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In this paper, we study existence and uniqueness of solutions for a system of Caputo-Hadamard fractional differential equations
supplemented with multi-point boundary conditions. Our results are based on some classical fixed point theorems such as
Banach contraction mapping principle, Leray-Schauder fixed point theorems. At last, we have presented two examples for the

illustration of main results.

1. Introduction

In recent years, fractional differential equations (FDE) gain
enormous attention among scientists due to the applications
which were not possible with ordinary or partial differential
equations of integer order. FDEs becomes a very successful
tool in modeling anomalous diffusion and fractal-like nature.
Agrawal discusses diffusion and heat equations of fractional
order in [1-3]. Agrawal et al, Baleanu, and others investi-
gated the boundary value problems for fractional differential
equations [4]. Fractional dynamic models, fractional control
systems, fractional population dynamics models, and frac-
tional fluid dynamics all involve at least one ordinary or par-
tial fractional derivative.

Fractional differential equations have several kinds of
fractional derivatives, such as Riemann-Liouville fractional
derivative, Caputo fractional derivative, and Grunwald-
Letnikov fractional derivative. Another kind of fractional
derivative is Hadamard type which was introduced in 1892
[5]. This derivative differs from various derivatives in the
sense that the kernel of the integral in the definition of Hada-
mard derivative contains logarithmic function of arbitrary

exponent. A detailed description of Hadamard fractional
derivative and integral can be found in [6]. The readers
who are interested in the subject of fractional calculus is
referred to the books by Kilbas et al. [7], Podlubny [8], Miller
and Ross [9], Samko et al. [10], Diethelm [11], and Zhou [12]
and the references therein.

Coupled systems of fractional differential equations play
a key role in developing differential models such as the syn-
chronization of chaotic systems [13-15], anomalous diffusion
[16, 17], disease models [18, 19], ecological models [20],
Lorenz system [21], and nonlocal thermoelectricity systems
[22, 23]. For recent theoretical results on the topic, we refer
the reader to a series of papers [24-37] and the references cited
therein. Ahmad and Ntouyas [32, 33] discussed some frac-
tional integral boundary value problems involving Hadamard
fractional differential equations/systems and obtained the exis-
tence and uniqueness of solutions by applying the Banach fixed
point theorem and Leray-Schauder alternative, respectively.

In [35], the authors investigated the existence and
uniqueness of solutions for the coupled system of nonlinear
fractional differential equations with three-point boundary
conditions
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D u(t) =f(t,v(t), Pv(t)), t € (0,1)
DPv(t) = g(t, v(t), Dlu(t)), t € (0, 1)
u(0) =0, u(1) =yu(n), v(0) =0, v(1) = yv(n),

>
>

(1)

where 1<a, <2,p,4,9>0,0<<l,a—gq>1,B-p>1,y
71 <1,yP <1 and 2% PP are the standard Riemann-
Liouville fractional derivative and f,g:[0,1]x RxR—R
are given continuous functions.

Recently, Alsulami et al. [36] established the existence
and uniqueness results for a nonlinear coupled system of
Caputo type fractional differential equations supplemented
with nonseparated coupled boundary conditions.

“D(t) =
Dyt =gl
x(0)= Ay

y(0) =y

t, x(t),

=

where ‘@* PP denote the Caputo fractional derivatives of
order o and f3, respectively, f,g:[0,T]xRxR—R are
appropriately chosen functions, and A, p;,i= 1,2, are real
constants with A;u, #1,i=1,2.

Motivated by the research going on in this direction, in
this paper, we study existence and uniqueness of solutions
for a coupled system of Caputo-Hadamard fractional differ-
ential equations.

‘Doou(t)=f(t, u(t), v(t)), t €a, b],
(3)

‘DEv(t) = g(t, u(t), v(t)), t € [a, b],

with multipoint boundary conditions

N
u(a) = Mv(b), L, D u(b) =, Y CDv(n),

- (4)
v(a) = pu(b), L, Dv(b) = uy Y CDRv(E),

i=1

where o, f € (1,2],y,,6;€(0,1],i=1,2,n,€R, fori=1,2, -
N(NeN),a<n, <n,<--<bf;eR, for i=1,2,---M(M ¢
N),a<& <& < <bM,p,i=1,2,3 are real positive con-
stants I, denotes the Caputo-Hadamard fractional deriva-
tives of order «k for (k=a,f,y,0;,fori=1,2),
f,g€a,b]x RxR— R are appropriately chosen functions.

The paper is organized as follows. In Sect. 2, we present
some preliminary concepts of fractional calculus. Sect. 3 con-
tains main results concerning the existence and uniqueness
of solutions for the given problem (3), (4). The Leray-
Schauder alternative theorem is applied to prove existence,
while the uniqueness result was obtained via the Banach con-
traction mapping principle. Finally, we also discuss some
examples for illustration of the existence-uniqueness results.
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2. Preliminaries

For the convenience of the reader, we present some concepts
of Hadamard type fractional calculus to facilitate the analysis
of system (3), (4).

Definition 1 [7]. The Hadamard fractional integral of order
q > 0 of a function x(t) for all t > a > 0 is defined by

"7 x(t) = ﬁjt <ln i) et ?’ )

where I'(q) = [(°t9"'e'dt is the gamma function,s provided
the right side is pointwise defined on R*.

Definition 2 [7]. The Hadamard fractional derivative of order
q > 0 of a function x(¢) for all £ > a > 0 is defined by

o g (A () o

where n = [g] + 1 with [q] denotes the integral part of the real
number g and In () =1In,(+).

Definition 3 [38]. Let g>0and n = [q] + 1. If y(x) € AC}]a, b],
where 0 <a < b < 0o and

AC§[a, b] = {g : [a,b] — C: 8" ' g(x) € AC]a, b],ézxjx}.
(7)

The Caputo type modification of the Hadamard frac-
tional derivative of order ¢ is defined by

n—-1 ok a k
DA y(x) = 9, [ya) -3 () ] @ ®

Theorem 4 [38]. Let > 0, and n = [q] + 1. If y(t) € AC}[a, b,
where 0<a<b<co. Then CPDLf(t) exist everywhere on
[a,b] and

(i) if g ¢ Ny, DL f(t) can be represented by

= n ! niqil n dS
L y(t) =I5 18"y (t) = ﬁj (111 2) &"y(s)
)

(ii) if € Ny, then €D, y(t) = 8"y(t)

Remark 5. 1f a, &, 5 > 0 then

(HQZ (ln 2) Bl) (x)= F(I;j(/j)‘x) (ln g)ﬁiail. (10)
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Lemma 6 [38]. Let q>0 and n=[q| + 1. If x(t) € ACj[a, b),
then the Caputo-Hadamard fractional differential equation
€91, x(t) = 0 has a solution:

(=3¢ (108 g)’i (1)

k=0

and the following formula holds:

7190 x(1) Z (m ) . (12)

where ¢, € R,k=1,2,---,n— 1.

Now, we present an auxiliary lemma for boundary value
problem of linear fractional differential equation with
Caputo-Hadamard derivative.

Lemma 7. Let A = (A,A;/T(2—y,)T(2~y,))(In (b/a)) 7172

— ous/T(2-6;)I(2-6,) 2511 (In (’7;‘/“))1761 2?11 (In (§;/
)™ #0 and g A # 1 Let x, y € AC[a, b]. Then, the solu-
tion of the linear Caputo-Hadamard fractional differential
system

‘Dru(t)=x(t),teabl,l <a<2,

‘D v(t) = y(t), t € [a, b, 1< B<2,
)= P‘zi evin),  (13)

ML'

usy. Dov(E),

i=1

u(a) = A, v(b), )Lf@giu(b

v(a) = u,u(b), A; D2 v(b) =

is equivalent to the system of integral equations

gt (In (bla)TX, (In (/a))"
I2-6,)(1-uhy)

Ay (In (b/a))

rE-y)(I-umh)

2 [ (b)) 3, (n ()"
A I2=38,)(1- ph) 2=y (1= ph)

uo(In ()31, (In (/@)™ | | s | AiAs(in (bla)) ™
I(2-9,) ATy phy)

, As(In (t/a))(In (bla))": ] A

u(r) =4

polln (t12) 5 (1 (/)" } 5
I(2-9)) ’

A A (In (bla))*

, Aty (In (bla) 3, (In (§i/a))"™

P(2-6;)(1- M) I(2-y,)
_ A [ A As(In (bla)* P Ay (In (bla)) 3, (In (§i/a))!
A T@2-y)(I-mAy) I(2-8,)(1- M)
As(l In (b/a))" ™ A
L TR Y
(* (In (t/s))*"  ds
| e

A Ao (In (b1a))""0 -y pay(In (bla)) Y2, (In (/)"
r@=-y)(I-uh) r2-6,)(1-mh)
, Ao(ln (t/a)) (In (bla))" " }B A {H,Aman (bla))* "
r2-y,) TOATE-y)(I-ph)

OB

, tabt(In (b/a) 3, (In (/)™ A(In (t/a) (In (bla)) ™" ]
T(2=8,)(1- ) r(2-y) ;
, bo [ ha(In (b12) T, (In (§4a)"™ yhs(In (bla))*
A L F(Z_az)(l_ﬂﬂ\l) F(Z—Vz)(l_ﬂﬂ\l)
py(In (t/a) 3, (In (,/a))" >
+e I(2-95,) 14,
A [wpd(n (ba) Y (I (§/a)) ™ pAs(in (bla))* -
Al TIe- 6»(1—%) T(2-y)(1-uh)

5(In In (§; 5

l‘f (In (¢/s))P1 ds

Tre Y
(15)

where

b(In (b1s))*"  d b (In (bis))F"  d
m{%x(s)—s, =[S
_(*(n (b/s))“-% N (% (In nl/s))ﬁ 0l s
5= Sray a3 | ey 9%

M n a-0, b n B-y,-1
B [

&) s
(16)
Proof. We apply Lemma [6] that the general solution of the

Caputo-Hadamard fractional differential equation in (13)
can be written as:

B t “(In (t/5))*"  ds
u(t)=cy+¢ <ln 5) +LWJC(S)?, (17)

v(t) =dy +d, (ln 2) +Jt (ln%;)))ﬁ_ly(s)?, (18)

where ¢;,d;,i=0, 1, are arbitrary real constants. From (17)
and (18) we have

i=1

I 1 AL " (In (t/s))""”f1 ds
At =a i (mg) [ Py 0T
(19)
conts B 1 AL "(In (l‘/s))ﬁ_yz_1 ds
Tty () ] Bty
(20)
Y 1 £\ [ (In (#5))P0 ds
G I = ks
(21)



. ~ 1 £\ (In (#5)°% ds
@,ﬁu( )=¢, 7F(2—62) (ln a) +L7F((x—62) x(s)?.

(22)

Using the boundary conditions u(a) =
=y, u(b) from (17) and (18), we have

A v(b) and v(a)
=c =\ [do +d, <ln g) +A1], (23)

=dy=u, {Co +¢ <ln b) +B ] (24)

Using the boundary conditions A,°@" u(b) =, Y,

%9(211/(111.) and 1,92 v(b) = u, YV, %9 1u(&;) from (19) to
(22), we have

Ay b\ '™ ) N 1o
=0, W (ln E) —-d, m; (ln ;) =A,u, — A,B,,

M 1-6 1—

) &\ A3 b\
_— In 2 d——|(1In - =Byu, — A A;.
1r(2—62>;(“a) T\ a S

(25)
Solving the resulting equations for ¢, and d;, we find that

1
A

A3 (A,

3(Asty — 13B,) In b e . Ho( 3”3 3 i( )1 o
r2-y,) a %))

i=1

g = L|ABsps = hAy) () b l_y'+M§ &)
TAl T(2-y) a r2-6, * a ’
1 2

=

substituting ¢, and d, in (23) and (24), we have

Ut 1\ b Aty
In - In— |+ -——="2
1-wA | |AT(2- 8);(na (na +AF(2—y1)
b\ > iy o AR b
f1n 2 B _Mif273 In In =
<na> AT'(2- 81)Z(na> <na>
o s In E s
AF 2 Y1 AF(Z—yZ) a

M 1-8
b & ? b
T Arz-95,) 2 ( a> <ln E)

M

Co =

3

Journal of Function Spaces
and
d = A MAspy lné 2—y1 s y
T T-pA | |AT2-y) U a TAr2-9,)

() (10 2) 3, [ 2 (1 Y
a a ’ AT (2 -y,) a

Ao
A 172073
’ |:AF(2_62)

M gi -0, b oA, b\ 22
2 (3) (m3) miz(m3)
MAyp < & o b A

- L\r(z I CH I CH ey

. lné o B, +(MA, +B))|.
()" Jmcoutem)

Inserting the values of ¢;,d;,i=0,1 in (17) and (18),
which leads to the solution system (14), (15). The converse
follows by direct computation. The proof is completed.

—

+

A,

(28)

3. Existence and Uniqueness Results

This section is concerned with the main results of the paper.
First of all, we fix our terminology. Let € = C([a, b],R),a >0
be the Banach space of all continuous functions from [a, b] to R..
Space X = {u(t): u(t) € C*([a, b], R)} endowed with the norm
|lue|| = sup {|u(t)|,t € [a, b]} is a Banach space. In addition, let
Y = {v(t): v(t) € C*([a, b], R)} with the norm ||v|| = sup {|v(
t)|,t € [a, b]}. It is obvious that product space (X x Y, ||(u, v)
) is a Banach space with the norm || (u, v)|| = |Ju]| + HVH

In view of Lemma 7, we introduce an operator J : X X
Y - X x Y as follows:

T (u,v)(t) =

(T 1(u,

v)(t), T2 (wv)(1)), (29)

o _ s [t (In (bla) S, (In (y,/a)™
Jl(”’v)“)’f{ =81 -ph)

Ady(In (b)) py(In (t1a)) B, (In (1/a)
Tyt r2-6) }B”

A {ulman (bla)) T, (In (mfa)) ">
A re-6)(1-mh)

ol ()5, (In (/)"
I(2-8)

MAy(In (bla))* ™

I2-y)(1-mA)
# |mMAs(In (bla))*

hety {F(z ST

, Mua(In (0/a) 3, (In (§/a))"™ | Ay(In (t/a)) (In (b/a))' - } B
T(2-6,)(1- ) T2-7,) &

A [mAdy(n (b)) dyps(In (b/a) B2 (n (§/a))
A rG-y)(-ph) T(2=8,)(1- )

, Aa(In (#/a))(In (bla))' 7

B+ M (uBy; +Ay,)
2f 17“41A1 1°21f 1g

I(2-y,)
S
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and

A Ay (In (bla)™™ gy (In (bla) X, (In (/)"
I2-y)(d-mh) F2-6)(1-mh)
Ay(In (t/a))(In (b/a))' ™ 5o A (A (In (bla))*™
r2-y) YA r2-y)(1-mh)
L (bla)) T (In (n/a))' ™ Ay(In (t/a))(In (bla))' ™ A
r2-8)(1-mh) Irz-v)
L+ #2 |t (In (bla)) ¥, (In (§/a))"* L (I (bla))*™
A I2-5)(1-mh) T2=y)(1-mh)

, t(In (t/a)) T, (n (§a)) ™"
Ir2-46,)

To(wv)(t)=2 {

Ay

s (bla))
ey

A {”1/‘3)‘1(1“ (bla)) X, (I (&./a))"~"
4 -8,)(1-mh)

, #(In (t/a)) T, (I (§a)) ™"

e
}BZ/ 1 v (MAg +Byy)

r(2-68,)
+ J; (In (Ft</;)))ﬂf1 g(s,u(s), v(s))?_
(31)
Here,
b n b a—1
Blf:J (1 (F(/;))) f(S,M(S),v(s)) dS,Alg
b n(b B-1 i
:J : (r(/;))) 9(5’”(5)”(5))?5,
b (In S a=y,-1 s
Bzf=J %f(s,u(s),v(s))%,Azg
N (In (n./s B-6,-1 s
- 2 [ gt o) S
p=y [0 (Ei1s)“ " ds
3f = < L W]r(s, u(s),v(s))?, 3
b n S B-y,-1 s
- %g“’ () v(s) 2
(32)

For computational convenience, we set

K, = el [lmlluzllh(ln (bla)) 3, (In (1,/a))" ™

4] F@2=8)[1-pA]
Mmewmf”Jmmwmmi@mer

F2=y)1-wA| I'2-46y) |
“ Y (In (&/a))* Ll [I!ﬁll%ll/\s(ln (bla))* ™
F(a—-6,+1) Al | T(2-p)|1-mA|
. Wl (bra) 52 In (€)' ] (In (bla))*"
I(2-6)[1-pAy| I'(2-y,)
o (n (bla))™™ { lees ||| ] (In (bla))*
la—y +1)  [[1-pA I(a+1)’

K=

A5 | {41 ]]#42][ Ay (In (b/a))Zfil(ln (/@)
|A | ( ) |1 _/"1A1 [

wganwm»z%anmwwlﬁ}
I(2-6,)

. JliA|(In (bla))* ™
F2=y)I1-pAl
(I (bla))F 12 L

|y |1A4]|5|(In (b/a))*>

F(B-y,+1) Al | T2-py)[1-pAl
o Pl (n (bla)) T3 (in (/@)™ 1As | (In (bla))*
I2-6)1(1-mA)l Ir2z-y,)
2 () | (n (bla))f
L(B-8,+1) ~ [l-wM| I(F+1) "

el |:M1|/\ 1[4 (In (b/a))* ™

3T |A| re Yl)ll /41)LI
. |l (n (b/a»z, (0 (72)) ™% 1A, | (In (bla)* ™
T(2-8) 11— rz-y,)
(0 Ea) I | e s M (i <h/a>>zfi’1<1n (&)™

T(a-0,+1) 1Al I2-6,)11-mwAl

L Il (n (0/2) > ss|(in (b/a)) X2, (In (§,/a) "
[2-y)1-whl r2-s,)

(In (bra)*™ ] (In (bla))"

Tla—y,+1) [1-Au | T(a+l)’

_ ALl |A A (In (bla))*
Al I2=y)11-pAl

el e S (1) 2ot (1)
=8 1-ph | Ie=v)

(n (b/a)P™ | VMamemzmummw

I'(f-y,+1) 4] I'(2-8)|1 = Ay

o llIAs|(in (b/a))*™ - ps(In (bla)) 37, (In (§i/a))* > ]

F2=-y)1-mA| Ir2-4,)
L gt ) )
I'(p-6,+1) (1= 2] r'(p+1)

(33)

Now, we are in a position to present our main results. The
methods used to prove the existence and uniqueness solu-
tions of boundary value problem (3), (4) via Banach’s con-
traction principle.

Theorem 8. Suppose that f, g : [a, b] X Rx R — R are contin-
uous functions. In addition, we assume that:

(H1) there exist constants m; and n;, i = 1, 2, such that for
all't €[a,b] and u;,v; € R,i= 1,2, we have

f (£ upsvy) = f (6t v) | S myluy = up| + my|vy = vy,

|g(t: upvy) = g6 v v,) | S 1yluy — | + ny|v; = v,

(34)



Then, the system (3), (4) has a unique solution on [a, b), if

(K; +K;3)(m; +m,y) + (K, + K,)(n; +n,) < 1. (35)

Proof. Define sup f(t,0,0)
te[a,b]
< 00 and r > 0 such that

=0, <ooand sup ¢g(£,0,0) =0,
te[a,b]

(K, +Kj)o, + (K, + K)o,
” 1= [(K; +K5)(my +my) + (Ky + Ky)(ny +1y)] (36)

Now, we show that B, C B,, where B, = {(u,v) € X x
Y |[(u,v)l<r}

By assumption (H1), for (u,
that

v) € B,, t € [a, b], we have

(6, u(t), VDI < IF (6 (0), () = (8,0, 0)| + [ (£,0,0)]

<mylu(t)] + mylv(t)] + oy < myllull+my|lvl+o,
v(t)| < nyllull+n,llvli+0o,,

lg(t, u(t),

which leads to

T () (B)] < \lﬂAslw me(wz (In ébﬁ()lz' M<1An )(*|1 i/a)""
o M1 (n (bra))*
I2-y)l(1-mA)l

. 2t (In (§/a))*
T(a-8,+1)
+@Wmmwmwm$mmmﬁl

|M@wmmgmmmfw
I(2-4))

(my [l + ma||v]| + 01)

] T=0)1(1- )]
.l (n (b))
F(z_}ﬁ)'(l_lﬁ)t )l

. (n (bla))Fr
I'(B-y,+1)
Al [wm [As](In (bra))>

, a1 (in (b/a)) S, (in <n,-/a>>”‘]
r2-4))

]+ ]+ 02)

T [Ty [T=mA)]
o Wl |(in (b/a)) 3, (In (§fa) "
T2=8)1(1-p )]

T (In (g/a)F°
X TT(E-8, + 1)

Ll [wu s (In (bra))>:

L Al (in (bra))*™
I'2-y)

(] + ] + )

4 Pllps|(In (bla)) T, (In (§/a))
L2-8) 1 (1-mA)l

TTAT [ Ty [T -mA)]

L sl (in (b/a))z’“} . (In (bla))*™:

Fla=y +1)

my||uf| + m,||v|| + 0
oy (] + s ]+ )

1A, 1 (In (b/a))*
|1 WA |:‘ i T(a+1) (my ||| +ma|lv]| +07)
(l;l(/(_;biuli (mul] +nzH"H+02):| %(VHIHM‘|+W!2HVH +0,)

=K (my [[u]| + my||v]| + 01) + Ky (ry [[u]| + my||v] +02)
= (Kymy + Ky ) [[ul| + (Kymy + Ky ) ||v]|

+K,0, +K,0, < [K|(m; + my) + Ky (n, +n,)]r + K0, +k,0,.

(38)
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Hence,

1T (w,v)ll < [K,(m, + m,y) + K,(n, +n,)]r + K 0, + K,0,.
(39)

In the same way, we can obtain that

1T, (u, V)l < [K5(m, + my) + K, (1, +n,)]r + K30, + K,0,.

(40)
Consequently, it follows that

1T (u, v)I < [K,

+ [Ks3(my +my) + Ky(n +ny)|r + Ko, + Kyo, <71,
(41)

which implies B, c B,. Next, we show that operator I is
contraction mapping.

For any (uy,v,), (u,,v,) € X x Y and for any ¢ € [a, D], we
obtain

(my +my) + Ky (ny +ny)|r + K 0y + K,0,

7,001 )(0) = T () 0 5 L

PMHM:HA 1| (In (bla)) ¥ 1(1n (/)™
r2=6)l1-mh)l
L MllAa|(n (b/a))2 "
F2-y) (1 -mA)l

, Iy | (in (b)), (In (5/2)) "~ “1}
I(2-95,)

o it (In (§/a)*
T(a-8,+1)

A5
—fl) + =

smy||\u
(m o

— ||+ my||v,

[lealeal s 0n (bra) 5, (in (g2
I'2-6)1(1-mi)l
iyl (n <b/a>(>zfi o <m/a)>“‘”} 9

A1, (n (bla))*
F(z_)’1) | (1 _P‘l/\l) |
(In (bla))f:
I(B-y,+1)

Ity | [wu A3 (In (bla))*

- (m ety = w141y vy = Vz”)

AT [ T2=y) [(1-pmAy) |

. Pillslin (b/a»zi:l(ln (§/a)"™ _ 1Ay (In (bla))* "

I2-8)1(1-puM)l I'2-7)
iy (In ()P ley |
X W (nylluy — uyll+n, vy = v,ll) + ar
| el A4 [A5] (In (b/“))z_“ M|t | (In (bla)) S, (In (/a)) ™
F=y) 1 (1-pA)l I2=8)1(1-mA)l
|A;](In (b/a))z"'Z (In (b/a))*™
+ 173 G } X Tla—y, +1) (mylluy = uyl+myllv, — v, 1)
[A] (In (b/a))®
e e G S ol el =l
(In (bla))? (In (b/a))*
+ W(Hl”ul =, |l+n,llv, - vzll)} + W
s (mylluy = uy|l+myllvy = vy ll) = Ky (my luy = wyll+my vy = v,
+ Ky (nylluy = uyll+mpllvy = vy ) = (Kymy + Kyny)lluy — uy |

+(Kymy + Kyny)|lv, = v, |-
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Therefore, we get the following inequality

1771 (uy> vy) (8) = T 1 (1 v2) (D) < (K (my +my)

(43)
+ Ky (ny + 1,)) (luy = u,l+llv, = v, ).
Similarly,
1T (1> vi ) (£) = T 5 (1 v2) () < (K5 (my +my) (44)
+ Ky(ny +n,)) (luy — wpll+lvy = wyl).
From inequalities (43) and (44), it yields
1T (1 v1)(8) = T (1, v < [(Ky + K3) (my +my) (45)

+ (Ky + Ky) (g 4 1) (g = w1 +lvy = 1)

Since (Ky +K5)(my +my) + (K, + Ky)(n, +ny) <1,
therefore, I is a contraction operator. So, by applying
Banach’s fixed point theorem, the operator I has a unique
fixed point in B,. Hence, there exists a unique solution of
problem (3), (4) on [a, b].

Now, we prove our second existence result via the Leray-
Schauder alternative.

Lemma 9 (Leray-Schauder alternative [39]). Let F : E — E be
a completely continuous operator (i.e., a map restricted to any
bounded set in E is compact). Let

e(F)={x€E:x=AF(x)forsome0 <A< I}. (46)

Then, either the set ¢(F) is unbounded or F has at least
one fixed point.

Theorem 10. Assume that:

(H2) f,g:[a,b)x RxR— R are continuous functions
and there exist real constants a;, b; > 0(i=0, 1,2) and a, > 0,
by > 0 such that Vx; € R (i =1, 2,) we have

[f (£, %5)| < ag + ay|x;] + ay|x,|, (47)
lg(t, x5, %) < by + bylx | + b, |x,).

If (K;+Kj)a;+(K,+K,)b;<1 and (K,;+Kj3)a,+(
K, +K,)b, < 1 then system (3), (4) has at least one solution
on [a, bl.

Proof. By the continuity of functions f, g on [a, b] x R x R, the
operator J is continuous. Now, we show that the operator
T :XxY —>XxY is completely continuous. Let 0 C X x
Y be bounded. Then, there exist two positive constants, M,
and M,, such that

If (£ u(t), v()I <My, |g(t, u(t), v(t))| < M,V (u, v) € Q.
(48)

Then, for any (u, v) € Q, we have

|91(u ‘V)(t) < M ‘HIHMZH)Lll(ln (b/a))zf\zll (ln (ni/a))lisl
|4 L2-8y)|1-mA|
. MilA|(In (b/a))™
F2=y)Il-mA

. s (In (b)) X, (In (/a))

r(2-95,)
Y (In (£/a)* Ayl
X a8, 1) M+ a1

|l | 1] (in (bla)TX, (In (/)
I2=-6)|1-puA|
, lla[(In (bla))* ™
T2=y)l - A

, ls|(in (b/a) S, (In (/)" }
Ir2-9))

0 ()] [l A Al (in (b))
IB-y, e { 2=y~ A

24
, Mlles|(In (bla) Y, (In (§/a))'
I'(2-8)|1 - Ay

, Psl(in <b/a>>“z] I (In (n/a))"

I'2-v,) I(B-6,+1) :
+ ol [l |45 (In (bla))* ™
Al | T(2-y)|ll -

o Pllis|(n (bra)) X3, (In (/)"
T2 -8)1-mA]

, sl(n ()™ | (I (b))
r2-y,) T'(a—y, +1)

o o
(49)

which yields,
1T (u, v)|| < KM, + K,M,. (50)

In the same way, we can obtain that |7, (u, v)[|<K;M,
+ K,M,. Hence, from the above inequalities, we get that
the operator  is uniformly bounded, since |7 (u, v)[|<(K;
+K;)M, + (K, + Ky )M,.

Next, we show that J is equicontinuous. For any (u, v)
€Q,and 7,1, € [a, b] with 7, < 7,. Then, we have

N (In (/)™
1T (4, v)(13) = T, (1, v) (1))] < M1|”2||P|‘2\||Zli:(12(1_ 8(1'7)1/ )

(n3) = (=3)]

¥ (In (E/a))
T(a—0,+1)




. Mals| || X, (I (/)™ (In (bla))F:

(%)

|A|T(2-6)) L(B-y,+1)
(1n )\ M|y As|(In (b/a))' 7> YN (In (1/a))P
[AIT(2-y,) I'(p-6,+1)
a 1- a=yy
(2 - 1 2 e MR
J(m )= (m DM | (0 2)"
o a-lds 211H3] Zi=1 oo
g () R e

SM (In (§,/a) “52
L6 -(0)
Mol 32,00 (/) (In (b1a))" | 7,
IAIT(2-9,) T(B- y2+1)< )

Ty 2| | A5](In a))' " i:lniaﬁisl
o i e

) 1 L[ (In (b/a))' " (In (b/a))*
3wt

T, T T 2\ %1 ds
\1“7)‘(1";)\*er(la)]a {(l ?) (1 o }?

L ()" ds| _ M, |y s 2 (In (17,/)"™
I'(«) s s

- AIT(2-9))
wal(ln (§ila))* ®

T(a-0,+1) ( ) (“ >
4 Mol A5 X1 (In (n,/a))™*" (In (b/a))P

(%)

AITz-8)  T(B-y+1)
(i )] o Ml 1) 32, 1)
a ATTG-y)  T(B-8,+1)

(10 2) = (1m 2 o g, Pl el )"

[AlIT(2-y,) TIla-y,+1)
| 3) - ()

(51)
Therefore, we obtain

|T 1 (u,v)(15) = T 1 (u,v)(11)l — 0, a5, — 7,.  (52)

Analogously, we can get the following inequality:

1T 5 (1, v)(15) = T, (4, v)(11)| — 0,257, —> 7,.  (53)

Then we can easily show that the operator T (u,v) is
equicontinuous. As a consequence of steps together with
the Arzela'-Ascoli theorem, we get that the operator 7 (u, v
) is completely continuous.

Finally, it will be verified that the set e={(u,v) e Xx Y
i (u,v) = AT (u,v),0 < A <1} is bounded. Let (u, v) € &, with
(u,v) =AT (u, v). For any t € [a, b], we have

u(t)=AT | (u,v)(t), v(t) = AT ,(u, v)(t). (54)

. % [z(m T_I)Z‘(ln =) (in g)“u.
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Then, we have

lu(t)ll <K, (ag + aylull+a, [vl) + K, (b + by llull+b,llv]])
=Kay + Kyby + (Kya; + Kby ) [ull+(Kya, + Ky by) VI,

lv(t)ll < Ks(ay + aylull+a, Ivll) + K4(by + by llull+b,llv])
=Kjay + K, by + (Kza, + K,b))|lull+(K;a, + K, by)|vl,

(55)
which implies that
lull+llvl < (K, + K3)ay + (K, + K,) b,
+[(K; + K3)a; + (K, + K,)by]llull (56)
+[(K, + K3)a, + (K, + K,)b,] vl
Consequently,
K, +K3)a, + (K, + K,)b
”(u’ V)” < ( 1 3) OK( 2 4) 0’ (57)
0
where
Ky=min {1-[(K, +K3)a, + (K, +K,)b,],1 (58)

- [(Ky +K3)a, + (K, + Ky)by ]},

which proves that e is bounded. Therefore, by applying
Lemma 9, the operator I has at least one fixed point in Q.
Therefore, we deduce that the boundary value problem (3),
(4) has at least one solution on [a, b].

4. Some Examples

In this section, we give an example to illustrate our main
results.

Example 11. Consider the following system of Caputo-
Hadamard boundary value problem:

“Du(t) = f(t u(t), v(t), L€ [L, €],

“DYv(t) = gf (6 u(t), v(1)), L€ L, €],

u(1) =v(e), 1129, %u(e) = 1/3*D1Pv(3/2) + 1/3°DPv(4/3),

v(1) =2u(e), 114D} v(e) = 1/5°DyPu(5/3) + 1/5°D, Pu(5/4).
(59)

Here, a = 3=3/2,a=1,b=e,y,=1/2,y,=1/4,8, = 1/3,
0,=1/5N=M=2,5,=3/2,3,=4/3,&, =5/3,&,=5/4,A, =
LAy =1/2, Ay = 1/4, uy = 2, 4, = 1/3, uy = 1/5. By simple cal-
culation, we found that A=0.078172, K, =10.36402, K, =
8.38734,K;=11.58173,K, = 11.18721.

(i) Let two nonlinear functions f, g : [1,ef X Rx R— R
be given by
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1 |x | sin y(t) 1
tLx,y) = + + -, 60
fbxy)= —m— I+x(0)]  (64+£) 2 (60)
sin (Ix|)  tan'(y) 2
t,x,y)= . 61
9%y = i E Yo ea 3 (61)

Note that

[f (t:x1,%5) = f (6715 9,)|

1 1
Sﬁm — x|+ @U’l ~ 2l

1 1
lg(t, x1,%,) = g(t: 315 7,)] Smb‘l — x|+ 122 1 =2l
(62)
we obtain (K, +K;)(1/75+1/65) + (K, + K,)(1/125 + 1/
122) = 0.9552435311 < 1. Thus, all the conditions of Theo-

rem 8 are satisfied. Problem (59) with (60) and (61)has a
unique solution on [1, ¢].

(ii) Let two nonlinear functions f,g: [1,e] x RxR— R

be given by
e xPcos’t  |y|*sin’t
t’ > = — > 63
F6x9)= = * 50w 350+ (63)
2 sin x tanly
t,x,y)= . 64
96X = 53 ra) T 4G ) (64)
Note that
1 1 1
t) > S - A e >
xS 1+ sl + =y -
2 1 1
LXY) S -+ — —y|.
gt y)| < 3 + =16+ = Y|

We get a,=1/39,a,=1/45,b, =1/60,b, = 1/56. By
simple calculation, we have (K, +Kj)a; + (K, +K,)b; =
0.8960930769<1  and (K, +K,)a, + (K, + K, )b, =
0.8434206667 < 1. By Theorem 10, the coupled boundary
value problem (59) with (63) and (64) has at least one posi-
tive solution on [1,e].

5. Conclusions

In this paper, we studied existence and uniqueness of solu-
tions for the system of Caputo-Hadamard fractional differ-
ential equations with multipoint boundary conditions. The
existence theory of solutions of a Caputo-Hadamard system
using a variety of fixed point theorems. The Leray-Schauder
alternative was applied to prove existence, while the unique-
ness result was obtained via the Banach contradiction map-
ping principle. Finally, we have given two examples to
demonstrate our result.
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