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This paper is devoted to the investigation of a kind of generalized Caputo semilinear fractional differential inclusions with deviated-
advanced nonlocal conditions. Solvability of the problem is established by means of the Leray-Schauder’s alternative approach with
the help of the Lagrange mean-value classical theorem. Finally, some examples are given to delineate the efficient of theoretical

results.

1. Introduction

The history of the theory of fractional calculus goes back to
1695 when Leibniz sent a question to L-Hopital [1].
Although in the starter fractional calculus had an efflores-
cence as a mathematical analysis idea, nowadays, its use has
also sawing into many other subjects of engineering and
science such as biology, physics, mechanics, chemistry, and
bioengineering [2-5].

n'(t) e F(t,y(t)), ae te(0,1)

I L
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i=1 j=1

In the few past years, there has been important works in
fractional differential inclusions with other types of nonlocal
conditions. Detailedly, in 2015, Wang et al. [9] established
the existence of solutions for the Caputo fractional differen-
tial inclusions involving nonlocal conditions. In the second
year, Lian et al. [10] established the solvability of the frac-

It is known that differential inclusions are more general
than differential equations and various phenomena of
science, control, and engineering are successfully modeled
as fractional differential inclusions [6, 7].

Recently, fractional differential inclusions with nonlocal
conditions have attracted the attention of many researchers.
In 2011, El-Sayed et al. [8] established the solvability of the
ordinary differential inclusion with deviated-advanced
nonlocal condition.

tpT;€(0,1)Vi=1,- 1, j=1,-1,.

tional differential inclusions with nonlocal conditions by
using the measure of noncompactness and several-valued
fixed-point approach. In 2019, Castaing et al. [11] studied
the solvability of a new class of the Riemann-Liouville frac-
tional differential inclusion with nonlocal integral conditions
in a separable Banach space.
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In the above-cited monographs, the Caputo and Rie-
mann-Liouville derivatives were utilized. In 2017, Almeida
[12] obtained the new generalized Caputo fractional deriv-
ative, that is, a Caputo-kind operator of a function with
respect to another function. Indeed, this fractional opera-
tor is more general than Riemann-Liouville, Hadamard,
Erdely Kober, and Caputo operator kinds. More details
about the generalized Caputo fractional operator are found
in [13, 14]. Since then, generalized fractional operators
draw increasing attention due to their advantages, because
the generalized fractional operators will give us new
opportunities to improve the theoretical results and to

DE.(t) € A(tn() + F(tn(1),  ae.

I l,
Z cm(8(t;) = ﬁzdjﬂ(¢(7i))’ Cpd;>0,t,7,€ (0, T)Vi=1,--, 1), j= 1, 1.
i1 =

Motivated by the above-cited contributions, in particular
systems (1) and (2), we propose a new fractional differential
inclusion involving generalized Caputo operator, given by

3)

where "Dy, , is the generalized Caputo derivative w.r.t. the
function Q such that a € (0,1), A(¢): D(A) € R — R is lin-
ear bounded operator and F : I x R — P(IR, ). We show the
existence of solution for the proposed system (3). The pro-
posed system (3) is more flexible since it allows us to choose
fractional derivative depending on the particular established
phenomenon. Therefore, the tools of generalized fractional
differential inclusions facilitate the investigation of optimal
controls and stochastic processing, in particular, modeling
of control processes that are considered by selecting a trial
function [7]. Moreover, nonlocal conditions give more
accurate measurements, precise results, and efficient effect
than the classical boundary conditions.

An outline of this paper is as follows. In Section 2, some
bases and results are given needed in the sequel. In Section
3, we study the solvability of the generalized system (3). In
Section 4, we apply the abstract results in order to establish
the existence of solution for some illustrative examples.

2. Preliminaries

In this part, we recall some definitions and theorems that
will be used later. Let (E,||.]|;) be a Banach space and P
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model a lot of real-life events. In 2019, Promsakon et al.
[15] established the solvability of a new class of impulsive
fractional boundary value problems involving the general-
ized Caputo fractional derivative. In 2020, Belmor et al.
[16] investigated the solvability of fractional differential
inclusion including the generalized Caputo derivative with
integral nonlocal conditions. There are other works that
showed interest in the generalized Caputo operators; we
mention for example [17-20].

Nowadays, Herzallah and Radwan [21] studied the
fractional version of the system (1) with the classical Caputo
operator, namely

te0,T],T>0,

(E)={Z cE:Z#+@}. Now, throughout this paper, let

Py, (E) ={Z € P(E): Zisbounded},
P, (E)={Z € P(E): Zis compact},
P.,(E)={Z € P(E): Zis convex},

PCVP(E) = Pcp(E) NP, (E).

Let W CE. The fixed point of set-valued map ¥ : W
— P(E) is a point w € W such that w € ¥(w). The graph
of ¥ is defined as

G(Y)={(w,w,) e WXE: w, e¥(w)}. (5)

A selection of ¥ is a single-valued map v : W —E
such that G(y) € G(¥).

¥ :E— P(E) is closed (convex) valued if ¥(w) is
closed (convex) for each weE, and ¥ is bounded on
bounded sets if ¥ (W) =, ., ¥ (w) is bounded for each W
€ Py, (E), that is, sup, ., {sup {||z||: z € ¥(w)}} < co.

Therefore, ¥ is completely continuous if ¥ (W) is
relatively compact for each W e P, (W). In fact, if ¥ is
completely continuous with nonempty compact values, then
¥ is upper semicontinuous (u.s.c., for short) if and only if G
() is closed.

Let L'(I,E)={n:1—E: ||yl : | — R, be Lebesgue
integrable}; then L'(I, E) is Banach with the norm |||/, =

Jilln()1] dt.

Definition 1 [22]. A multivalued function ¥ : I x E— P(E)
is called L'~Carathéodory if

(i) t — P(¢, w) is measurable for each w € E,

(i) w — Y(t, w) is w.s.c. for almost all ¢ € I,
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(iii) for each r € (0, c0), there exists p, € L' (I, R,) such
that

(5, @)l = sup {[[v]lg: ve¥(t w)} <p,(t), Vl|wllp <7
and almost every ¢ € I.

Definition 2 [23]. Let C(I, E) be the Banach space of all con-
tinuous functions # : I — E with the norm |||, = sup,;
ln(t)||z- Therefore, let C™ (I, E) be the Banach space of all
m—differentiable maps # : I — E with #")(t) € C(I, E), m
€NN.

Definition 3 [24]. For every 1 € C(I, E), define the family of L!
—selection of ¥ : I x E— P,,,(E) as

S.},)ﬂ = {y/ € LI(I, R): w(t) e ¥(t,n(t)) fora.et e I}. (6)
Therefore, Sli,,q is a nonempty set.

Lemma 4 [24]. Let ¥ :IXxE— P, (E) be a L'-Car-

athéodory-multivalued function and @ : L' (I, E) — C(I, E)
be a continuous linear mapping. Then

® oSl : C(IE) — P,,,(C(L E)), 7+ @(s;,ﬂ), 7)

is a closed graph operator in C(I, E) x C(I, E).

An important role is played by the fixed-point principle
to obtain the solvability of various types of operator equa-
tions (see, for example, [25-29]). We will apply the following
fixed-point theorem to obtain the main results.

Theorem 5 [30]. Let Z be a convexiclosed subset of E, Q be an
open subset of Z, 0€ Q and ¥ : Q@ —> P,,,(Z) is w.s.c. and
compact operator. Then, either

(1) ¥ has a fixed point in Q, or
(2) there exists w € 0Q and A € (0, 1) with w € AV w.

Next, we outline some definitions of the generalized frac-
tional operators [12, 13]. For more details about fractional
operators, the readers are also referred to [1, 31].

Definition 6. Let Q : (a,b) — R, be an increasing function
having a derivative Q' (t) € C((a, b), R) such that Q'(t) #0
for all t € (a, b). The left generalized Riemann-Liouville frac-
tional integral of order a € (n,n+ 1) for some n €N of an
integrable function 7# : [a, )] — R w.r.t. the function Q is
given by [12]

< onlt) = ﬁjao’m(o(t) Q@) Q) ta
®)

Choosing Q(t) =1n (¢) and replacing in (8), we have the

Hadamard fractional integral, given by [32]
=g (= () 0
J.n(t)= — In (= —, a>0,t>a.
=g ) (m(z)) 107
)

Choosing Q(t) =t and replacing in (8), we get the
classical Riemann-Liouville integral, given by [1]

1

Jan(t) = TY&jjﬁ(t—-(y**n(C)d(, t>a.  (10)

The left generalized Riemann-Liouville fractional deriva-
tive of order a € (n,n+ 1) for some n € N of an integrable
function 77 : [a, b] — R w.r.t. the function Q is given by [12]

« 1 14\,
Dm,Q n(t) = 711(”_“) (Q'—(t)a> JaQ (C) (1)
Q) - Q"™ ')l t>a.

Choosing Q(t) =1n (t) and replacing in (11), we have the
Hadamard fractional derivative, given by [32]

fm;“nga%a(ﬁ%y£<m(9)mmzawa a>0,t>a.
(12)

Choosing Q(t) =t and replacing in (11), we get classical
Riemann-Liouville derivative, given by [31]

X — 1 d " n—a—1
Dgin(t) = T(n-a) (E) Ja(f—(:) n(¢)d¢, t>a.
(13)

Definition 7. Let a€ (n,n+1) for some n€N and Qe C"
((a,b), R) be an increasing mapping such that Q'(t)#0
for all t € (a,b). Consider # : (a,b) — R be an integrable
function. The left generalized Caputo fractional derivative

of order «>0, € R,, wr.t. the function Q is given by
(12]

1 d

*Da+,Q17(t) = ]ZI)”(‘) (Q/—(t)a> n(t), t>a. (14)

Choosing Q(t) =t and replacing in (14), we obtain the
classical Caputo fractional derivative. Choosing Q(f) =In
(t) and replacing in (14), we have the Caputo-Hadamard
fractional derivative, given by [32]

o)) () w0

“HDYn(t) =




Further, the generalized Caputo derivative can be
defined via the generalized Riemann-Liouville fractional
derivative as [13]

*DZ+,Q’7(t) = DZ+,Q n(t) - Z 0

where 7% (1) = (1/Q () (d/d1)) ().

The following lemma, which concerns some properties of
generalized fractional operators, plays a key role in the
sequel.

Lemma 8. [13]. Suppose that n: I — R, then

(1) if ne C(I,R), then *Dj. J6 on(t) = n(t),
(2) if ne C"(I,R), then

g (0) ‘
Jor.o Do on(t) =n(t) - kz — Q1) - Q0)",
(17)
(3) if ne C"(I,R) and a € (0, 1), then
Jo.o" Dy on(t) = n(t) = 1(0). (18)

3. Main Results

The differential inclusions using fractional derivatives have
been proven to be of major interest to the academic commu-
nity, not only mathematicians but also researchers in other
fields. There is a motivating way to obtain the solvability of
the differential inclusions; this way is representing the solu-
tion by integral equation.

The solvability of system (3) will be established under the
following hypotheses:

(H1) For all #(t) €I, there exists L, € (0,00) such that
Ly = max,|A(t)].

(H2) 3¢, # B ad,

(H3) The function F : I x R — R is L'-Carathéodory
and has nonempty, convex, and compact values.

(H4) The functions 6,¢ : I — I are continuous such
that 0(¢) <tand ¢(¢t) >t forall teI.

(H5) There exists a function p € L'(I, R, ) and K > 0 such
that | F(t,n(t))|| < Kp(t), and there exists M* > 0 such that

I(a+1)M*
(LM (Q(T) = Q(0))* + KMI'(a+ 1)) (IoB|S1d, + o] Sityc + 1)
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where

M- ﬁf@'(sxam - Q)" p()ds.  (20)

0

The integral representation of the system (3) will be given
in the following lemma.

Lemma 9. Let the hypotheses (H1)-(H2) hold. Suppose that

y:I— C(I,R), then the solution n(t) of the following
problem

{*DgﬂQq(t):A(t)q(t)+1//(t), ae. tel,

1 1,
YenO(t)=BY dn(d(r)), cpd;>0, t,TielN¥i=1, el =100,
i=1 j=1

(21)
is given by
"= ;Zzzdfjo(Tj) LA g
oSt
oA
-’ ZZI C"J Zm) = (Q(egéi))_ XD g a5
¥ F(IOC)J;Q'(S)(Q(t) - Q(s)" A()n(s)ds
+ i | @0 - ) s
(22)

where 0 = 1/(2?:161‘ - ﬁzjfzzldj)'

Proof. Applying the operator J§. , on both sides of equation
(21). Then, by Lemma 8, we get

T50" Do o1(8) = Joe oA (0)n(8) + y (1)) (23)

Therefore, we obtain

n(t) =n(0) + ﬁjta’@m(t) — Q) A(s)n(s)ds

0

+ %j Q'(5)(Q() - Qs w(s)ds.

(24)
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Putting ¢ = 0(¢;) in equation (24), we get

o(t,)
0(1) = (0) + F(l)j Q(5)(QO(1) - Q)" Als)n(s)ds
1 (2@
“ral, @

Thus, we have

(25)

I I; I, 1 a(t,) /
Zlc,nw(tl)):; 10)+ ) ,F(a)J Q' (s)(Q(O(t))
a o)
_ Q(s))offlA( ) dS + Z ¢ [‘(1“) J QI(S)
~(Q(O(1)) = Q(s)* 1[/( )ds.
(26)

Putting ¢ = ¢(7;) in equation (24), we get

(7))
WWWFMWT%L Q'(s)
- (Q($(7))) = Qs) " A(s)(s)ds
1 ¢(T]) ! a-1 d
), Q) -ew) v
(27)
Thus, we have
e b L d’(fj) ,
Ddn(9() = T o)+ Yy [
=1 =1 j=1 0
(Q(8(7;)) = Q) A(s)n(s)ds 2
! 1 ¢(TJ) , ( )
i), 90
(Q(8())) = Q(s)) " y(s)ds
Hence, we obtain
I, 2 ! ) _ a-1
n@=wZ@V)Q®@WgB‘%” Als)n(s)ds
j=1 0
L 9(7) Q' (s 7)) - Q(s))*!
+aﬁ2djj Q()(Q‘p;(f‘zg Q) w(s)ds
j=1 Jo
h 0(t;) ’S ) = O(s a-1
~oY | SR g a
Lo of N a-1
_lec’Jo Q(S)(Q(G;téa)) Q(s)) W(s)ds
(29)

5

Substituting equation (29) into equation (24), we obtain
the result.

We note that a function 7 € C(I, R) is called a solution for
system (3) if there exists a map y € L' (I, R) such that € F
(t,1(t)) a.e. on I and #(¢) is given by

(30)

where 0 = 1/(2, 16 ﬁzjl ])

Now, we establish the solvability of problem (3).

Theorem 10. Suppose that the hypotheses (HI)-(H5) are
satisfied; then the system (3) has at least one solution.

Proof. By hypothesis (H3) and Lemma 4, there exists a single-
value map v € S}gﬁ. Define the multivalued operator ¥ : C(
ILR) — P(C(I,R)) as

Yo (t)= wecaR>wﬂ

{/32 | J () Q'(5)(Q (¢(FT(B AN 4ynsps
(] . _ s a—1

+aﬁzdj )Q'(5)(Q @;@3 AN s

L (900 Q' ()(Q(6(1)) - Q(s))*!
- ai:l CjJO I'(a) (Shs)ds

b 0t) o (s ) = Q)"
_UMQL Q<xowﬁg ANy 5)ds
+£Q@@“aq” AS)n(s)ds

)
I(

“Q'()(Q(r) - Q)"
+J (

1
. T(@) y(s)ds, wye SFW}.

(31)

Then for every h € Y and 5 € C(I, R), there exists v €
S}D,q such that



Now, we can obtain the proof in 4 steps.
Step 1. Yy is convex for all 7 € C(I, R). Let hy, h, € Yn; then
there exists y,, ¥, € S}:’,l such that for every t € I, we get
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Let 0 < p <1, then

(phy+ (1= ) =0 Y [

(34)

From (H3), we have F takes convex values. Hence,
(ph, + (1= p)h,) € Y. Thus, S};JI is convex.

Step 2. " is completely continuous. First, we will prove that Y’

is bounded. Let r>0. Define B, ={ne C(I,R): 5|, <r}
and let # € B,. From (H4), we have that

(35)

for all ¢ € I. Therefore, we get

Lo mQ(s ) - Qs
TR i L TR
1 J0

JOQ'(S)(Q(f) = Q) AWl o

J;Q%s)(o(r) Q) p(s)ds
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_ a h h
< (LAr% +KM) (0/3|}Z;dj+ |a|;ci+ 1>.

(36)

Hence, Y sends bounded sets to bounded sets in C(I, R).

Secondly, we will prove 1" sends B, into equicontinuous
sets of C(I, R). Let t}, t; €I such that ¢} <1t;.

Then, for all 4 € Y7 and # € B,, we have

h(t5) = h07) = s | @ 90(QU85) - Q) Aoy

Hence, we get

In(E3) = h(e]) < s J Q(s)[(Qe) - ) - (@) - Q)]

1
(JAG) 1]l oo + 1Yl oo ) ds e
J Q' (9)(Q15) = QN ™ (IAG) |1l oo + 1] o) -

(38)

Next, by the Lagrange mean-value classical theorem,
we obtain

e =D -5)Q' (1)
h(tl)|S 1—-(0() JO

(Q(F) = Q) (Lar + [|¥lo ) ds
" WJQQ (9)(Q(13) - Q)™

(Lar + [l ) ds:

where t} <t<t;. As t] — 5, |h(t5) = h(t])| — 0. Thus,
Y(B,)is equicontinuous. From the Arzela-Ascoli theorem,
we get Y is completely continuous.

Step 3. Y is u.s.c. We only need to show that 1" has a

closed graph to be us.c. Let 7, — 7 and h, — h where
h, € Yn,.We need to show that 1 € Y'7.Associated with h,
€ Y, there exists v, € SlFﬁ such that for all t € I, we have

(40)

We want to show that there exists ¥ € S; ~ such that for
g

each t € I, we get

O e
j=1 0

(41)

Define the linear continuous operator ® : L' (I, R) —
C(I,R) by

o)1) =oFY, 4. T ASn(s)ds
+0[3§de: RRILIC - Ay as
Z [V LA
_g'z f” Q’<s><o<6<rté>a>)—o<s>>“ W(5)ds
e ACICORL E I C e
e OGO T



Hence, we get

#(1) Q'(5) (Q(¢(7))) - Q(s))*™

: >—E<r>\s|aﬂ\LAIZZdjj o 11,(5) = A(5)lds
\amZdJ " LN QO g
+|a\LAIZ'a‘[ LA 2N -
+\a§ Q) 2O - g

L(oc)JoQ'“( (£) = Q) 11,(5) = 7 (5)|ds
+ﬁJQ'<”<Q(t>*Q<s))“| 2(5) = ¥ (s)]ds.

0

(43)

Thus, h, (t) — h(t) as n —> co. From Lemma 4, we can
see @oS}:’,7 is a closed graph in C(I, R) x C(I,R) and h, €
®(S}?rz ). Since n, — 7, then h(t) satisfies equation (41)
for some y € S;; Thus, Y is an u.s.c.

Step 4. There exists an open set Q2 € C(I, R) such that € d
Yy for some 6 € (0,1) and 7 € 0Q.

Let 8 € (0, 1) and 77 € 5 Y'r7. Then, there exists y € L' (I, R)

with y € SIF’W such that for all € I, we have

(44)
As in the proof of Step 2, we get that

il 55 (Lol LR 3P + kr)

L I
: <|cr,8| Zdj+ o] Zc,.+ 1>
j=1 i=1

< (Lalills L3+ k)

I'a+1)
L I
. (0,8|Zdj+ |0\Zci+ 1).
j=1 i=1
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Hence, we get

I(e+ Dl
(Lallloo(QUT) = Q(O))* + KM (a+ 1)) (loBIL 11 + lol Eityey + 1)
(46)

<l1.

From (H5), there exists M* such that M* # |||, Let
Q={neC(L,R): |||, < M* +1}. Thus, there is no # € 00Q
such that 7 € 8 Y7 for § € (0,1). Hence, ¥': Q — P,,,(B,)
is u.s.c. From Theorem 5, we deduce that 1" has a fixed point
1 € Q which is a solution of the system (3).

Theorem 11. Assume that (H1)-(H4) hold. In addition,
suppose

(H6) there exists a nondecreasing continuous function
E:[0,00) — [0,00) and q€ C(I,R,) such that

|F(t:n(t))|| =sup {|p|: pe W(t,n)} <q(t)Z(|p]), (47)

for all (t,n) €IxR, and there exists x> 0 such that

I'(a+ 1)k
- Q)" (IoBIX i + 0|5 ic + 1)
(48)

<1.

(Laxe + [l4]l, 5 ()) (QT)

Then, the system (3) has at least one solution on I

Proof. Define the multivalued operator " : C(I, R) — P(C
(I,R)) as in equation (31) of Theorem 10.

Step 1. Y'n is convex for all 4 € C(I, R). By doing the same
steps as in the proof of Theorem 10, we can get that Y7 is
convex for all 7 € C(I, R).

Step 2. Y' is completely continuous. First, we will prove that Y’
is bounded. Let 7, > 0. Define B, = {n € C(I,R): ||y, <7}

and let 7 € B, . From (H4), we have that
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for all t € I. Therefore, we get

)11l s

Il IG,BIZd J (s) (Q(?-()a; Q(s))
2 S)

|A(s)
+1oB]|l4l] “(’o)ZdJJT]Q( (Q(;]t)a;Q(s)) s

1 0

=
+\o|Z o L QN s

I ¢, 15 ) = Ofs w1
+lo]lalle,Z(r0) Y J QU >(Q(FJ()W) Q(s))

i=1

ds

* ﬁj Q'()(Q(1) = Q)™ A 1]l o s

||01|| E(r) J
(LA"0+H‘1H E(r

I'(a+1)

Q(s))*'ds
)) @) - Qo)

1, 3

: <|aﬁ| Ydi+|o]) e+ 1).
=1 i=1
(50)

Hence, Y sends bounded sets to bounded sets in C(I, R).
Secondly, we will prove 1" sends B,  into equicontinuous

sets of C(I, R). Let t, t3 € I such that ¢} <t3.
Then, for all h € Y and 77 € B, , we have

(@) Jo
B %“)Jol Q' (s)(Q(t}) = Q(s))* " A(s)n(s)ds
' %"‘)J;QI(S)(Q(@) - Q(s))*y(s)ds
) ﬁjg Q'(5)(Q(t}) = Q(s))* "y (s)ds

Hence, we get

)((Q(fz) Q) = (Q(H) - Q)™ |ds

ot (ara a1 500)
) - iy < e S0

L
. ( AT+ |q]|
I'(a)

< (LAr + 119/l H(”O)) a-1 . a1
WJ @)@ - Qo)™ - (@) - Q) ds

 arerlaloS0) [y

(1) ‘ Q(9)(Q(t5) - Qo) ds

e (9(Q(85) - Qo) ds

(Laro + 119lles=(r0)) .
< W[(Q(fz) = Q(0))" = (Q(t)) = Q(0))))-
(52)
In view of continuity of Q, we have |h(t) — h(t])] — 0

as t} — t5. Thus, 1" is completely continuous.
Step 3. Y'is u.s.c. As in the proof of Theorem 10, we have that
Y is an w.s.c.

Step 4. There exists an open set Q € C(I, R) such that #/6 €
Y1 for some 8 € (0,1) and 1 € 0Q.

Let 8 € (0,1) and 57 € § Y. Then, there exists y € L' (I, R)
with y € S}in such that for all ¢ € I, we have # € § Y satisfies
(44). As in the proof of Step 2, we have that

La|[1lloo * 19110 (1]l co) «
R e e [CORLID)
L I
: <|aﬁ| Ydi+lo]) e+ 1)
=1 i=1
(53)
L + =
o (e 9120 o) gy
L I
: <|a/3|2dj+ |0|Zci+1>.
=1 i=1
Hence, we get
Tla+1)|7]lo <1
(Lalltlloo + 1191l eoZ (I1ll00) ) (QUT) = Q(0))* (\aﬁ\z, 1+ [T+ 1)
(54)
From (H6), there exists x such that x # ||77]| .. Let A= {p

€ C(I, R): ||n||, < x+1}. Thus, there is no # € dA such that
nedYn for §€(0,1). Hence, ¥': A— P, (B, ) is us.c.
From Theorem 5, we deduce that 1" has a fixed point # € A
which is a solution of the system (3).

Putting Q(¢) =t in (3), we have the following result.
Corollary 12. Assume that (HI)-(H4) hold. In addition,
suppose

(H7) there exists a nondecreasing continuous function
E:[0,00) — [0,00) and q € C(I,R,) such that

| F(t,n(t))[| =sup {|p|: p€ W(t,;n)} <q(t)Z(|p]),  (55)

for all (t,n) €I xR, and there exists x* > 0 such that

I'(a+1)x"

L l;
(Lar + gl o E0e) T <|a/3|]; d+lo Yo+ 1)

<lI.

(56)

Then the system (2) has at least one solution on L

Choosing Q(#) =1In (¢) in system (3) and changing the
interval I with the interval I, = [1, ¢] in (3) and in all condi-
tions (H1)-(H4), we obtain the following Caputo-Hadamard
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fractional system
“HDLn(r) € A(t)n(t) + F(tn(t),  ace.

L
Z cn(6(
i=1

tel,=[1,¢e,

anr pj=1,1

))>cind;>0,t, 7€ LVi=1, -,
(57)

The following result is a direct consequence of
Theorem 11.

Corollary 13. Assume that (H1)-(H4) hold on I,. In addition,
suppose

(H8) there exists a nondecreasing continuous function
E:[0,00) — [0,00) and qe C(I,,R,) such that

IE(&n(0)] =sup {|pl: pe W(t.m)} <q()E(Ip ), (58)
for all (t,n) €I, xR, and there exists K >0 such that
I(a+1)x

<1. (59)
(La® o+ lalloo2 (%)) (JoBIZLd; + ol XiL i+ 1)

Then, the system (57) has at least one solution on I.

4. Applications

In the following examples, we point to how applied the
abstract results in particular systems.

Example 14. Consider the following generalized fractional
differential inclusion

cos (#(t))
+100

+3 +6t'|, ae te[0,1],

B, () - %Qme

n(t)|+t2 +1

3
Z ( “5> ta7€[0,1)V,=1,25j=1,2,3.

MN

(60)
Let Q(t) = (> +t)/2. Here, we get a = 2/5,
An(e) = S O),
t 2 o
(t,l’]) ,M(lfg(% +3t°+ 6t |, (61)
6:10,1] —[0,1],6(t) = t*,
§: 10,1 — [0,1),4(1) = £

From given information, we obtain that L, =0.01, T
=11, =2, =3y} 4 =5/16,3 ;37 =7/8,=2.25. Hence,
0 =-0.6037735849. In addition, it has |[|F(t,%)| < 10.
Thus, p(t)=1, K=10 and M =1.1273957159. Then, there
exists a constant M* such that M* € (25.53, 00) satisfying
the inequality of (H5).

By Theorem 10, we know the system (60) has at least one
solution.

Journal of Function Spaces

Example 15. Consider the following generalized fractional
differential inclusion

2
"Dy () -
00~ %100 r+1

cos ((t)) c [0, t‘ﬂ(t)q, ae. telo,1],

2417 t4

- 025 . .
231 ( )ti,rje[0,1],\7’1:1,2;]:1,2,3.

(62)
Let Q(t) = v/t + 1. Here, we get a =2/3,
_ cos (n(t))
AN =~ o0~
tin(t
Fm= [O’ %} (63)
6:10,1 — [0,1],0(t) = t*,
¢ :[0,1] — [0, 1], ¢(t) = 7.
Thus, Ly =0.01, T=1,1,=2, l,=3, ¥ ,4'=5/16, ¥,

37=7/8, and f=2.25. Therefore, o=-0.6037735849. In
addition, it has ||F(t,1)| < (t/t + 1)|5(t)| Further, q(t) =t/
(t+ Dllgllo=1 and Z(lgll,) =[lnll, The condition
(H6) of Theorem 11 is satisfied with x € (0.5558151022,00).
Consequently, all the hypotheses of Theorem 11 are satisfied.
Thus, the problem (62) has at least one solution.

5. Conclusions

In this paper, we established the solvability of fractional dif-
ferential inclusions involving the generalized Caputo opera-
tor by applying Leray-Schauder’s alternative approach with
the help of the Lagrange mean-value classical theorem. The
proposed system studied in the present work is more practi-
cal and more generalized. The results given in this paper
extended and developed some previous works. We presented
some examples to illustrate the solvability results.
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