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1. Introduction

Let h € C(S) with S=
Chen et al. [1] proposed a new generalization of Bernstein
operators based on a fixed real parameter A € [-1, 1] as

where the basis functions Q%c (y) are defined as

The authors studied the established of some Korovkin
type approximation properties and the degree of approxima-
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In this article, we establish an extension of the bivariate generalization of the g-Bernstein type operators involving parameter A and
extension of GBS (Generalized Boolean Sum) operators of bivariate g-Bernstein type. For the first operators, we state the Volkov-
type theorem and we obtain a Voronovskaja type and investigate the degree of approximation by means of the Lipschitz type space.
For the GBS type operators, we establish their degree of approximation in terms of the mixed modulus of smoothness. The
comparison of convergence of the bivariate g-Bernstein type operators based on parameters and its GBS type operators is shown
by illustrative graphics using MATLAB software.

tion by means of the modulus of continuity, Voronovskaja-
type results, and shape-preserving properties for these
operators.

This work took the attention of researchers from
approximation theory for a short time. Since that time, lots
of researchers have put forth many relevant studies on this
issue, and numerous articles can be given interrelated with
their work [2-5].

In [6] were introduced the bivariate extension of the
operators (1) and studied the degree of approximation in
terms of the second order Ditzian-Totik modulus of continu-
ity for two variables. A Kantorovich variant of the A-Bern-
stein operators (1) was introduced and studied in [7]. Many
authors also considered the univariate and bivariate positive

[0,1],A € [-1,1], and m € N. In 2018,

hsy) :i (k) x €S, (1)

:Qm,o()’) - ﬁgmﬂ,l()’)v . . . . . .

m+ linear operators and studied their approximation behavior;
m—2j+1 m—2j—1 i _
)= 0, (7) + A( i i) - 1 Qoo (y)>, we rc?fer the reade.r to artlcles.(cf. [8.1.7]) and references
1 m? —1 therein. Now, we give some basic definitions based on the g
l<k<m-1, -calculus [18], which are used in this paper. Let 0 <g<1
and b, x be any real numbers.

= Q) = S P ) The g-number [b], is defined as [b], = {1 - g1 -q,q#1}

(2) and for b=n €N,

[n],=1 +qte+q" (3)
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The g-number (1 - x)z is defined as (1
¢/l —xq/"" and forb=neN

b
—x)q:H;.’fol—x

(l—x);:(l—x)(l—qx)-u(l—q"_lx). (4)

For the integers #, j such that 0 < j < n, the g-binomial is

defined as
mi [n]q!
L- ] PR o

For an integer n, the g-factorial is defined as

[n],!=[n] [n 1]} if nz1, (6)

and [n],!=1 if n=0.

Cai et al. [19] considered the generalized Bernstein type
operators based on parameters g —analogue and for fixed
real parameter A € [-1,1] as

%(h;q,y)=iﬂfi}q)(y)h<[[£q>, yes,  (7)

= la
where the basis functions Q( ) . (y) are defined as

B0 0) =000~ Gy Hona 0 )

Ot 1y = A & 2 q+1Q
g (V) =) + [m]zi—l mi1,j(V)
q
[m], —24]j], -1 .
- q[m]z—_lqggnﬂ,jﬂ(J’) y1<j<m—1,
q
9)
~ (A, A
Qi ()= 2 0) = == L), (10)

and an’j(y) = lrl}:] y11%,(1-¢y). Note that for g=1,
q

these operators reduce to A-Bernstein operators (1) and for

q=A=1 (7) educes to Bernstein operators defined in [20].

Therefore, linear operators, in particular the limit g
-Bernstein operator, are of significant interest for
applications.

The purpose of this article is to present an extension of
the bivariate A, g-Bernstein type operators involving parame-
ters and obtain the degree of approximation by means of the
Lipschitz type space for two variables. Moreover, we consider
the associated Generalized Boolean Sum (GBS) operators
and study their degree of approximation in terms of the
mixed modulus of smoothness for bivariate functions.
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2. Construction of the Bivariate g,A-Bernstein
Type Operators

For §* =0, 1] x

functions on S2.
For he C(8*) and A, A, € [-1,

of the operator (7) is defined by

[0, 1], let C(S?) be the space of all continuous

1], the bivariate extension

m, m
Ayt
‘%W’lp;‘pqil h )’1’)’2 z Z le mzh]z )’p)’z)h
71=0j,=0
(11)

(b Ui,
[my], " Imal, )’

where {qm_}m_eN is a sequence in (0, 1) satisfying

g4, =1 and g, —¢;fori=1,2. (12)
(A1) _ (/\
Purther’ lel,mzz,jl,jz (yl’yZ) - rnl ]l(y ) m, ] ()’2)> Where

QS’)’?}] (y,) and QS:;}Z (y,) are defined similarly as Qiji(y)
in (8).
It is easy to see that ,%mll ,i,zq’q"fn (h5y,,,) is bounded. We

denote

%Z‘{ﬁif;";l (=31 '(v=73,)"5%9)
= B0 (=) 3001 ) B (v =72)' 5007, )
=t A, s (qml,yl)#mz,kz,t (qmz,yz) s,teNU{0}.
(13)

Lemma 1 (see [19]). For the operators %’ﬁ{l (h,q;,y,), we have

(i) ‘%’/r\n]](] sqpy) =1

(ii) BoD (595 y1) =y, + (fmy + 1), y,(1= YA [m)],
([m],,)) = @lm+ 11, y, A,/ [m]; = D[(1=y["1[m,]
)@=+ Oyl D], (], + D)L -

[T =gy =y = [my + 1]y, (1= Y] +

(11/[”"1];1 - D{2[m; + I]quf(l — ) = (2lmy + 1)
I [ml]ql)( —¥i")}+(21q, [m1]q1)[1 ~ T
—q’}yl) -y

(iii) 9‘]’)/\ 25qpy) =yi+ (0, (1-y)lm } ) (Y1)‘1

[m1+1]q 1myly, ([mi],, ))[611)’1( -y (-
yiH[m ] )] (2[m, +1] /\1/["11}%([””1]% )y,
(1=yi")/[m 1]q,)+‘h(2+‘h))’?(1_)’TI_I)""]?

[m; - I]qu?(l _)’Tﬁz)] - (Mi/q, [ml]q ([7"1] +1))
{m; + l]quf( 1=y = (fm, + l]qul( )’1 ")lq,
[my),,) + (1 =TT = ghyy) =7 g lmy], )} +
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(@A /]y (Imy)g, = 1)){g,[m, = 1), [m, +1} i1

=) = (=g )y + 1], yi (1 =y )la) + (
[y + 11, 3, (1= y7)lai[my]g ) = 1= T (1 - d1y,)
}’Tﬁl/%[””z]ql}

Let e,(y,,y,) =t]t5, (1,5) € Ny x Ny, with r+s<2. In
order to obtain the main results, we need the following
lemmas:

4
Lemma 2. For the operators e%’m]l ,ﬁ,z dy,» We have

() Bz (Lsyyy) =1

(i) B (10510 y2) =y, +
Myt [my), (Imy), — 1)) -
(1=} 1lmy),) + 4, (1 -y
[”’h] +1))[1 Hm’( qg)ﬁ)_)’z _[ 1}

< YO+ at[m ]2, = D{2[m, + 11, y3(1 -

> (2l + 1], yyfay ], ) (=) +

[ Do =TI (1 - diy,) - Ly

(iii) @mmjf;fm (e037172) J’1+(/V1( )’1)/[”11]% + (i
[y + 1), 1my) )y, (1= Y7 + (1= 57 [m)],)]
—(2[m1+1}q,/\ /[qul([mz]q,— ))[()’1( iR
[mly,) + 4,2+ a)yi(1=y"") + qilm; ~ 1], yi(1
=y = g my) (Imy], + D){[m, + } i
=y = (Imy + 1, Yz( Y aglmyly) + (1=

o (1= diy;) =¥y /‘h[”"z] 3+ @A/ my], (
["ﬁ] - D){q;m; - 1], [m1+1]ql)’ 1- m'fz)—((
ql)[ml-'—‘l]qul( - )/‘11)"'([’" ] (1
—yiigilm], ) = 1= TT5(1 - qhy,) - y"””/ql
) -

[y, ¥+ (2lq,[m], )1 =TT = giy) =y

([m; +1]q1y1(1 =)
(2m; + 1], y Ayl [mlg ~1)

()L 19,[m], (

(2/q,

(V) B (e015%,9) =y + (Imy + 1] yy (1= y32)A,
[my], (fmsl,, = 1)) = (2[my + 1], y, A5/ [m]; — D](1
= Y52 [mo), )+ qays (1= y52 )] + (Algy[ms), (
[mo],, + D)1 - TT(1 - ghy,) - 5" -

72(1=y5)] + Al fmy; = 1){2[m,+ 1], y3(1 -

Y5 = (2lmy + 1], yalg,ms), ) (1-55°) + (21g,

o), =TT = ghy,) =521}

[mZ + l}qz

() B, (€023 y72) = v+ 01 =y mly) + (3
Aslmy + 1]q2/[m2]q2([m2] 1))lgy,(1 -y )+ (1
_}’?2/[”’2}%)] = (2[m, + I]q) /[mZ]qZ([mZ};Z - 1)[(
o(L=y52)[my), ) + 4, (2+ 4.)y3(1 =35 ) + 4

[, = 10, 73(1 = 3] = (Ataslmy) ([my], + 1)
iy + 1,300~ Y5 = (b + 1, 701 - Y3
[mZ]q )+ (1-TT5%(1 - gy,) _)’?Zﬂ/‘b[mz]qz)} +
(2/\2/[””2] ([mz]sz = 1)){q,[m, - qu [m; + 1]q2y§(1
) = (1= gp)my + 1], y3(1 =57 )ig,) + (
[mz +1], y2(1=y5")q3[myl, ) — 1= TT5%(1 - 45y,)
}

m +1
: /qZ mZ]qz

Corollary 3. Applying Lemma 2, we have

(i) g’jmlzﬂijgfn,(“ Yi3¥pYa) =
Nmyl, ([my], - 1) -
=y m),) + ay (1= Y]+
[my], +1))[1— 21—y =y = [my + 1],

7 (1=y]+ Ayl = D{2[m, + 1], y3(1 -
y?”‘l) = (2m, + 1), y,lq,[m,), )(1=y]") + (2,
[mal, =TT = gby,) =51}

[m; + l]qul(l V1A

(2[m+ 1], y, Ay [m]3, = D[(1

(A,/q, [mz]ql(
[m

i) By, (V= 35571 y2) = [y + 1], y,(1= Y3t
[mz]qz([ myl, —1) - (2[m2+1] Mz/[] - 1)[(1
~ 5 /[m ]q2)+q2yz( — 5]+ (z/qz[mz](
[mol,, + D)1 =TT (1 - ghyy) =5 = [my+ 1],
( y2 )+ (A, /[mz] = D{2[m, + 1], y3(1-

) (2[m, } yz/qz[mz] )( )’;nz)+(2/‘b
[ ])[I_H o(1 qzyz) y?z””

(ii1) B (=3, y032) = (1,1
+([m; + 1]q1y1/\1/[m1]q ([’”1} -1))lgqy,(1-
P+ _J’Tl/[mz]ql) 2)’1( -y - (2
[y + 1] Ayt [y, ()5, = D)0 (=7 [my),,
)+q,(2+q,)yi(1=y7"") + qlm, - l]qu (1-
P+ Gyl + 10, Ml [my 7 = D=y
[milg,) + 4, (1=y7 ) = (Mg my), (fm)], +
D){[my + 10,y (1 =y7"™") = (my + 1, y, (1= 5"
)1q,[my], ) (1-TT(1 ‘h)’z) YTI+1/Q1[m1]q1)
_2y1[1_Hz=o(1_‘11)’1) = [m; +1], y,(1
i} + (2/\1/[”"1]q ([7’”1] - 1){q,[m, - }ql

m; + I]ql)’?(l -y - (1 —qy)[m; + I]qul( -

)

—y)lmil,)

[ (

P gy) + (Imy + 1), 3, (1= y™)igilm,], )~ 1-
11— diy,) - y’Z“”/ql [my], =2y, (A /[m, )7~
D{2[m, + 1], yi(1-y7"") = (2[m, + 1], y,/a,
[my], V(1 =y7") +(21q,[my], )1 = TT26(1 = qiy,)

—yi”’”]}



(i) B, (=) 530 2) = 01 = )l [m } )t
([ + 1], 251 [mo), (3], = 1) aoys(1=357)
+(1=y5"1myly ) = 29,(1-y5")] = ([m2+1] Aol
[m2],, ([mals, = D)[(r,(1 = y52)/ [m, ]qz)+q2(2+q2
)y3(1=y5"" )""b[ my = ]quZ( -y5 )+ (4y,
[m; + l]qz)’z)‘z/[mzﬁz - 1)[(1 _)’?2/[7’”2]%) +4,y,(1
=75 = (Aalgy[mo], ([mo,, + D){[m; + 1], ¥
(1=55"") = (fmy + 1), p,(1 = 32, [m3), ) + (1
~ 151 = ghyy) = 5= 1g,[mo, ) = 2,11 =TT
(1=qbys) = y5*" = [my+ 1), yo(1=y5°)]} + (24
[m2],, ([ma];, = D){as[m, =11, [my + 11, y3(1 -
Y572 = (1= qy)[my + 1), y3(1=¥5%)ig,) + (fm,
+ 1], y,(1=y532)q3lmy), ) = 1= 11— ghy,) -
)’?ﬁ]/qg[mz]qz} - 2)’2@2“’”2]2 - ){2[m, + I}qzyé
(1=55"7") = (2my + 1)yl g,lms), ) (1= y52) + (2
/‘b[mz}qz)[]_ (1 mﬁ]]}

~459,) = ¥>
ApAasdy,
(V) mlllgloo [ml}q Il%mll’rfqz’q'z"l (t

1Y YpYa) =
A1>Az>‘lmz
‘%mz»mzﬂml (t

(vii) lim [m,] YY) =y, (1-

ApAgsty, 2
m;—00 m It%mll’mz’qyznl((tl —)’1)
Y1)y, €(0,1)

. A1>Az>qm
(W”) mlzlinoo [m2]qm2 ‘%mzmzﬂfnl ((t

¥,),¥,€(0,1)

In what follows, the Volkov-type approximation theorem

ApAag
is proved for 93,,,, ,ﬁ,z Zi"fnl

2 _)’2>2 ;}’1’)’2) :)’2(1 -

Theorem 4. Let h € C(S?). Then, we have

lim H%ﬁ,ﬁij;;; n) - =o. (14)

M, 1, —00

Proof. Using Lemma 2, it is obvious

Ay,
i B (0102 = 6 (1) € (0,00, 0.1), 0.1},
(15)
and
qm
lim ggmll "212 qz (€20 * €02 31> Y2) = €0 + €025 (16)

my,m,—00

uniformly on S?. The result follows using [[21], Thm 2.1].
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In order to discuss the next results, let us recall the defini-
tions of modulus of continuity and partial modulus of
continuity

Definition 5 (see [22]). For h € $* and & > 0, the full modulus
of continuity in the bi-variate case is defined as

w(h;08)= —h(ypy)l: (t ), (V192) ESZ}'

(17)

For each fixed i =1, 2, the partial modulus of continuity
of h with respect to y, is defined

\/227 {‘h(tl’ t;)
i:,(tﬁ)’xyg‘s

W (h38) = sup {|h(x),y) = h(x,,y)|: y € [0, 1]|x; - x,] <&},

(18)

and

(15 8) = sup {|h(x, y,) - =, <6},

(19)

h(xy, y)|: x € [0, 1] [y,

respectively.

Theorem 6. For h € C(S?), we have

Aph; Am,

H*%’mllm?)qm, (h) - hH < 2w,(h; ), (20)

where 8 =1, 3 (s V1) + 2,2 2)-

Proof. Using the facts that

Al”\Z’qmz
“%mpmpqm (h(ti 1) 391502) — h(yv)’z)’

zmz Q) (19, | ily, | e, ~h(yyy)|.
J1=0j,=0 v ZJI ’ [ml}% [mz]‘b
(21)

Then, we use the following property of the complete modulus
of continuity:

(t1,15) = B )| < @ 59) <1 e AR 2 )

(22)
we get
Ao
)‘%)mpm:{qml (h(ty15)3y1:92) _h()’l’yz)’
Ay my
‘ggmpmzq»qm, (\/(ﬁ -y (=) ;}’v}’z)
< |1+ 5 w9 (h;9).
(23)
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Applying Cauchy Schwarz inequality, we have

Ay,
| B, ({11 12) 370 32) = (7o)

1 A1sArsdy,
< {1 5 {ggml,mf,q;l (t=x)s5y00,)

1/2
B, (o)) edths)
1 172
< [1 *5 {«“ml,)q,z (qm.,yl) ) (qmz,yz)} }wc(h;ﬁ):v(ypyz) €s.
(24)

By choosing

6= {P‘ml,/\l,z (qml,yl) + 22 (qmz,yz) }1/2, (25)

we obtain the desired result.

Theorem 7. Let h € C(S?), then the following inequality holds:

A Ay,
| B, (h(t10£2) 371032 = (o)

< 2{w<’> (h S\ o, 2 (qm,yl)> +al? <h S\ 2 (qm,yz)) }

(26)

Proof. Similarly to previous theorems, using relations (19) we
obtain

AI’AZ’qmz
| B, ((t1 1) 531 72) = h(y1o32)
/\1>Az> 'y
S {ggml)m;{qml (w<2)(h;|t2 -2 1) ;)’1>)’2) (27)

+ B, (@it =3, )iy, ) )

Applying Cauchy Schwarz

(2,2 (@ > 1) and 8, = (1, 3 (4,5 7,))""%, we obtain
the desired result.

Now, we want to give the quantitative result in terms of
the Lipschitz class functionals. For any functions & : > — R
and 0 <u <1, the function 4 is said to be in Lipschitz class
Lip,u(S?) if 3a M > 0 such that

inequality with &, =

Lipyu:={h : |h(s,, 5,) = h(yy, y,)|<Mls - t||u}, (28)

Vs=(s;,8,) t=(y;,7,) €S2 where [ls—t]l={(s;—y,)" +
(s, —y,)*}" is the Euclidean norm and M is a positive real
constant.

The following theorem yields us an estimate of error for

. . . /\1,/\2>‘1m2
functions in Lip,,u, by the operators B, m,.q,, -

Theorem 8. Let h € Lip,,u. Then for sufficiently large m and n
and for all y,, y, € S, there holds the inequality

)‘1’)‘2)%2 -1 -1
| B, () - hHC(F) <m{fml,) + '} @29)
where M > 0 is a constant.

Proof. From hypothesis, we have

ApAad,,
B, (037103) = h2,)|
)LI’AZ’qm
< Bt (1h(s1,5) = h@py)lsynyy)  G0)

A1Ard,,
<MBony i, (Is = 1" 5717,)5

where s = (s;,5,),t = (y,,y,) € S*. Applying Hélder’s inequal-
ity and Corollary 3, we obtain

/"l’)LZ’qmz
"ggmpmz,qml (h3y1y2) =h(y132)

!

u/2

AAssd,,
<M{ B, (I =1 703,) } (31)

u/2
<M {!’iml,/\l,z (qmz,yl) 0,2 (qm,yz) } »

which leads to the required result on applying Corollary 3.

Let C'(8?) denote the space of continuous functions
h(y,,y,) on S* whose first-order partial derivatives g'y1 and

! .
g ,, are also continuous on s%.

Our next result yields us the rate of approximation for
continuously differentiable functions on S* by the operators
(%AI’AZ’qmz

R

Theorem 9. Let h € C' (S?). Then for sufficiently large m and n,
we have

’\szqmz - -
| B, (k) = th(sz) < A (I ey ;24 Ny Il )

(32)
where A is some positive constant.
Proof. For y,, y, € S* be arbitrary, we may write
tl

h(ty, ) =h(y1,y,) = J h,n(’% ty)dn
N

t
+ J ' 4(y)> $)dg, for(t), 1,) € S°.
V2

(33)



Ay 2‘1m2

Hence, applying the operator %, m,.q,,
the above equation, we obtain

on both sides of

AA, Ay

ggmpmz)qml (hsy12) =h(y1%3)

tl
Ay m,
_'937”1 MG, <J h,n(ﬂ’ t2)d’7;y1’y2> (34)
N

)LI’AZ’qu g
_*"gji’”l’mz’qm1 (J h,gb(yl’ ¢)d¢;yl’y2> .
b2

By using sup-norm on $*

tl tZ
AL S O TR <y1,¢>d¢‘
N1 C(S) V2
<||W
[ g 12221
(35)
we get
A 2m,
’«%mlmzqml(h Y1y2) ~h(y132)
li }LI’AZ’qu X
o L B R S SR cY
i /\1>A2>‘1m2 .
[ g B 2 = b

Hence, applying the Cauchy-Schwarz inequality and
Corollary 3, we obtain

ArsAs i,
"%ml’mzﬂml (h ;yl’yZ) -

h(y1>y,)

ApAydy,

<ol (e e} )

/\l’/"Z’qmz 172
HI e { B, (62 =) 53072) )

from which the desired result is immediate.
The following result yields the degree of approximation

of h by e%’mll ,qu 4y, in terms of the partial modul of continuity
of the partial derivatives of h.

Theorem 10. Let h € C'(S?). Then for sufficiently large m and
n, we have

MN

A 1Az,
H‘%mvmzﬂml ( -

i {1 + 20 )(hyl,; [mJ;i) },

(38)

H sz) :1

where w(i)(h'yi ;.) are the partial modul of continuity of h'),’_

fori=1,2and A is some positive constant.
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Proof. If we use the mean value theorem in the following
form, we have

—h(yy,) = (6 =y)H,, (1.y,) + (= y,)B (75 0)
=(t =y, 122) + (6 = 0)
(W 0ny) =1 0))
+(t = y)h (i 35) + (82— 35)
(W, 0 w) = 1, 7)),

Bty )

(39)

where y, <n<t; and y,<u<t, Applying the operator

AAssd,, .
B, myi,, to both sides, we deduce that

/\p"z:%z
Bomymyy, (h3Y1572) =h(y157,)
Alf\z%nz
:h,yl()’v%) mlmzqml(tl Y13Y1:Y2)

+ B, (=) (W, (2 =, 003) ) 370033 )

AlAZq my

1 (15 72) By, (12 = Y25 71592)
Al’/\Z‘qmz
* '%jml»mmml ((tz 2 (h ¥ ) - K ¥ ()’1’)’2)) ;)’1’)’2)-
(40)

Since h’y and h'
1 Y.
tive constants A, and A, such that |h'},1 |<A, and |h,y1| <A,

for all (y,,y,) €S®. Hence, applying the Cauchy-Schwarz
inequality, we obtain

, are continuous in %, there exist posi-

A )Azﬂmz

)‘%mnxmzﬂm, (h5y1592) =h(y1>72)
2 Al A qmz
Z ’ my, mlqml i = Yil3YpYa)
i=1

N zgg,,; ham (
<3 fmfa

mln nzﬂzqgi ((ti _)’i)z ;yv)’z)}
i=1

(1)
Modsd,,

6 ‘%””1 M5 Gmy ((ti _yi)2 ;)’vyz)} }

ti—Yi i
‘(1"" 5 |> ;yl,yz)w()(h;’;(?i)

1

1
2

AArd,, !
Bz, (=) ;yl,yz)}

(41)

Choosing 6, = ([m,], _)_llz,i: 1,2 we get the required

result.
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3. Construction of GBS Operator of Generalized
Bernstein Type

In the last two decades, the study of generalized Boolean sum
(GBS) operators of certain linear positive operators has
attracted very much attention in the approximation theory.
In early 1937 with Bogel [23], a great number of studies are
performed related to these operators. To make an analysis
in multidimensional spaces, Bogel [23] introduced the con-
cepts of continuity and differentiability in a Bogel space.
There are still many authors working on this subject. Agrawal
et al. [24] studied the degree of approximation for bivariate
Lupas-Durrmeyer type operators based on Poélya distribution
with associated GBS operators. Further, Gupta et al. [25]
introduced some GBS operators of discrete and integral types
and examined the properties of approximations in a Bogel
space. Recently, Kajla and Miclacus [16] studied the rate of
approximation of Bogel continuous and Bogel differentiable
functions by the GBS operators of Bernstein-Durrmeyer type
operators. In the last year, Kumar and Shivam [26] con-
structed the bivariate Kantorovich-type sampling operator,
involved with GBS operators, as well as estimation of the rate
of convergence of the sequences of these operators.

A function h: $> > R is called B-continuous at point

(x0 ) € % if

hml R Ay ) h[)’o’yo ’)’1’)’2] (42)
(XJ’)H(J’O’)’O)

for any (y,,y,) € S, (see [23]). The function h : $* — R is B-
bounded on §” if there exists M >0 such that |A, h[t;,t,;
Y122l <M for every (y,,y,), (), 1,) € S,

Throughout this article, B,(S*) denotes all B-bounded
functions on S*. The space of all B-continuous functions is
denoted by C,(8%).

Motivated by the above authors, we construct the GBS

operator of 93%:1 3122), who is defined as follows:

GRS i) (h(t1 1) 5%y)

(43)
= 93’5311)’,’}122)(11(5,)/2) +h(yty) —h(tp4) 591 95)s

for all (y,,y,) € S*. More precisely, the g-analogue A-Bern-
stein type GBS operator is defined as follows:

my m, )
g‘%“s)gf;\f,’r/}fz)(h(tl’tz )3Y1Ya) = Z Z L0, s (V1>%2)
7170 j,=0
< |h [jl]ql y +h y [jZ}qz _h [jl}ql UZLIZ
[I/nl]q1 7 : [mZ}qz [ml]ql ’ [mZ]qz ’

(44)

where the operator ?%’&;’}1{;’}}2) is well-defined on the space
C,(8?) into C(8*) and h € C,(S?).

)

MMy bm,

4. Degree of Approximation by €3S

For (y,,¥,) (t;,t,) € $%, the mixed modulus of smoothness
of h € C,(S?) is defined by

wp(h;8,,0,) =sup {’A(yl,yz)h[tl’ t U’p}’z]’: b — ]

<Op [y, — | < 82})
(45)

and for any (8, 8,) € (0,00) x (0,00). Using (45), we have

wg(h5 P18y, Py8y) < (1+ Py)(1+Py)wp(f36,8,); Py, P, >0,

(46)

The basic results of w; were studied by Badea et al. [27,
28] and are similar to the properties of the usual modulus
of continuity for bivariate functions. We shall obtain the
rate of approximation of the operators (44) to h e C,(S?)
in terms of the mixed modulus of continuity for two vari-
ables. For this, we apply the Shisha-Mond theorem for B
-continuous functions defined by Gonska [29] and Badea
and Cottin [28].

Theorem 11. For every h € C,(S?), at each point (y,,y,) € $
and sufficiently large m and n, the operator (44) satisfy the
following results

(ApsA)s qm2 A —1/2 ~1/2
|z i -] < Cloy(hslm] 1 (], ),

(47)

where Cij is a positive constant depending on parameters A,
and A,.

Proof. Using (45) and applying the inequality (46), we have

wg(hs |ty =yl [t = 2,l)

: It =y
< g<1+ T)wB(g;él,Sz)
< (14, -y, 16
+(8162)_1(|t1 —y1||t2—y2|))w3
(9501,0,)s

Ay p bt b5y 05]| <

171+|t2 -7 6271

(48)

for every (y,,y,), (t;,t,) € $* and for any 6,,8, > 0. Taking
the definition of A, , \h[t}, 1,3y, y,], we may write

h(y» ty) + h(t,y,) = h(ts ) =h(yy,) = Ay, ) hlts By 90]-
(49)
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20 18 16 14 12 10 8 6 4 2 0
- Function h(y,, y,) = 2*y3*sin(2* pi*y?)*y3 - B Operator: m, = 20, m, = 20
B Operator: m, =10, m, = 10 - B Operator: m, = 30, m, = 30

Ay
FIGURE 1: The convergence of (%,,,ll,,f,zgil (hsy ) toh(yy,y,)-

7

20 18 16 14 12 10 8 6 4 2

- Function h(y,, y,) = 2*y3*sin(2* pi*y2)*y3 - GBS Bernstein Operator: m, = 20, m, =20

GBS Bernstein Operator: m, = 10, m, = 10 - GBS Bernstein Operator: m, = 30, m, = 30

Ay
FIGURE 2: The convergence of (%,,,ll,rf,zgil (hsy ) toh(yy,y,)-
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/ / / /

20 18 16 14 12 10
- Function h(y,, y,) = 2*y?
B Operator: m, = 30, m, = 30

Ssin(2* pi* y2)*y3

- GBS Bernstein Operator: m, = 30, m, = 30

(0.6,0.6),0.8
FIGURE 3: The convergence of ?%’&0 30,0, 3

ApsAy oy,

Applying the operator B, m,q, on both sides of the

above inequality

(AAs) AsAssd,, Adsd,
GRBSm,, mzz qn.lz (hsy1y,) =h(y,y,) %8 mll,rilz,qil (Lsypp,) — ‘ggmlwilz,qi,
' (A(J'pyz)h[tl’ tys )1 Y2 U’p)’z)-
(50)

Now, from Lemma 2, with the help of Cauchy-Schwarz
inequality and Remark 1 (in that order), we obtain

’g‘g‘?é)rriliﬁzz iy Ay (h ;yl’yZ) -

(o100
1A2 m,y

(g 81’6 )( MMy,

il ¢ B (1

5 \/ B, (1
s I

A Jt iy
\/ B, (=22 37072) )-

h(y1,9,)

hlt;, ty 591 0,)

Aoty
< ‘%ml LOH qrzn

;)’1’)’2>

(Liy1:02)

J’l)z;)’l’)’z) (51)

ty =959 2)

(tr=91)759002)

(hsy)>y,) and %2063%60%8(;’ Y1 Ya) to h(yy, ).

TasBLE 1: Error of approximation %ﬁ;l’,};ﬁlz for m; = m, = 10,20 and
30; 4y, =4q,y, =08 and A, =1, =0.6.

1> 22) g?cf 0’ %g062% ° ggoﬁs?) )
(0.1,0.1) 0.000160 0.000120 0.000117
(0.1,0.4) 0.001862 0.001518 0.001486
(0.2,0.6) 0.012728 0.012002 0.011916
(0.3,0.2) 0.002130 0.002100 0.002094
(0.6,0.5) 0.005007 0.008771 0.009194
(0.75,0.7) 0.094096 0.104575 0.105493
(0.9,0.7) 0.246766 0.226662 0.225008
(0.9,0.9) 0.594899 0.553166 0.549529
TaBLE 2: Error of approximation %fn’}‘,gzz for m, =m, =10, 20 and
30and g, =q,=0.8and A, =1, =0.6.

) R G
(0.1,0.1) 0.000144 0.000107 0.000103
(0.1,0.4) 0.000912 0.000701 0.000682
(0.2,0.6) 0.001831 0.001428 0.001385
(0.3,0.2) 0.000588 0.000600 0.000598
(0.6,0.5) 0.040427 0.035837 0.035374
(0.75,0.7) 0.013232 0.014782 0.014782
(0.9,0.7) 0.071823 0.062288 0.061427
(0.9,0.9) 0.035840 0.032438 0.032209
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Now, setting §; = ([m,], ‘)71/2, i=1,2, the required result
is obtained.
For 0 <u<1, the Lipschitz class of Bogel continuous

functions is defined as

Lipyu = {h € Cy(S): ‘A(yl)yz)h[tl, t ;yl,yz]’ <Ljt- s||“},
(52)

where = (t,,t,),s=(y,,y,) €S* and |t - sl ={(¢,
(t, — y,)*}'"* are the Euclidean norm.

In the next result, we obtain the degree of approximation

of the operators ?936’,(”11 mzz)qq"’z

_)’1>2+

for functions in the Lipschitz-
class of Bogel continuous functions.

Theorem 12. If h € Lip, i, then for sufficiently large m, and
m,, we have

H?‘%‘S’;’ e (hsy107,) ~ (h)HB <i{fm],! +[m),! }W’

qml qmz
(53)
where L is a positive constant.
Proof. Using the equation (50), Holder’s inequality, Lemma
2, and Lemma 1, we get
o
GBS mimne (3 71:7:) - h(ypyz)\
A1sA 2,
< Bonromie, (|8un9022)]53:2)

A Aosd,, /
< LB, i, (IIt—SII” ;ypyz>

u/2 (54)
L

IN

(B, (1= 537,) }
u/n2
L{M AL Z(qml’yl) +kum2,A2,2 (qmz’yz)}

1 u/n2
<L ;! } .

Thus, we get the desired result.

IN

5. Numerical Results and Discussions

Example 13. Let us choose m; =m, =10,20and 30, q,,

ALA,
4,,=0.8, and A, =1, =0.6. Denote &) = |%Bn, ,if:;; (r

(51,8,)5¥1¥,) —h(y;,9,)], the error function of approxima-
tion by operators The convergence of the bivariate Bernstein

operators: %’10 lézm (hsyy,,) (vellow), then .932(1) 2(2)2'”2 (hsy,

+y,) (red) and ‘%)3(1)’33 Z:Z (hsy1,,) (magenta) to h(y,,y,) =2
y3 sin (27y%)y; (blue) will be illustrated in Figure 1.

Journal of Function Spaces

Example 14. For m, = m, = 10,20 and 30, A; =1, =0.6 and

@, = Gy, = 0.8, the convergence of ?95’6’5”1 My qimz (h5y1505)
to hO’l’}’z) o
Denote &7 = GBS qq:z (h(s1:5) 570 2) =h(y>32) |

the error function of approximation by operators. This

2y3 sin (27y})y; is illustrated in Figure 2.

example explains the convergence of the operators %

é’xl ,/},Z q[i:z (h(y,>y,)) that are going to the function h(y,,,)

if the values of m,, m, are increasing.
Comparative results are given in Figure 3, Tables 1 and 2, for
the errors of the approximation of ‘595’55”1 My qqmmz (hsy0,9,)

and ‘%/’\"11»"212!1""1’;1 (hsy,,y,) to the functions h(y,,y,) =2y; sin
(27y?)y; for my=m, =30, A, =1, =0.6, and g, =¢, =0.8.
Note that (see Tables 1 and 2 and Figure 3) the GBS-
Bernstein operator approximation outperforms others.
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