𝑡) ∈ 𝜕Ω × (0, 𝑇) , (10)

where 𝑛 is the outer normal vector ofΩ.
(iii) Robin condition

𝜕𝑢𝜕𝑛 + 𝑘𝑢 = 0, (𝑥, 𝑡) ∈ 𝜕Ω × (0, 𝑇) , (11)

where 𝑘 is a positive constant.
But, if one considers the degenerate heat conduction

equation

𝑢𝑡 = div (𝑎 (𝑥, 𝑡) ∇𝑢) (12)

where 𝑎(𝑥, 𝑡) ≥ 0, or nonlinear heat conduction equation

𝑢𝑡 = div (𝑘 (𝑥, 𝑡, 𝑢) ∇𝑢) , (13)

where 𝑘(𝑥, 𝑡, 𝑢) ≥ 0, the above three boundary value
conditions may be overdetermined. While, for a hyperbolic-
parabolic mixed type equation

𝑢𝑡 = div (𝑘 (𝑥, 𝑡, 𝑢) ∇𝑢) + div (󳨀→𝑏 (𝑢)) , (14)

in order to obtain the uniqueness of weak solution, besides
one of the above three boundary value conditions is imposed,
the entropy condition should be added additionally. In a
word, for a degenerate parabolic equation, how to impose
a suitable partial boundary value condition to ensure the
well-posedness of weak solutions has been an interesting and
important problem for a long time. Let us give a basic review
of the history.

First studied by Tricomi and Keldyš and later by Fichera
and Ole ̌inik, the general theory of second order equation
with nonnegative characteristic form, which, in particular,
contains those degenerating on the boundary had been
developed and perfected [1] about in 1960s. By this theory, if
one wants to consider the well-posedness problem of a linear
degenerate elliptic equation

𝑁+1∑
𝑟,𝑠=1

𝑎𝑟𝑠 (𝑥) 𝜕2𝑢𝜕𝑥𝑟𝜕𝑥𝑠

+ 𝑁+1∑
𝑟=1

𝑏𝑟 (𝑥) 𝜕𝑢𝜕𝑥𝑟

+ 𝑐 (𝑥) 𝑢 = 𝑓 (𝑥) ,
𝑥 ∈ Ω̃ ⊂ R

𝑁+1,
(15)

only a partial boundary value condition is required. In detail,
let {𝑛𝑠} be the unit inner normal vector of 𝜕Ω̃ and denote that

Σ2 = {𝑥 ∈ 𝜕Ω̃ : 𝑎𝑟𝑠𝑛𝑟𝑛𝑠 = 0, (𝑏𝑟 − 𝑎𝑟𝑠
𝑥𝑠
) 𝑛𝑟 < 0} ,

Σ3 = {𝑥 ∈ 𝜕Ω̃ : 𝑎𝑟𝑠𝑛𝑠𝑛𝑟 > 0} . (16)

Then, the partial boundary value condition is

𝑢|Σ2∪Σ3 = 0. (17)

In particular, if the matrix (𝑎𝑟𝑠) is positive definite, (15) is the
classical elliptic equation and (17) is just the usual Dirichlet
boundary condition.

If thematrix (𝑎𝑟𝑠) is semipositive definite, themost typical
is the linear degenerate parabolic equation

𝜕𝑢𝜕𝑡 = 𝑁∑
𝑟,𝑠=1

𝑎𝑖𝑗 (𝑥) 𝜕2𝑢𝜕𝑥𝑖𝜕𝑥𝑗

+ 𝑁∑
𝑖=1

𝑏𝑖 (𝑥) 𝜕𝑢𝜕𝑥𝑖

+ 𝑐 (𝑥) 𝑢
− 𝑓 (𝑥) , (𝑥, 𝑡) ∈ 𝑄𝑇 = Ω × (0, 𝑇) .

(18)

To study the well-posedness problem of (18), in addition to
the initial value condition

𝑢 (𝑥, 0) = 𝑢0 (𝑥) , 𝑥 ∈ Ω, (19)

a partial boundary value condition should be imposed

𝑢 (𝑥, 𝑡) = 0, (𝑥, 𝑡) ∈ Σ𝑝 × (0, 𝑇) , (20)

where

Σ𝑝 = {𝑥 ∈ 𝜕Ω : 𝑎𝑖𝑗𝑛𝑖𝑛𝑗 > 0}
∪ {𝑥 ∈ 𝜕Ω : 𝑎𝑖𝑗𝑛𝑖𝑛𝑗 = 0, (𝑏𝑖 − 𝑎𝑖𝑗

𝑥𝑗
) 𝑛𝑖 < 0} . (21)

Now, if one considers the well-posedness problem of
a nonlinear degenerate parabolic equation, it is naturally
to conjecture that only a partial boundary value condition
should be imposed. For example, considering the nonlinear
parabolic equation

𝜕𝑢𝜕𝑡 = div (𝑎 (𝑥, 𝑡) |∇𝑢|𝑝(𝑥)−2 ∇𝑢) , (𝑥, 𝑡) ∈ 𝑄𝑇, (22)

with

𝑎 (𝑥, 𝑡) = 0, (𝑥, 𝑡) ∈ 𝜕Ω × [0, 𝑇) , (23)

if 𝑢1(𝑥, 𝑡) ∈ 𝐵𝑉(𝑄𝑇), 𝑢2(𝑥, 𝑡) ∈ 𝐵𝑉(𝑄𝑇) are two weak solu-
tions of (22) with the initial values 𝑢1(𝑥), 𝑢2(𝑥), respectively,
then it is easily to show that

∫
Ω

󵄨󵄨󵄨󵄨𝑢1 (𝑥, 𝑡) − V2 (𝑥, 𝑡)󵄨󵄨󵄨󵄨2 𝑑𝑥
≤ 𝑐∫

Ω

󵄨󵄨󵄨󵄨𝑢1 (𝑥) − 𝑢2 (𝑥)󵄨󵄨󵄨󵄨2 𝑑𝑥, 𝑡 ∈ [0, 𝑇) ,
(24)

even without any boundary value condition. In other words,
for a general nonlinear degenerate parabolic equation,

𝜕𝑢𝜕𝑡 = div (𝑎 (𝑥, 𝑡, 𝑢, ∇𝑢) ∇𝑢) + 𝑓 (𝑥, 𝑡, 𝑢, ∇𝑢) , (25)

though we can expect that only a partial boundary value
condition like (20) is enough to ensure the stability of weak
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solutions (or uniqueness of weak solution), since Fichera-
Oleinik theory is invalid, if we insist on the partial boundary
value condition (20) is still imposed in the sense of the
trace, then it is difficult to assign the geometry of the partial
boundary Σ𝑝 appearing in (20). In this paper, we will try
to find a new method to solve this problem. For the sake
of convenience, we can call the new method as the weak
characteristic functionmethod.We first introduce the related
definitions.

Definition 1. If 𝑔(𝑥) is a nonnegative continuous function in
R𝑁, when 𝑥 is near to the boundary 𝜕Ω, 𝑔(𝑥) is a𝐶2 function
and satisfies

𝜕Ω = {𝑥 ∈ R
𝑁 : 𝑔 (𝑥) = 0} ,

Ω = {𝑥 ∈ R
𝑁 : 𝑔 (𝑥) > 0} , (26)

then we say 𝑔(𝑥) is a weak characteristic function ofΩ.

Only if Ω is with a 𝐶2 smooth boundary, the distance
function 𝑑(𝑥) = dist(𝑥, 𝜕Ω) is a weak characteristic function
ofΩ, and its square 𝑑2 is another weak characteristic function
of Ω. Certainly, if 𝑢0(𝑥) is a continuous function with𝑢0(𝑥)|𝑥∈𝜕Ω = 0, then the function 𝑎(𝑢0(𝑥)) + 𝑑(𝑥) also is a
weak characteristic function ofΩ.

Definition 2. By the weak characteristic function method it
means that one can find the explicit geometric expression ofΣ𝑝 in the partial boundary value condition (20) by choosing a
suitable test function related to a weak characteristic function
ofΩ.

We will choose two special nonlinear parabolic equations
of (25) to verify the new method. The first one is

𝜕𝑢𝜕𝑡 = Δ𝐴 (𝑢) + div (𝑏 (𝑢)) , (𝑥, 𝑡) ∈ 𝑄𝑇, (27)

where Ω ⊂ R𝑁 is an open bounded domain, 𝑏(𝑢) = {𝑏𝑖(𝑢)},
and

𝐴 (𝑢) = ∫𝑢

0
𝑎 (𝑠) 𝑑𝑠, 𝑎 (𝑠) ≥ 0. (28)

The second type is the evolutionary 𝑝(𝑥)−Laplacian equation
similar to (22) (see below please). We will introduce the
backgrounds of these two kinds of equations, respectively.

Equation (27) arises from heat flow in materials with
temperature dependent on conductivity, flow in a porous
medium, the conservation law, the one-dimensional
Euler equation, and the boundary layer theory. It is
with hyperbolic-parabolic mixed type and might have
discontinuous solution. For the Cauchy problem, the well-
posedness theory has been established perfectly, one can
refer to [2–10] and the references therein. For the initial-
boundary value problem, also there are many important
papers devoting to its well-posedness problem; one can
see [11–16] and the references therein. However, unlike the
Cauchy problem, how to impose a suitable boundary value
condition to match up with (27) has been an interesting and

difficult problem for a long time. Actually, for the completely
degenerate case, i.e., 𝐴 ≡ 0, (25) becomes a first order
hyperbolic equation, and it is well known that a smooth
solution is constant along the maximal segment of the
characteristic line in 𝑄𝑇. When this segment intersects both{0} × Ω and 𝜕Ω, then the usual boundary value condition

𝑢 (𝑥, 𝑡) = 0, (𝑥, 𝑡) ∈ 𝜕Ω × (0, 𝑇) , (29)

is overdetermined if (27) is fulfilled in the traditional trace
sense. Thus one needs to work within a suitable framework
of entropy solutions and entropy boundary conditions. In
the BV setting, the authors of [11] gave an interpretation
of the boundary condition (29) as an entropy inequality on𝜕Ω, which is the so-called BLN condition. However, since
the trace of solutions is involved in the formulation of the
BLN condition, it makes no sense if the solution is merely
in 𝐿∞. The author of [12] extended the Dirichlet problem
for hyperbolic equations to the 𝐿∞ setting and proved the
uniqueness of the entropy solution by introducing an integral
formulation of the boundary condition. This idea had been
generalized to deal with the strongly degenerate parabolic
equations [13–16], in which the boundary condition is not
directly shown as (27) in sense of the trace but is implicitly
contained in a family of entropy inequalities.

If we still comprehend the boundary value condition is
true in the sense of the trace, when the domain Ω = R𝑁

+ is
the half space of R𝑁, in our previous work [17], we probed
the initial-boundary value problem of (27) in the half space
R𝑁

+ ×(0, 𝑇). We have proved that if 𝑏󸀠𝑁(0) < 0, we can give the
general Dirichlet boundary condition

𝑢 (𝑥, 𝑡) = 0, (𝑥, 𝑡) ∈ 𝜕R𝑁
+ × (0, 𝑇) . (30)

But if 𝑏󸀠𝑁(0) ≥ 0, then no boundary condition is necessary,
and the solution of the equation is free from any limitation of
the boundary condition.

When Ω is a bounded smooth domain, in [18], by
the parabolically regularized method, we had proved the
existence of the entropy solution [18], but we could not obtain
the stability based on the partial boundary value condition
(20). At that time, we could not find a valid way to depict out
the geometric expression of Σ𝑝 in (20).

The first discovery of this paper is that, by the weak
characteristic new method, we find that the partial boundary
value condition (20) admits the form as

Σ𝑝 = {𝑥 ∈ 𝜕Ω : Δ𝑔 + 𝛾 𝑁∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨𝑔𝑥𝑖

󵄨󵄨󵄨󵄨󵄨 ≥ 0} , (31)

where the constant 𝛾 satisfies
󵄨󵄨󵄨󵄨󵄨𝑏𝑖 (𝑢) − 𝑏𝑖 (V)󵄨󵄨󵄨󵄨󵄨 ≤ 𝛾 |𝑢 − V| , (32)

and when 𝑥 is near to the boundary 𝜕Ω, 𝑔(𝑥) is a weak
characteristic function ofΩ.
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For example, 𝑁 = 2, if the domain Ω is the disc 𝐷1 ={(𝑥, 𝑦) : 𝑥2 + 𝑦2 < 1}, a weak characteristic function can be
chosen as 𝑔(𝑥) = 1 − (𝑥2 + 𝑦2),

𝑔𝑥 = −2𝑥,
𝑔𝑦 = −2𝑦,
Δ𝑔 = −4

(33)

then

Δ𝑔 + 𝛾 (󵄨󵄨󵄨󵄨𝑔𝑥
󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑔𝑦

󵄨󵄨󵄨󵄨󵄨) = −4 + 2𝛾 (|𝑥| + 󵄨󵄨󵄨󵄨𝑦󵄨󵄨󵄨󵄨) , (34)

and

Σ𝑝 = {𝑥 ∈ 𝜕𝐷1 : 𝛾 (|𝑥| + 󵄨󵄨󵄨󵄨𝑦󵄨󵄨󵄨󵄨) ≥ 2} , (35)

which implies that if 𝛾 ≤ 1, then Σ𝑝 = 0; if 1 < 𝛾 < 2, Σ𝑝 is a
proper subset of 𝜕Ω; if 𝛾 ≥ 2, then Σ𝑝 = 𝜕Ω.

It is well known and very important in applications that
the boundary conditions usually stand for some physical
meanings. At least frommy own perspective, if we regard (27)
as a nonlinear heat conduction (or heat diffusion) process,
then Σ𝑝 = 0 means that 𝑢(𝑥, 𝑡) = 0 occurs before 𝑥 attains
the boundary value 𝜕Ω.

From mathematical theory, the partial boundary value
condition (20) with the form as (27) is just as a definite
condition. Since condition (31) includes 𝑔(𝑥) and 𝛾, we can
say condition (31) is determined by the degeneracy of 𝑎,
the weak characteristic function of Ω, and the first order
derivative term in a special sense; this fact seems more or less
likely to that (21). We will prove the stability of the entropy
solutions to (27) under the partial boundary value condition
(20) with expression (31).

The second degenerate parabolic equation considered in
this paper is

𝑢𝑡 = div (𝑎 (𝑥) |∇𝑢|𝑝(𝑥)−2 ∇𝑢) + div (𝑏 (𝑢)) , (36)

which comes from a new kind of fluids: the so-called
electrorheological fluids (see [19, 20]). If 𝑎(𝑥) ≡ 1, this kind of
equations has been researched widely recently. One can refer
to [21–29], etc. If 𝑎(𝑥) ≡ 1 and 𝑝(𝑥) = 𝑝 are constant, (36) is
the well-known non-Newtonian fluid equation [10]. If 𝑎(𝑥) is
a𝐶1(Ω) function, 𝑝(𝑥) = 𝑝; the author of [30] considered the
nonlinear equation

𝜕𝑢𝜕𝑡 − div (𝑎 (𝑥) |∇𝑢|𝑝−2 ∇𝑢) − 𝑓𝑖 (𝑥)𝐷𝑖𝑢 + 𝑐 (𝑥, 𝑡) 𝑢
= 0,

(37)

and made important progress on its study. They classified
the boundary into three parts: the nondegenerate boundary,
the weakly degenerate boundary, and the strongly degenerate
boundary, by means of a reasonable integral description.The
boundary value condition should be supplemented definitely
on the nondegenerate boundary and the weakly degenerate
boundary. On the strongly degenerate boundary, they formu-
lated a new approach to prescribe the boundary value condi-
tion rather than defining the Fichera function as treating the

linear case. Moreover, they formulated the boundary value
condition on this strongly degenerate boundary in a much
weak sense since the regularity of the solutions much weaker
near this boundary.

In this paper, we assume that 𝑎(𝑥) ∈ 𝐶1(Ω) satisfies
condition

𝑎 (𝑥) > 0, 𝑥 ∈ Ω;
𝑎 (𝑥) = 0, 𝑥 ∈ 𝜕Ω, (38)

and 𝑏𝑖(𝑠) is a 𝐶1 function on R. The second discovery of
this paper is that, by choosing 𝑎(𝑥) as the weak characteristic
function of Ω, we deduce that Σ𝑝 can be depicted out by

Σ𝑝 = {𝑥 ∈ 𝜕Ω : 𝑁∑
𝑖=1

𝑎𝑥𝑖 (𝑥) ̸= 0} . (39)

By (39), we can prove the stability of the entropy solutions of
(36) under the partial boundary value condition (20) with the
expression (38).

Let us give a simple summary. For a nonlinear degenerate
parabolic equation, to the best knowledge of the author, there
are three ways to deal with the boundary value condition.The
traditional way is to comprehend (29) (also (20)) in the sense
of the trace as in [2, 4, 10, 17, 18, 31]. The second way, the
boundary value condition (29) is understood in weaker sense
than the trace and is elegantly implicitly contained in family
entropy inequalities [11–16]. In this way, if the equation is
completely degenerate, then the boundary value condition is
replaced by BLN condition.Moreover, in [12–16], the entropy
solutions are in𝐿∞ space, the existence of the traditional trace
on the boundary is not guaranteed, and it is impossible to
depict outΣ𝑝 in a geometric way.The thirdway, the boundary
value condition (29) is decomposed into two parts; on one
part (the nondegenerate part and the weak degenerate part
in [30]) the boundary value condition is true in the sense of
trace, while on the other part (the strongly degenerate part in
[30]), the boundary value condition is true in a much weaker
sense than the trace. In this paper, we still use the traditional
way to deal with the boundary value condition. The most
innovation lies in the fact that if one chooses the different
weak characteristic function 𝜙(𝑥) of Ω, then one obtains the
different partial boundary value condition

𝑢 (𝑥, 𝑡) = 0, (𝑥, 𝑡) ∈ Σ𝜙 × (0, 𝑇) , (40)

where Σ𝜙 ⊆ 𝜕Ω depends on 𝜙(𝑥). Thus, we can predict that
the optimal partial boundary value condition matching up
with a nonlinear degenerate parabolic equation should have
the form

𝑢 (𝑥, 𝑡) = 0, (𝑥, 𝑡) ∈ Σ𝜙 × (0, 𝑇) , (41)

with that

Σ = ⋂
𝜙

Σ𝜙. (42)

But we can not prove this conjecture for the time being.
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2. Main Results

For small 𝜂 > 0, let
𝑆𝜂 (𝑠) = ∫𝑠

0
ℎ𝜂 (𝜏) 𝑑𝜏,

ℎ𝜂 (𝑠) = 2𝜂 (1 − |𝑠|𝜂 )
+

.
(43)

Obviously ℎ𝜂(𝑠) ∈ 𝐶(R), and
ℎ𝜂 (𝑠) ≥ 0,

󵄨󵄨󵄨󵄨󵄨𝑠ℎ𝜂 (𝑠)󵄨󵄨󵄨󵄨󵄨 ≤ 1,
󵄨󵄨󵄨󵄨󵄨𝑆𝜂 (𝑠)󵄨󵄨󵄨󵄨󵄨 ≤ 1;

lim
𝜂󳨀→0

𝑆𝜂 (𝑠) = sgn 𝑠,
lim
𝜂󳨀→0

𝑠𝑆󸀠𝜂 (𝑠) = 0.

(44)

Definition 3. A function 𝑢 is said to be the entropy solution
of (27) with the initial value condition (19), if

(1) 𝑢 satisfies

𝑢 ∈ 𝐵𝑉 (𝑄𝑇) ∩ 𝐿∞ (𝑄𝑇) ,
𝜕𝜕𝑥𝑖

∫𝑢

0

√𝑎 (𝑠)𝑑𝑠 ∈ 𝐿2 (𝑄𝑇) . (45)

(2) For any 𝜑 ∈ 𝐶2
0(𝑄𝑇), 𝜑 ≥ 0, for any 𝑘 ∈ R, for any

small 𝜂 > 0, 𝑢 satisfies

∬
𝑄𝑇

[𝐼𝜂 (𝑢 − 𝑘) 𝜑𝑡 − 𝐵𝑖
𝜂 (𝑢, 𝑘) 𝜑𝑥𝑖

+ 𝐴𝜂 (𝑢, 𝑘) Δ𝜑
− 𝑆󸀠𝜂 (𝑢 − 𝑘) 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∇∫𝑢

0

√𝑎 (𝑠)𝑑𝑠󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2 𝜑]𝑑𝑥𝑑𝑡

≥ 0.
(46)

(3) The initial value is true in the sense of

lim
𝑡󳨀→0

∫
Ω

󵄨󵄨󵄨󵄨𝑢 (𝑥, 𝑡) − 𝑢0 (𝑥)󵄨󵄨󵄨󵄨 𝑑𝑥 = 0. (47)

(4) If the partial boundary value condition (20) is true in
the sense of the trace, thenwe say 𝑢 is the solution of (27) with
the initial-boundary value conditions (19) and (20).

Here the pairs of equal indices imply a summation from1 up to𝑁, and

𝐵𝑖
𝜂 (𝑢, 𝑘) = ∫𝑢

𝑘
(𝑏𝑖)󸀠 (𝑠) 𝑆𝜂 (𝑠 − 𝑘) 𝑑𝑠,

𝐴𝜂 (𝑢, 𝑘) = ∫𝑢

𝑘
𝑎 (𝑠) 𝑆𝜂 (𝑠 − 𝑘) 𝑑𝑠,

𝐼𝜂 (𝑢 − 𝑘) = ∫𝑢−𝑘

0
𝑆𝜂 (𝑠) 𝑑𝑠.

(48)

On one hand, if (27) has a classical solution 𝑢, multiplying
(27) by𝜑𝑆𝜂(𝑢−𝑘) and integrating over𝑄𝑇, we are able to show
that 𝑢 satisfies Definition 3.

On the other hand, let 𝜂 󳨀→ 0 in (46). We have

∬
𝑄𝑇

[|𝑢 − 𝑘| 𝜑𝑡

− sgn (𝑢 − 𝑘) (𝑏𝑖 (𝑢) − 𝑏𝑖 (𝑘)) 𝜑𝑥𝑖
] 𝑑𝑥𝑑𝑡

+ ∬
𝑄𝑇

sgn (𝑢 − 𝑘) (𝐴 (𝑢) − 𝐴 (𝑘)) Δ𝜑𝑑𝑥𝑑𝑡 ≥ 0.
(49)

Thus if 𝑢 is the entropy solution in Definition 3, then 𝑢 is a
entropy solution defined in [2, 10], etc.

The existence of the entropy solution in the sense of
Definition 3 can be proved similar toTheorem 2.3 in [18]; we
omit the details here.

Theorem 4. Suppose that 𝐴(𝑠) is a 𝐶2(R) function and 𝑏𝑖(𝑠)
is a 𝐶1(R) function; 𝑢 and V are two solutions of (27) with the
different initial values 𝑢0(𝑥), V0(𝑥) ∈ 𝐿∞(Ω), respectively. If 𝑢
and V are with the same homogeneous partial boundary value
condition (20), then

∫
Ω
|𝑢 (𝑥, 𝑡) − V (𝑥, 𝑡)| 𝑑𝑥 ≤ ∫

Ω

󵄨󵄨󵄨󵄨𝑢0 (𝑥) − V0 (𝑥)󵄨󵄨󵄨󵄨 𝑑𝑥. (50)

Definition 5. A function 𝑢(𝑥, 𝑡) is said to be a weak solution
of (36) with the initial value (18), provided that

𝑢 ∈ 𝐿∞ (𝑄𝑇) ,
𝑢𝑡 ∈ 𝐿2 (𝑄𝑇) ,

𝑎 (𝑥) |∇𝑢|𝑝(𝑥) ∈ 𝐿1 (𝑄𝑇) ,
(51)

and for any function 𝜑1 ∈ 𝐶1
0(𝑄𝑇) and 𝜑2 ∈ 𝐿∞(0, 𝑇;

𝑊1,𝑝(𝑥)

𝑙𝑜𝑐
(Ω)) there holds

∬
𝑄𝑇

[𝜕𝑢𝜕𝑡 (𝜑1𝜑2) + 𝑎 (𝑥) |∇𝑢|𝑝(𝑥)−2 ∇𝑢∇ (𝜑1𝜑2)
+ 𝑏𝑖 (𝑢) (𝜑1𝜑2)𝑥𝑖] 𝑑𝑥𝑑𝑡 = 0.

(52)

The initial value (18) is satisfied in the sense of (47). If the
partial boundary value condition (20) is true in the sense of
the trace, then we say 𝑢 is the solution of (36) with the initial-
boundary value conditions (19) and (20).

Here, 𝑊1,𝑝(𝑥)(Ω) is the variable exponent Sobolev space
[23]. Suppose that 𝑝− = min𝑥∈Ω > 1, 𝑎(𝑥) satisfies (38), and𝑏𝑖(𝑠) is a 𝐶1 function on R. If

𝑢0 (𝑥) ∈ 𝐿∞ (Ω) ,
𝑎 (𝑥) 𝑢0 (𝑥) ∈ 𝑊1,𝑝(𝑥) (Ω) , (53)

and there are some other restrictions in 𝑎(𝑥) and 𝑏𝑖(𝑥), in
a similar way as that of Theorem 2.5 of [32], we can prove



6 Journal of Function Spaces

the existence of a weak solution of (36) with the initial value
(19) in the sense of Definition 5. We omit the details here. We
mainly pay attentions to the stability of the weak solutions.

According to Lemma 3.2 of [32], if

∫
Ω
𝑎 (𝑥)−1/(𝑝(𝑥)−1) 𝑑𝑥 < ∞, 𝑖 = 1, 2, . . . , 𝑁, (54)

then

∫
Ω
|∇𝑢| 𝑑𝑥 < ∞, (55)

and 𝑢 can be defined the trace on the boundary 𝜕Ω. If the
homogeneous boundary value condition (29) is imposed, the
stability can be established in a way analogous to the one of
the evolutionary 𝑝−Laplacian equation [10]. In this paper, we
will use the weak characteristic functionmethod to prove the
following stability theorems based on the partial boundary
value condition (20).

Theorem 6. Let 𝑢(𝑥, 𝑡) and V(𝑥, 𝑡) be two weak solutions of
(36) with the initial values 𝑢0(𝑥) and V0(𝑥) respectively, with
the same partial boundary value condition

𝑢 (𝑥, 𝑡) = V (𝑥, 𝑡) = 0, (𝑥, 𝑡) ∈ Σ𝑝 × [0, 𝑇) . (56)

If 𝑎(𝑥) satisfies (38) and (54), 𝑏𝑖(𝑠) is a Lipschitz function, and
(1𝜂)

(𝑝+−1)/𝑝− (∫
Ω\𝐷𝜂

|∇𝑎|𝑝(𝑥) 𝑑𝑥)1/𝑝− ≤ 𝑐, (57)

then the stability (50) is true, where Σ𝑝 has the form as (39),

𝐷𝜂 = {𝑥 ∈ Ω : 𝑎 (𝑥) > 𝜂} (58)

for the sufficiently small 𝜂.
The last but not least, we would like to suggest that the

weak characteristic functionmethod introduced in this paper
can be widely used to study the boundary value problem of
any kind of the degenerate parabolic or hyperbolic equations.

3. The Proof of Theorem 4

Let Γ𝑢 be the set of all jump points of 𝑢 ∈ 𝐵𝑉(𝑄𝑇), V be
the normal of Γ𝑢 at 𝑋 = (𝑥, 𝑡), and 𝑢+(𝑋) and 𝑢−(𝑋) be the
approximate limits of𝑢 at𝑋 ∈ Γ𝑢 with respect to (V, 𝑌−𝑋) > 0
and (V, 𝑌 − 𝑋) < 0, respectively. For the continuous function𝑝(𝑢, 𝑥, 𝑡) and 𝑢 ∈ 𝐵𝑉(𝑄𝑇), we define

𝑝 (𝑢, 𝑥, 𝑡) = ∫1

0
𝑝 (𝜏𝑢+ + (1 − 𝜏) 𝑢−, 𝑥, 𝑡) 𝑑𝜏, (59)

which is called the composite mean value of 𝑝. For a given𝑡, we denote Γ𝑡
𝑢, 𝐻𝑡, (V𝑡1, . . . , V𝑡𝑁) and 𝑢𝑡

± as all jump points of𝑢(⋅, 𝑡), Housdorff measure of Γ𝑡
𝑢, the unit normal vector of Γ𝑡

𝑢,
and the asymptotic limit of 𝑢(⋅, 𝑡), respectively. Moreover, if𝑓(𝑠) ∈ 𝐶1(R), 𝑢 ∈ 𝐵𝑉(𝑄𝑇), then 𝑓(𝑢) ∈ 𝐵𝑉(𝑄𝑇) and

𝜕𝑓 (𝑢)𝜕𝑥𝑖

= 𝑓󸀠 (𝑢) 𝜕𝑢𝜕𝑥𝑖

, 𝑖 = 1, 2, . . . , 𝑁,𝑁 + 1, (60)

where 𝑥𝑁+1 = 𝑡.

Lemma 7. Let 𝑢 be a solution of (27). Then in the sense of
Hausdorff measure𝐻𝑁(Γ𝑢), we have

𝑎 (𝑠) = 0, 𝑠 ∈ 𝐼 (𝑢+ (𝑥, 𝑡) , 𝑢− (𝑥, 𝑡)) 𝑎.𝑒. 𝑜𝑛 Γ𝑢, (61)

where 𝐼(𝛼, 𝛽) denotes the closed interval with endpoints 𝛼 and𝛽.
This lemma can be proved in a similar way as described

in [9]; we omit the details here.

Proof of Theorem 4. Let 𝑢, V be two entropy solutions of (27)
with initial values

𝑢 (𝑥, 0) = 𝑢0 (𝑥) ,
V (𝑥, 0) = V0 (𝑥) . (62)

By Definition 3, for 𝜑 ∈ 𝐶2
0(𝑄𝑇), we have

∬
𝑄𝑇

[𝐼𝜂 (𝑢 − 𝑘) 𝜑𝑡 − 𝐵𝑖
𝜂 (𝑢, 𝑘) 𝜑𝑥𝑖

+ 𝐴𝜂 (𝑢, 𝑘) Δ𝜑] 𝑑𝑥𝑑𝑡 − ∬
𝑄𝑇

𝑆󸀠𝜂 (𝑢 − 𝑘)
⋅ 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∇∫𝑢

0

√𝑎 (𝑠)𝑑𝑠󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2 𝜑𝑑𝑥𝑑𝑡 ≥ 0,

(63)

∬
𝑄𝑇

[𝐼𝜂 (V − 𝑙) 𝜑𝜏 − 𝐵𝑖
𝜂 (V, 𝑙) 𝜑𝑦𝑖

+ 𝐴𝜂 (V, 𝑙) Δ𝜑] 𝑑𝑦𝑑𝜏
− ∬

𝑄𝑇

𝑆󸀠𝜂 (V − 𝑙) 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∇∫V

0

√𝑎 (𝑠)𝑑𝑠󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2 𝜑𝑑𝑦𝑑𝜏 ≥ 0.

(64)

Let 𝜑 = 𝜓(𝑥, 𝑡, 𝑦, 𝜏) = 𝜙(𝑥, 𝑡)𝑗ℎ(𝑥 − 𝑦, 𝑡 − 𝜏), where𝜙(𝑥, 𝑡) ≥ 0, 𝜙(𝑥, 𝑡) ∈ 𝐶∞
0 (𝑄𝑇), and

𝑗ℎ (𝑥 − 𝑦, 𝑡 − 𝜏) = 𝜔ℎ (𝑡 − 𝜏)Π𝑁
𝑖=1𝜔ℎ (𝑥𝑖 − 𝑦𝑖) , (65)

𝜔ℎ (𝑠) = 1ℎ𝜔( 𝑠ℎ) ,
𝜔 (𝑠) ∈ 𝐶∞

0 (𝑅) ,
𝜔 (𝑠) ≥ 0,
𝜔 (𝑠) = 0, 𝑖𝑓 |𝑠| > 1, ∫∞

−∞
𝜔 (𝑠) 𝑑𝑠 = 1.

(66)

We choose 𝑘 = V(𝑦, 𝜏), 𝑙 = 𝑢(𝑥, 𝑡), and 𝜑 = 𝜓(𝑥, 𝑡, 𝑦, 𝜏)
in (63) and (64) and integrate it over 𝑄𝑇. It yields

∬
𝑄𝑇

∬
𝑄𝑇

[𝐼𝜂 (𝑢 − V) (𝜓𝑡 + 𝜓𝜏) − (𝐵𝑖
𝜂 (𝑢, V) 𝜓𝑥𝑖

+ 𝐵𝑖
𝜂 (V, 𝑢) 𝜓𝑦𝑖

)] 𝑑𝑥𝑑𝑡𝑑𝑦𝑑𝜏
+ ∬

𝑄𝑇

∬
𝑄𝑇

[𝐴𝜂 (𝑢, V) Δ 𝑥𝜓
+ 𝐴𝜂 (V, 𝑢) Δ 𝑦𝜓] 𝑑𝑥𝑑𝑡𝑑𝑦𝑑𝜏
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− ∬
𝑄𝑇

∬
𝑄𝑇

𝑆󸀠𝜂 (𝑢 − V) (󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∇𝑥 ∫𝑢

0

√𝑎 (𝑠)𝑑𝑠󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2

+ 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∇𝑦 ∫V

0

√𝑎 (𝑠)𝑑𝑠󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2)𝜓𝑑𝑥𝑑𝑡𝑑𝑦𝑑𝜏 ≥ 0.

(67)

Here Δ 𝑥 is the usual Laplacian operator corresponding to the
variable 𝑥, and ∇𝑥 is the gradient operator corresponding to
the variable 𝑥.

By the basic relations

𝜕𝑗ℎ𝜕𝑡 + 𝜕𝑗ℎ𝜕𝜏 = 0,
𝜕𝑗ℎ𝜕𝑥𝑖

+ 𝜕𝑗ℎ𝜕𝑦𝑖

= 0,
𝑖 = 1, ⋅ ⋅ ⋅ , 𝑁;

𝜕𝜓𝜕𝑡 + 𝜕𝜓𝜕𝜏 = 𝜕𝜙𝜕𝑡 𝑗ℎ,
𝜕𝜓𝜕𝑥𝑖

+ 𝜕𝜓𝜕𝑦𝑖

= 𝜕𝜙𝜕𝑥𝑖

𝑗ℎ,

(68)

using Lemma 7, just by the same calculations as in the proof
ofTheorem 2.4 in [18], letting 𝜂 󳨀→ 0, ℎ 󳨀→ 0 in (67), we can
deduce that

∬
𝑄𝑇

[|𝑢 (𝑥, 𝑡) − V (𝑥, 𝑡)| 𝜙𝑡

− sgn (𝑢 − V) (𝑏𝑖 (𝑢) − 𝑏𝑖 (V)) 𝜙𝑥𝑖
] 𝑑𝑥𝑑𝑡

+ ∬
𝑄𝑇

|𝐴 (𝑢) − 𝐴 (V)| Δ𝜙𝑑𝑥𝑑𝑡 ≥ 0.
(69)

If we let

𝜙 (𝑥, 𝑡) = 𝜂 (𝑡) 𝜉 (𝑥) , (70)

where 𝜂(𝑡) ∈ 𝐶∞
0 (0, 𝑇) and 𝜉(𝑥) ∈ 𝐶∞

0 (Ω), then
∬

𝑄𝑇

[|𝑢 (𝑥, 𝑡) − V (𝑥, 𝑡)| 𝜂𝑡𝜉 (𝑥) − sgn (𝑢 − V)
⋅ (𝑏𝑖 (𝑢) − 𝑏𝑖 (V)) 𝜂 (𝑡) 𝜉𝑥𝑖] 𝑑𝑥𝑑𝑡 + ∬

𝑄𝑇

|𝐴 (𝑢)
− 𝐴 (V)| 𝜂 (𝑡) Δ𝜉𝑑𝑥𝑑𝑡 ≥ 0.

(71)

For 0 < 𝜏 < 𝑠 < 𝑇, we choose
𝜂 (𝑡) = ∫𝑠−𝑡

𝜏−𝑡
𝛼𝜖 (𝜎) 𝑑𝜎, 𝜖 < min {𝜏, 𝑇 − 𝑠} , (72)

where 𝛼𝜖(𝑡) is the kernel of mollifier with 𝛼𝜖(𝑡) = 0 for 𝑡 ∉(−𝜖, 𝜖).

By (71), since |𝑏𝑖(𝑢) − 𝑏𝑖(V)| ≤ 𝛾|𝑢 − V|, we have
∫
Ω
|𝑢 (𝑥, 𝑠) − V (𝑥, 𝑠)| 𝜉 (𝑥) 𝑑𝑥
≤ ∫

Ω
|𝑢 (𝑥, 𝜏) − V (𝑥, 𝜏)| 𝜉 (𝑥) 𝑑𝑥

+ ∫𝜏

𝑠
∫
Ω
|𝑢 − V| (Δ𝜉 + 𝛾 𝑁∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨𝜉𝑥𝑖 󵄨󵄨󵄨󵄨󵄨) 𝑑𝑥𝑑𝑡.
(73)

For any small 𝜆 > 0, we choose
𝜉 (𝑥) = {{{{{

1, 𝑔 (𝑥) > 𝜆,
1 − (𝑔 (𝑥) − 𝜆)2

𝜆2
, 0 ≤ 𝑔 (𝑥) ⩽ 𝜆, (74)

where 𝑔(𝑥) is a weak characteristic function ofΩ. Then

𝜉𝑥𝑖 = −2 (𝑔 (𝑥) − 𝜆)
𝜆2

𝑔𝑥𝑖
,

Δ𝜉 = − 2𝜆2

󵄨󵄨󵄨󵄨∇𝑔󵄨󵄨󵄨󵄨2 − 2 (𝑔 − 𝜆)
𝜆2

Δ𝑔.
(75)

By (73), we have

∫
Ω
|𝑢 (𝑥, 𝑠) − V (𝑥, 𝑠)| 𝜉 (𝑥) 𝑑𝑥
≤ ∫

Ω
|𝑢 (𝑥, 𝜏) − V (𝑥, 𝜏)| 𝜉 (𝑥) 𝑑𝑥

+ ∫𝜏

𝑠
∫
Ω𝜆

|𝑢 − V| (Δ𝜉 + 𝑁∑
𝑖=1

𝛾 󵄨󵄨󵄨󵄨󵄨𝜉𝑥𝑖 󵄨󵄨󵄨󵄨󵄨) 𝑑𝑥𝑑𝑡,
(76)

whereΩ𝜆 = {𝑥 ∈ Ω : 𝑔(𝑥) < 𝜆}.
Then, since −2(𝑔 − 𝜆)/𝜆2 > 0 inΩ𝜆, we have

∫
Ω
|𝑢 (𝑥, 𝑠) − V (𝑥, 𝑠)| 𝜉 (𝑥) 𝑑𝑥 ≤ ∫

Ω
|𝑢 (𝑥, 𝜏)

− V (𝑥, 𝜏)| 𝜉 (𝑥) 𝑑𝑥 + ∫𝜏

𝑠
∫
Ω𝜆

|𝑢 − V|

⋅ (−2 (𝑔 − 𝜆)
𝜆2

Δ𝑔

+ 𝛾 𝑁∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2 (𝑔 (𝑥) − 𝜆)

𝜆2
𝑔𝑥𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨) 𝑑𝑥𝑑𝑡
= ∫

Ω
|𝑢 (𝑥, 𝜏) − V (𝑥, 𝜏)| 𝜉 (𝑥) 𝑑𝑥 + ∫𝜏

𝑠
∫
Ω𝜆

|𝑢

− V| [−2 (𝑔 − 𝜆)
𝜆2

(Δ𝑔 + 𝛾 𝑁∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨𝑔𝑥𝑖

󵄨󵄨󵄨󵄨󵄨)] 𝑑𝑥𝑑𝑡
≤ ∫

Ω
|𝑢 (𝑥, 𝜏) − V (𝑥, 𝜏)| 𝜉 (𝑥) 𝑑𝑥 + 𝑐𝜆 ∫𝜏

𝑠
∫
Ω𝜆

|𝑢

− V| (Δ𝑔 + 𝛾 𝑁∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨𝑔𝑥𝑖

󵄨󵄨󵄨󵄨󵄨) 𝑑𝑥𝑑𝑡.

(77)
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Since by (20) and (31),

lim
𝜆󳨀→0

1𝜆 ∫
Ω𝜆

|𝑢 − V| (Δ𝑔 + 𝛾 𝑁∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨𝑔𝑥𝑖

󵄨󵄨󵄨󵄨󵄨) 𝑑𝑥

= ∫
𝜕Ω

|𝑢 − V| (Δ𝑔 + 𝛾 𝑁∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨𝑔𝑥𝑖

󵄨󵄨󵄨󵄨󵄨) 𝑑Σ

= ∫
Σ𝑝∪Σ

󸀠
𝑝

|𝑢 − V| (Δ𝑔 + 𝛾 𝑁∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨𝑔𝑥𝑖

󵄨󵄨󵄨󵄨󵄨) 𝑑Σ

≤ ∫
Σ𝑝

|𝑢 − V| (Δ𝑔 + 𝛾 𝑁∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨𝑔𝑥𝑖

󵄨󵄨󵄨󵄨󵄨) 𝑑Σ = 0.

(78)

Accordingly, letting 𝜆 󳨀→ 0, we have
∫
Ω
|𝑢 (𝑥, 𝑠) − V (𝑥, 𝑠)| 𝑑𝑥 ≤ ∫

Ω
|𝑢 (𝑥, 𝜏) − V (𝑥, 𝜏)| 𝑑𝑥. (79)

Let 𝜏 󳨀→ 0. Then

∫
Ω
|𝑢 (𝑥, 𝑠) − V (𝑥, 𝑠)| 𝑑𝑥 ≤ ∫

Ω
|𝑢 (𝑥, 0) − V (𝑥, 0)| 𝑑𝑥. (80)

Theorem 4 is proved.

4. The Proof of Theorem 6

Let 𝑊1,𝑝(𝑥)(Ω) be the variable exponent Sobolev space. One
can refer to [22–24] for the following lemma.

Lemma 8. (i)The space 𝐿𝑝(𝑥)(Ω),𝑊1,𝑝(𝑥)(Ω), and𝑊1,𝑝(𝑥)
0 (Ω)

are reflexive Banach spaces.
(ii) 𝑝(𝑥)-Hölder’s inequality. Let 𝑞1(𝑥) and 𝑞2(𝑥) be real

functions with 1/𝑞1(𝑥) + 1/𝑞2(𝑥) = 1 and 𝑞1(𝑥) > 1. Then, the
conjugate space of 𝐿𝑞1(𝑥)(Ω) is 𝐿𝑞2(𝑥)(Ω). For any 𝑢 ∈ 𝐿𝑞1(𝑥)(Ω)
and V ∈ 𝐿𝑞2(𝑥)(Ω),

󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫Ω 𝑢V𝑑𝑥󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ 2 ‖𝑢‖𝐿𝑞1(𝑥)(Ω) ‖V‖𝐿𝑞2(𝑥)(Ω) . (81)

(iii)

𝐼𝑓 ‖𝑢‖𝐿𝑝(𝑥)(Ω) = 1,
𝑡ℎ𝑒𝑛 ∫

Ω
|𝑢|𝑝(𝑥) 𝑑𝑥 = 1.

𝐼𝑓 ‖𝑢‖𝐿𝑝(𝑥)(Ω) > 1,
𝑡ℎ𝑒𝑛 |𝑢|𝑝−𝐿𝑝(𝑥)(Ω) ≤ ∫

Ω
|𝑢|𝑝(𝑥) 𝑑𝑥 ≤ |𝑢|𝑝+𝐿𝑝(𝑥)(Ω) .

𝐼𝑓 ‖𝑢‖𝐿𝑝(𝑥)(Ω) < 1,
𝑡ℎ𝑒𝑛 |𝑢|𝑝+𝐿𝑝(𝑥)(Ω) ≤ ∫

Ω
|𝑢|𝑝(𝑥) 𝑑𝑥 ≤ |𝑢|𝑝−𝐿𝑝(𝑥)(Ω) .

(82)

(iv) If 𝑝1(𝑥) ≤ 𝑝2(𝑥), then
𝐿𝑝1(𝑥) (Ω) ⊃ 𝐿𝑝2(𝑥) (Ω) . (83)

(v) If 𝑝1(𝑥) ≤ 𝑝2(𝑥), then
𝑊1,𝑝2(𝑥) (Ω) 󳨅→ 𝑊1,𝑝1(𝑥) (Ω) . (84)

(vi) 𝑝(𝑥)-Poincarés inequality. If 𝑝(𝑥) ∈ 𝐶(Ω), then there
is a constant 𝐶 > 0, such that

‖𝑢‖𝐿𝑝(𝑥)(Ω) ≤ 𝐶 ‖∇𝑢‖𝐿𝑝(𝑥)(Ω) , ∀𝑢 ∈ 𝑊1,𝑝(𝑥)
0 (Ω) . (85)

This implies that ‖∇𝑢‖𝐿𝑝(𝑥)(Ω) and ‖𝑢‖𝑊1,𝑝(𝑥)(Ω) are equivalent
norms of𝑊1,𝑝(𝑥)

0 (Ω).
In order to prove Theorem 6, we let 𝑔(𝑥) be a weak

characteristic function of Ω and define 𝑆𝜂(𝑠), ℎ𝜂(𝑠), and 𝐼𝜂(𝑠)
as in Section 2.

Theorem 9. Let 𝑢(𝑥, 𝑡) and V(𝑥, 𝑡) be two weak solutions of
(36) with the initial values 𝑢0(𝑥) and V0(𝑥), respectively, and
with the same partial boundary value condition

Σ𝑝 = {𝑥 ∈ 𝜕Ω : 𝑁∑
𝑖=1

𝑔𝑥𝑖
(𝑥) ̸= 0} . (86)

If 𝑏𝑖(𝑠) is a Lipschitz function, 𝑎(𝑥) satisfies (38),

𝜂−𝑝+/𝑝− (∫
Ω\𝐷𝜂

𝑎 (𝑥) 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜕𝑔𝜕𝑥𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑝(𝑥) 𝑑𝑥)1/𝑝− ≤ 𝑐,

𝑖 = 1, 2, . . . , 𝑁,
(87)

then there holds

∫
Ω
|𝑢 (𝑥, 𝑡) − V (𝑥, 𝑡)| 𝑑𝑥 ≤ 𝑐∫

Ω

󵄨󵄨󵄨󵄨𝑢0 (𝑥) − V0 (𝑥)󵄨󵄨󵄨󵄨 𝑑𝑥,
𝑡 ∈ [0, 𝑇) ,

(88)

where 𝐷𝜂 = {𝑥 ∈ Ω : 𝑔(𝑥) > 𝜂} and 𝑔(𝑥) is a weak
characteristic function of Ω.

Proof. For any given weak characteristic function 𝑔(𝑥), we
define

𝜑𝜂 (𝑥) = {{{
1𝜂𝑔 (𝑥) , 𝑔 (𝑥) < 𝜂,
1, 𝑔 (𝑥) ≥ 𝜂, (89)

where 𝜂 is a positive constant small enough.
In view of the definition of weak solution, by a process of

limit, letting 𝜑1 = 𝜒𝑠,𝑡𝜑𝑛(𝑥) and 𝜑2 = 𝑔𝑛(𝑢−V), we can choose𝜒𝑠,𝑡𝜑𝜂𝑆𝜂(𝑢 − V) as the test function, where [𝑠, 𝑡] ⊆ (0, 𝑇), and𝜒𝑠,𝑡 is its characteristic function. Then we have

∫𝑡

𝑠
∫
Ω
𝜑𝜂 (𝑥) 𝑆𝜂 (𝑢 − V) 𝜕 (𝑢 − V)𝜕𝑡 𝑑𝑥𝑑𝑡 + ∫𝑡

𝑠
∫
Ω
𝑎 (𝑥)

⋅ (|∇𝑢|𝑝(𝑥)−2 ∇𝑢 − |∇V|𝑝(𝑥)−2 ∇V) ∇ (𝑢 − V) ℎ𝜂 (𝑢
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− V) 𝜑𝜂 (𝑥) 𝑑𝑥𝑑𝑡 + ∫𝑡

𝑠
∫
Ω
𝑎 (𝑥) (|∇𝑢|𝑝(𝑥)−2 ∇V

− |∇V|𝑝(𝑥)−2 ∇V) 𝑆𝜂 (𝑢 − V) ∇𝜑𝜂𝑑𝑥𝑑𝑡
+ 𝑁∑

𝑖=1

∫𝑡

𝑠
∫
Ω
[𝑏𝑖 (𝑢) − 𝑏𝑖 (V)] ⋅ (𝑢 − V)𝑥𝑖 ℎ𝜂 (𝑢 − V)

⋅ 𝜑𝜂 (𝑥) 𝑑𝑥𝑑𝑡 + 𝑁∑
𝑖=1

∫𝑡

𝑠
∫
Ω
[𝑏𝑖 (𝑢) − 𝑏𝑖 (V)]

⋅ 𝑆𝜂 (𝑢 − V) 𝜑𝜂𝑥𝑖
(𝑥) 𝑑𝑥𝑑𝑡 = 0.

(90)

As 𝑛 󳨀→ ∞, we have

lim
𝜂󳨀→0

∫𝑠

𝜏
∫
Ω
𝜑𝜂 (𝑥) 𝑆𝜂 (𝑢 − V) 𝜕 (𝑢 − V)𝜕𝑡 𝑑𝑥𝑑𝑡

= lim
𝜂󳨀→0

∫𝑠

𝜏
∫
Ω

𝜕 (𝜑𝜂 (𝑥) 𝐼𝜂 (𝑢 − V))
𝜕𝑡 𝑑𝑥𝑑𝑡

= lim
𝜂󳨀→0

∫
Ω
𝜑𝜂 (𝑥)

⋅ [𝐼𝜂 (𝑢 − V) (𝑥, 𝑠) − 𝐼𝜂 (𝑢 − V) (𝑥, 𝜏)] 𝑑𝑥
= ∫

Ω
|𝑢 − V| (𝑥, 𝑠) 𝑑𝑥 − ∫

Ω
|𝑢 − V| (𝑥, 𝜏) 𝑑𝑥.

(91)

Denote

𝐷𝜂 = {𝑥 ∈ Ω : 𝑔 (𝑥) > 𝜂}
and 𝑞 (𝑥) = 𝑝 (𝑥)𝑝 (𝑥) − 1 .

(92)

Note that |𝜑𝜂𝑥𝑖
| = (1/𝜂)|𝑔𝑥𝑖

| and 𝑥 ∈ Ω\𝐷𝜂. Wemay assume
that

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
1𝜂 [𝑎 (𝑥)]1/𝑝(𝑥) 𝑆𝜂 (𝑢 − V) 𝑔𝑥𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(𝑥)(Ω\𝐷𝜂)

> 1, (93)

without loss the generality. Using (ii) of Lemma 8, we have

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
1𝜂 [𝑎 (𝑥)]1/𝑝(𝑥) 𝑆𝜂 (𝑢 − V) 𝑔𝑥𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(𝑥)(Ω\𝐷𝜂)

≤ 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
1𝜂 [𝑎 (𝑥)]1/𝑝(𝑥) 𝑔𝑥𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(𝑥)(Ω\𝐷𝜂)

≤ (∫
Ω\𝐷𝜂

𝑎 (𝑥) (1𝜂)
𝑝(𝑥) 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑔𝜕𝑥𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑝(𝑥) 𝑑𝑥)1/𝑝−

≤ (1𝜂)
𝑝+/𝑝− (∫

Ω\𝐷𝜂

𝑎 (𝑥) 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜕𝑔𝜕𝑥𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑝(𝑥) 𝑑𝑥)1/𝑝− ≤ 𝑐.

(94)

We further have
󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫Ω 𝑎 (𝑥)

⋅ (|∇𝑢|𝑝(𝑥)−2 ∇𝑢 − |∇V|𝑝(𝑥)−2 ∇V) ∇𝜑𝜂𝑆𝜂 (𝑢 − V) 𝑑𝑥󵄨󵄨󵄨󵄨󵄨󵄨󵄨
= 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫Ω\𝐷𝜂

𝑎 (𝑥)
⋅ (|∇𝑢|𝑝(𝑥)−2 ∇𝑢 − |∇V|𝑝(𝑥)−2 ∇V) ∇𝜑𝜂𝑆𝜂 (𝑢 − V) 𝑑𝑥󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 󵄩󵄩󵄩󵄩󵄩[𝑎 (𝑥)](𝑝(𝑥)−1)/𝑝(𝑥)
⋅ (|∇𝑢|𝑝(𝑥)−1 + |∇V|𝑝(𝑥)−1)󵄩󵄩󵄩󵄩󵄩𝐿𝑞(𝑥)(Ω\𝐷𝜂)

⋅ 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
1𝜂 [𝑎 (𝑥)]1/𝑝(𝑥) 𝑆𝜂 (𝑢 − V) ∇𝑔󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(𝑥)(Ω\𝐷𝜂)

≤ 𝑐 [(∫
Ω\𝐷𝜂

𝑎 (𝑥) |∇𝑢|𝑝(𝑥) 𝑑𝑥)1/𝑞1

+ (∫
Ω\𝐷𝜂

𝑎 (𝑥) |∇𝑢|𝑝(𝑥) 𝑑𝑥)1/𝑞1] ,

(95)

which goes to zero as 𝑛 󳨀→ 0, where 𝑞1 is taken to be 𝑞− (or𝑞+) if
󵄩󵄩󵄩󵄩󵄩|∇𝑢|𝑝(𝑥)−1󵄩󵄩󵄩󵄩󵄩𝐿𝑞(𝑥)(Ω\𝐷𝜂)

> 1 (or ≤ 1) . (96)

Consider the convection term

∫
{𝑥∈Ω:|𝑢−V|<𝜂}

[𝑎 (𝑥)]1/(1−𝑝(𝑥))

⋅ (󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑏𝑖 (𝑢) − 𝑏𝑖 (V)𝑢 − V

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨)
𝑝(𝑥)/(𝑝(𝑥)−1) 𝑑𝑥

⩽ 𝑐∫
Ω
[𝑎 (𝑥)]1/(1−𝑝(𝑥)) 𝑑𝑥 ⩽ 𝑐,

(97)

since 𝑏𝑖 is a Lipschitz function.
If {𝑥 ∈ Ω : |𝑢 − V| = 0} is a set with measure zero, it has

lim
𝜂󳨀→0

∫
{𝑥∈Ω:|𝑢−V|<𝜂}

[𝑎 (𝑥)]1/(1−𝑝(𝑥)) 𝑑𝑥
= ∫

{𝑥∈Ω:|𝑢−V|=0}
[𝑎 (𝑥)]1/(1−𝑝(𝑥)) 𝑑𝑥 = 0.

(98)

If the set {𝑥 ∈ Ω : |𝑢 − V| = 0} has a positive measure, due
to the fact that 𝑎(𝑥)|∇|𝑝(𝑥), 𝑎(𝑥)|∇V|𝑝(𝑥) ∈ 𝐿1(𝑄𝑇), we have

lim
𝜂󳨀→0

∫
{𝑥∈Ω:|𝑢−V|<𝜂}

𝑎 (𝑥) |∇ (𝑢 − V)|𝑝(𝑥) 𝑑𝑥
= ∫

{𝑥∈Ω:|𝑢−V|=0}
𝑎 (𝑥) |∇ (𝑢 − V)|𝑝(𝑥) 𝑑𝑥 = 0.

(99)
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According to (81), when |𝑠| ⩽ 𝜂, it has󵄨󵄨󵄨󵄨󵄨𝑠𝑆𝜂󸀠 (𝑠)󵄨󵄨󵄨󵄨󵄨 ⩽ 𝑐. (100)

By Lemma 8, we have󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫{𝑥∈Ω:|𝑢−V|<𝜂}
𝜑𝜂 [𝑏𝑖 (𝑢) − 𝑏𝑖 (V)] ℎ𝜂 (𝑢 − V)

⋅ (𝑢 − V)𝑥𝑖 𝑑𝑥
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⩽ 𝑐 ∫
{𝑥∈Ω:|𝑢−V|<𝜂}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑏𝑖 (𝑢) − 𝑏𝑖 (V)𝑢 − V

(𝑢 − V)𝑥𝑖
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝑑𝑥

≤ 𝑐 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩[𝑎 (𝑥)]−1/𝑝(𝑥) 𝑏𝑖 (𝑢) − 𝑏𝑖 (V)𝑢 − V

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑞(𝑥)(Ω𝜂)
⋅ 󵄩󵄩󵄩󵄩󵄩[𝑎 (𝑥)]1/𝑝(𝑥) (𝑢 − V)𝑥𝑖󵄩󵄩󵄩󵄩󵄩𝐿𝑝(𝑥)(Ω𝜂)
⩽ 𝑐{∫

{𝑥∈Ω:|𝑢−V|<𝜂}
[𝑎 (𝑥)]1/(1−𝑝(𝑥))

⋅ 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑏𝑖 (𝑢) − 𝑏𝑖 (V)𝑢 − V

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑝(𝑥)/(𝑝(𝑥)−1) 𝑑𝑥}1/𝑞1

⋅ {∫
{𝑥∈Ω:|𝑢−V|<𝜂}

𝑎 (𝑥) 󵄨󵄨󵄨󵄨󵄨(𝑢 − V)𝑥𝑖 󵄨󵄨󵄨󵄨󵄨𝑝(𝑥) 𝑑𝑥}
1/𝑝1 ,

(101)

where Ω𝜂 = {𝑥 ∈ Ω : |𝑢(𝑥, 𝑡) − V(𝑥, 𝑡)| < 𝜂}, 𝑞1 is taken to be𝑞− (or 𝑞+) according to (iii) of Lemma 8, and 𝑝1 is 𝑝− (or 𝑝+)
similarly.

By (97)-(99) and (101), we have

lim
𝜂󳨀→0

∫
Ω
[𝑏𝑖 (𝑢) − 𝑏𝑖 (V)] 𝜑𝜂 (𝑥) ℎ𝜂 (𝑢 − V) (𝑢 − V)𝑥𝑖 𝑑𝑥

= 0.
(102)

Meanwhile,

lim
𝜂󳨀→0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫Ω [𝑏𝑖 (𝑢) − 𝑏𝑖 (V)] 𝑆𝜂 (𝑢 − V) 𝜑𝜂𝑥𝑖
(𝑥) 𝑑𝑥󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝑐 lim
𝜂󳨀→0

1𝜂 ∫
Ω\𝐷𝜂

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(𝑢 − V) 𝑁∑
𝑖=1

𝜕𝑔𝜕𝑥𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝑑𝑥
≤ 𝑐∫

Σ𝑝

|𝑢 − V| 𝑑𝑥 = 0.
(103)

Let 𝜂 󳨀→ 0 in (90). Using (91) and (95) in combination
with (102)-(103), we obtain

𝑑𝑑𝑡 ‖𝑢 − V‖𝐿1(Ω) ⩽ 0 (104)

and thus arrive at

∫
Ω
|𝑢 (𝑥, 𝑡) − V (𝑥, 𝑡)| 𝑑𝑥 ⩽ ∫

Ω

󵄨󵄨󵄨󵄨𝑢0 (𝑥) − V0 (𝑥)󵄨󵄨󵄨󵄨 𝑑𝑥,
∀𝑡 ∈ [0, 𝑇) .

(105)

Proof of Theorem 6. If we choose the weak characteristic
function 𝑔(𝑥) = 𝑎(𝑥), then the part of the boundary Σ𝑝 of
(39) is just the same as (86) and condition (57) is just the same
as (87). Theorem 6 follows fromTheorem 9 directly.
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[29] F. Yao, “Hölder regularity for the general parabolic p(x,t)-
Laplacian equations,” Nonlinear Differential Equations and
Applications NoDEA, vol. 22, no. 1, pp. 105–119, 2015.

[30] J. Yin and C. Wang, “Evolutionary weighted p-Laplacian with
boundary degeneracy,” Journal of Differential Equations, vol.
237, no. 2, pp. 421–445, 2007.

[31] H. Zhan and Z. Feng, “Solutions of evolutionary p(x)-Laplacian
equation based on the weighted variable exponent space,”
Zeitschrift für Angewandte Mathematik und Physik, vol. 68, no.
134, pp. 1–17, 2017.

[32] H. Zhan and J. Wen, “Well-posedness of weak solutions to
electrorheological fluid equations with degeneracy on the
boundary,” Electronic Journal of Differential Equations, Paper
No. 13, 15 pages, 2017.



Hindawi
www.hindawi.com Volume 2018

Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Problems 
in Engineering

Applied Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Probability and Statistics
Hindawi
www.hindawi.com Volume 2018

Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi
www.hindawi.com Volume 2018

Optimization
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Engineering  
 Mathematics

International Journal of

Hindawi
www.hindawi.com Volume 2018

Operations Research
Advances in

Journal of

Hindawi
www.hindawi.com Volume 2018

Function Spaces
Abstract and 
Applied Analysis
Hindawi
www.hindawi.com Volume 2018

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi
www.hindawi.com Volume 2018

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific 
World Journal

Volume 2018

Hindawi
www.hindawi.com Volume 2018Volume 2018

Numerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical Analysis
Advances inAdvances in Discrete Dynamics in 

Nature and Society
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

Di�erential Equations
International Journal of

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Decision Sciences
Advances in

Hindawi
www.hindawi.com Volume 2018

Analysis
International Journal of

Hindawi
www.hindawi.com Volume 2018

Stochastic Analysis
International Journal of

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/jmath/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/jam/
https://www.hindawi.com/journals/jps/
https://www.hindawi.com/journals/amp/
https://www.hindawi.com/journals/jca/
https://www.hindawi.com/journals/jopti/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/aor/
https://www.hindawi.com/journals/jfs/
https://www.hindawi.com/journals/aaa/
https://www.hindawi.com/journals/ijmms/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ana/
https://www.hindawi.com/journals/ddns/
https://www.hindawi.com/journals/ijde/
https://www.hindawi.com/journals/ads/
https://www.hindawi.com/journals/ijanal/
https://www.hindawi.com/journals/ijsa/
https://www.hindawi.com/
https://www.hindawi.com/

