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In this article, we explore the concept of the prequasi norm on Nakano special space of sequences (sss) such that its variable
exponent in (0, 1]. We evaluate the sufficient setting on it with the definite prequasi norm to configuration prequasi Banach and
closed (sss). The Fatou property of different prequasi norms on this (sss) has been investigated. Moreover, the existence of a
fixed point of Kannan prequasi norm contraction maps on the prequasi Banach (sss) and the prequasi Banach operator ideal

constructed by this (sss) and s — numbers have been examined.

1. Introduction

Ideal maps and summability theorems [1-6] are extremely
significant in mathematical models and have more achieve-
ments, such as ideal transformations, normal series, fixed
point theory, geometry of Banach spaces, and approximation
theory. By R, we mark the spaces of all sequences of real
numbers. We denote the space of all bounded linear maps
from a Banach space Z into a Banach space M by & (Z, M),
and if Z=M, we indicate &#(Z), the d-th s number by
s;(W) [7], the d-th approximation number by a,;(W), and
e;={0,0,---,1,0,0,---}, where 1 shows at the d™ place, for
everyde /={0,1,2, - }.

Notations 1. The sets S, S,(Z, M), S3F and S3* (Z, M), (cf.
[8]) denote

Sp={SA(Z, M)}, whereS,(Z, M)
= {WG Z(Z,M): ((Sd(w))gio GA}. Also
ST = {Szpp (Z, M)}, where SZPP(Z, M)

= {W € Z(Z, M): ((ag(W))2, €A} 1)

Let r = (r,) € (0, 1], the Nakano sequence space defined
and studied in [9-11] is denoted by:

e(r)= {v: (v,) e R : p(uv)<oco, forany p> 0}, (2)

where ¢(v) =Y .. [v,|". And (€(r),||.||) is a Banach space,
however, |v|=inf {x >0 : ¢(v/x) <1}. Faried and Bakery
[8] assumed the hypothesis of prequasi operator ideal that
is more established than the quasi operator ideal. Bakery
and Abou Elmatty [9] demonstrated the strictly inclusion of
the prequasi operator ideal SZE‘;, for inconsistent powers. It

was a small prequasi operator ideal. As the literature of the
Banach fixed point theorem [12], many mathematicians cre-
ated on many actions. Haghi et al. [13, 14] showed that some
generalizations in fixed point theory are not real generaliza-
tions and investigated some fixed point generalizations to
partial metric spaces, which are obtained from the corre-
sponding results in metric spaces. Kannan [15] presented a
representation of a class of operators with the same fixed
point actions as contractions nevertheless that fails to be con-
tinuous. They only try to illustrate Kannan maps [16] in
modular vector spaces. The target of this paper is to appraise
the concept of prequasi norm on £(r). The Fatou property of
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different prequasi norms on this (sss) has been examined. We
are delving the sufficient set-up on £(r) equipped with the
definite prequasi norm to pattern prequasi Banach and
closed (sss). The existence of a fixed point of Kannan pre-
quasi norm contraction mapping on the prequasi Banach
(sss) has been given. Finally, the existence of a fixed point
of Kannan prequasi norm contraction mapping on the pre-
quasi Banach operator ideal S(K(r))¢ has been made current.

2. Definitions and Preliminaries

Definition 2 (see [2]). The linear space of sequences 2 is
detailed as a special space of sequences (sss), if

{ea}ue/V < (3)

(1) A is solid, ie., let v=(v,) e R", t=(t,) €A, and
|v,|<t,|, for every a€ /¥, then veA

(2) (V[alzl)zzo € A, where [a/2] marks the integral part of
al2, if (v,), € A

Definition 3 (see [8]). A subclass Ay of A is definite a pre-
modular (sss), if there is ¢ € [0,00)¥ verifying the set-up:
(i) Forve A, v=0 & ¢(v) =0 with ¢(v) = 0, where 0 is
the zero vector of 2

(ii) For every v € 2 and # € R, we have B > 1 for which
$(nv) < Blnlg(v),
(iii) ¢(v+1) <J(p(v) + ¢(t)), for each v, t € A, for some
J=1
(iv) Forae ./ and |v,| <|t,|, then ¢((v,)) < ¢
<

(v) The inequality, ¢((v,)) < (Vi)
holds, for some J; > 1

(vi) Assume F be the space of finite sequences, then
F=%
¢

(vii) There is ¢ >0 such that ¢(j3,0,0,0,---) >¢|B|¢(1,
0,0,0, ), for every e R

Definition 4 (see [17]). Suppose A be a (sss). The function

e [0,00)2[ is called prequasi norm on U, if it provides the
conditions (i), (ii), and (iii) of Definition 3.

Theorem 5 (see [17]). Pick up A be a premodular (sss), then it
is prequasi normed (sss).

Theorem 6 (see [17]). A is a prequasi normed (sss), if it is
quasinormed (sss).

Definition 7 (see [3]). Let & be the class of all bounded linear
operators between any two arbitrary Banach spaces. A sub-

Journal of Function Spaces

class % of £ is named an operator ideal, if every vector
U(Z,M) =U%NZL(Z,M) verifies the next setting:

(i) I; €% where I' denotes Banach space of one
dimension

(ii) The space %(Z, M) is linear over R

(ili) Assume We L (Z,,2), Xe€U(Z,M), and YeZ
(M,M,), then, YXWe%(Zy,M,), where Z,
and M, are normed spaces (see [18, 19])

The theory of prequasi operator ideal, which is more general
than the quasi operator ideal.

Definition 8 (see [8]). A function ¢ € [0,00)” is named a pre-
quasi norm on the ideal % if the following setting includes

(1) Assume W e %(Z, M), ¢(W) =0, and ¢(W)=0&
W=0

(2) Thereis D>1 so as to ¢(nW) < D|y|¢p(W), for every
We%(Z,M)andneR

(3) There is J > 1 such that ¢(W, + W,) < J[p(W,) + ¢
(W,)], for each W, W, e %(Z, M),

(4) There is 0>1 for to if We F(Z,,2), XeU(Z,
M) and Y € (M, M,), then ¢(YXW) < o|Y]|¢(X)
W]

Theorem 9 (see [20]). Pick up Ay be a premodular (sss), then
P(W) = ¢(s,(W)):2, be a prequasi norm on Su,-

Theorem 10 (see [9]). Suppose Z and M be Banach spaces,
and Ay be a premodular (sss), then (S%,(p) be a prequasi

Banach operator ideal, such that (W) = ¢((s,(W))32,).

Theorem 11 (see [8]). ¢ is a prequasi norm on the ideal U, if
¢ is a quasinorm on the ideal %.

The agreeable inequality [21] will be used in the conse-
quence: Suppose (r,) € (0,1]” and v,, t, € R, for every a €
A, then |v, + £, < |v, | +|t,]™

3. Main Results

3.1. Prequasi Normed (sss). We illustrate the adequate set-up
on £(r) equipped with a prequasi norm ¢ to generate pre-
quasi Banach and closed (sss).

Definition 12. (a) {v,},er € ((r))4 is ¢-convergent to v €
(e(r)y & lim,__, (v, —v) = 0. If the ¢-limit exists, then it
is unique

(b) {va}aen € (&(r))4 is ¢-Cauchy, if lim,, (v, -
vp) =0

(c) Ac(e(r)), is ¢-closed, if for all ¢-converging
{V.}oey CAtov, thenve A
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Theorem 13. (&(r)) 4, where ¢(v) =Y oe [V ], for all vet

(r), is a premodular (sss), if (1) ,c 4 € (0, 1" is an increasing.

Proof. First, we have to prove £(r) is a (sss):
(1) Suppose v, t € £(r). Since (r,) € (0,1]", we have

d(v+1) Z|v +t|'<Z|v| Z|ta|’u:

aeN aeN aeN

+ ¢(t) < 00,
(4)

sov+tel(r).
(2) Assume € R and v e &(r). As (r,) €

)= [l WA

aeN aeN

(0,1]", one has

" < Dlyl¢(v) <oco. (5)

Hence, v € £(r). So, by using Parts (1) and (2), we get e
(r) is linear. Also e, € €(r), for all a € /, since ¢(e,) = X5,
le, ()7 =1.

(3) Let |v,| < |t,|, for every a € 4 and t € £(r). One can
see

= D vl < Y [l = (1) < o0, (6)

aeN aeN

we have v € £(r). This implies the sequence space £(r) is
solid.

(4) Suppose (v,)€€(r) and (r,) be an increasing
sequence, one has

$((vom)) = 2 [vanr| "= X 1+ Tl .
<2 [r,[ =26((va)).

aeN

then (v(,/)) € £(r). Secondly, we show that the functional
¢ on £(r) is a premodular:

(i) Evidently, ¢(v)>0and ¢(v)=0ov=0

(ii) We have D =max {1, sup,|5|“ '} =1 such that ¢

(nv) < Dly|p(v), for every v € £(r) and € R \ {0}.
For =0, there is D>1 such that ¢(yv) < D|y|¢
(v), for every vef(r)

(iii) We have J > 1 so that ¢(v+1) < J(¢p(v) +
every v, t € £(r)

¢(t)), for

(iv) Clearly, since £(r) is solid
(v) From (49), we have J;=2>1
(vi) Clearly, F=¢(r)

(vii) There is 0 << |B*™", for #0 or ¢>0, for f=0
such that ¢(j3,0,0,0,---) > ¢|B|¢(1,0,0,0, ---)

Theorem 14. Assume (r,) € (0, 1] be an increasing, then
(€(r)), be a prequasi Banach (sss), where ¢(v) =}
for every v e &(r).

Proof. Let the set-up be verified. From Theorem 13, the space
(¢(r)), is a premodular (sss). By Theorem 5, the space (£(r))4
is a prequasi normed (sss). To prove that (¢(r)) is a prequasi
Banach (sss), assume ¥ = (vﬂ)zzo be a Cauchy sequence in
(€(r)),- Hence, for every € € (0, 1), we have p; € ./ such that
for all p, q = p,, one has

p(VP —v) = Z Vb — vl <e. (8)

aeN

Therefore, for p,q>p, and a €.#, we get [vh —vi|<e.
So (vl) is a Cauchy sequence in R, for constant a € /.
Which implies limq_mva =19, for fixed a € .#. Hence, ¢
(v* =1°) <&, for every p>p,. Then, to show that +* € €(r),
we have ¢(v?) = p(+v° —vP + vP) < P(v? —°) + ¢(v?) < 00. So
v € £(r). This explains that (£(r)) ¢ is a prequasi Banach (sss).

Theorem 15. Pick up (r,) € (0, 1]
(e(r))y be a prequasi closed (sss), where ¢(v) =
for every v € (r).

be an increasing, then

Zae/lf

Proof. Assume the conditions be verified. From Theorem 13,
the space (£(r))4 be a premodular (sss). By Theorem 5, the

space (£(r))y is a prequasi normed (sss). To show that
(¢(r)), is a prequasi closed (sss), suppose v/ = (B)2 €
(¢(r)) 4 and lim,__,,¢(v* —+°) =0, then for all e € (0, 1), we
have p, €/ so that for all p>p,, we have & > ¢(v* =) =
Y e |V =0, Hence, for p > p, and a € ¥, one has |v; -

V| <. Therefore, (v4) is a convergent sequence in R, for
fixed a e /. Hence, lim vh=

p—)OO

Finally, to prove that v* € £(r), we obtain

V9, for constant a €.

$(1) = (v =V + W) (v 1) + $(W)<00,  (9)

hence, v° € ¢(r). This gives that (¢(r)),y is a prequasi
closed (sss).

Example 16. The functional ¢(v) = Y, ;- [v,[*""*** is a pre-
quasi norm (not a quasinorm) on Nakano special space of
sequences €((a+ 1/a+2)52).

Example 17. The functional ¢(v)=[Y,., [v,|*""*"]" is a
prequasi norm (not a quasinorm) on Nakano special space
of sequences €((a+ 1/2a+4)2)).

Example 18. The functional ¢(v) =Y ., |v,|" is a prequasi
norm (not a norm) on r-absolutely summable sequences of
real numbers €, forall 0 <r<1.



Example 19. For (r,) € (0,1]", the functional ¢(v) = inf {x
>0:) " <1} is a prequasi norm (a quasinorm
and a norm) on Nakano special space of sequences £(r).

4. The Fatou Property

We investigate here the Fatou property of different prequasi
norms ¢ on £(r).

Definition 20. A prequasi norm ¢ on £(r) provides the Fatou
property, if for all sequence {t*} C (€(r)), with lim, ¢
(t"—t)=0 and any v € (¢(r) )4 then ¢(v —t) < sup; inf _;$(v
- ).

Theorem 21. The function ¢( )=

1(~"a)tou property, if (r,) € (0, 1"

Y aew [Vl provides the
is an increasing, for all v e £

Proof. Let the set-up be satisfied and {t’} ¢ (¢(r))y with
lim, . ¢(t* —t) =0. Since the space (¢(r))y is a prequasi

closed space, then ¢ € (£(r) ) 4. So for every v € (£(r) )4, one has

= Z [V, =, < Z v, —t "y
aeN aeN aeN
<sup inf¢(v - tb).
j b>j
(10)

Theorem 22. The function ¢(v) = | r"]mnf”r“ does not

fulfill the Fatou property, for all v € €(r), if (r,) € (0, 1] with
inf r, > 0.

Proof. Suppose the set-up be confirmed and {t*} < (¢(r)) 0
with lim,___ ¢(t* — t) = 0. Since the space (¢(r))4 is a pre-
quasi closed space, then € (£(r)),. Then, for each ve

(e(r))y we get

aeN

. vinfr
l/lnfra—l r, a "’
<2 a + .
aeN aeN

yinfr,-1 b
<2 @ supinft/)(v—t).
j bzj

1infr,
¢(V_ t) = I:Z |va - tarﬂ:l

b
va_ta

vinfr,
Tq a
’ }

So, ¢ does not indulge the Fatou property.

5. Kannan Prequasi ¢-Contraction Operator

Now, we explain the definition of Kannan ¢-contraction
mapping on the prequasi normed (sss). We study the suffi-
cient setting on (£(r)), constructed with definite prequasi
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norm so that there is one and only one fixed point of Kannan
prequasi norm contraction mapping.

Definition 23. An operator W : 2, — 2, is called a Kannan
¢-contraction, if there is £ € [0, 1/2), so that ¢(Wv — Wt) <
E(P(Wv —v) +¢(Wt—t)), for all v, t € 2.

An element v €2, is named a fixed point of W, if
W(v) =v.

Theorem 24. Assume (r,) € (0,1 be an increasing, and
W (&(r))g — (&(r))4 be Kannan ¢-contraction mapping,
where ¢(v) =Y ,cy |va|" for all ve(r), then W has one
fixed point.

Proof. Let the setting be satisfied. For each v € (), then W?
v e £(r). As W is a Kannan ¢-contraction operator, one has

(WP — Why) <&
= ¢(WFly - Why) <

(p(WF v — WPv) + (WP — WPly))

1L_E¢(WPV— WP ly)

(1 £> (WP ly— WP2y)

o5 o

So, for all p, q € /" with g > p, one can see

G(WPy — Wiv) <&(¢(WPv = WPly) + ¢ (Wiv— Wi lv))

5 o
E( 1_£) )gb(Wv—v).

(13)

IN

Therefore, {W¥v} is a Cauchy sequence in (£(r)),,. As the
space (l’.(r)) is prequasi Banach space. Hence, there is t €
(e(r)), so that lim, ,,WPv=t.To prove that Wt =t. Since
¢ has the Fatou property, we have

$(Wt—t) <sup inf¢(WP*'v— Why)
i p=i
(14)

< s111‘p glf (%_E)pqS(Wv -v)=0,

hence, Wt =t. Then, t is a fixed point of W. To show that the
fixed point is unique. Let we have two distinctive fixed points
b,t € ((r)), of W. So, we have

$(b—t) < $(Wb— Wt) <E(S(Wb—b) + $(Wt —1)) =0.

(15)

Therefore, b =t.
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Corollary 25. Let (r,) € (0,1 be an increasing, and W :
(e(r))y — (£(r)), be Kannan ¢-contraction mapping, where

SV) =Y en Vol for all v € &(r), then W has unique fixed
point b with

p-1
¢(WPv—b)SE<%> Wy —v). (16)

Proof. Pick up the conditions be satisfied. By Theorem 24, we
have a unique fixed point b of W. Hence, one has

G(WPv—b) = g(WPv — Wb) <E(¢(WPv— WF'v) + ¢(Wb - b))

:z(lfg)p_lww—v)-
(17)

Definition 26. Suppose 2, be a prequasi normed (sss), W :
A, — A, and b € Ay. The operator W is called ¢-sequen-

tially continuous at b, if and only if, when lim,_,__¢(v,
b) =0, then lim, , ¢(Wv, —Wb)=0

Theorem 27. Pick up (r,) € (0, 1] with inf,r, > 0, and W :
r,11/inf
(€(r)g — (&) go where §(v) = [Taepr Vel "1™, for all
v €L(r). The point g € (&(r)) is the only fixed point of W, if
the following conditions are satisfied:
(a) W is Kannan ¢-contraction mapping

(b) W is ¢-sequentially continuous at g € (€(r)),

(c) There is v € (E(r)), so that the sequence of iterates
{WPv} has a subsequence {WPiv} converging to g

Proof. Let the set-up be verified. Suppose g be not a fixed
point of W, then Wg+# g. By the set-up (b) and (c), we
have

lim ¢(WPv—g)=0and lim ¢(WF''v-Wg)=
(&) pi—00

pi—
(18)

As the operator W is Kannan ¢-contraction, one has

0<$(Wg—g)=¢((Wg— WHv) + (Whv — g) + (WP v — WPiv))

2/infr,2 . 2/infr,2
<2« WPy —Wg)+2 a

infr,-1 &£\
12 a 5(1__5> $(Wv —v).

d(Whv - g)

(19)

As p, — 00, we have a contradiction. Therefore, g is a
fixed point of W. To prove that the fixed point g is

unique. Assume we have two different fixed points g, b €
(¢(r))s of W. So, one can see

$(g-b)<p(Wg-Wb)<E($(Wg-g)+p(Wb-b))=0
(20)
Therefore, g =b.

Example 28. Let W : (8((a+ 1/2a+4)2)), — (8((a+ 1/2

¢
a+4)2))y where ¢(v) =3 v, |2 for all v e ¢((a +
1/2a+4);)) and
v
L gmep),
OB @)
() e [Loo).

Since for all v;, v, € (¢((a+ 1/2a + 4)220))¢ with ¢(v,), ¢
(v,) €10, 1), we have

H(Wv, - W,) =¢(:—; - %) = \/11—7 (4’(1;—?) +¢<%))

= (P(Wvy = v)) + $(Wv, = v,)).

EH

(22)

For all v;,v, € (8((a+1/2a +4)220))¢ with ¢(v;), ¢(v,)

€ [1,00), we have
19v, 19v
7 () (%))

(@(Wyvy =v)) + ¢(Wv, —v,)).

G(Wv, - Wry) = (5 - )_
1

(23)

For all v}, v, € (8((a+1/2a +4);2,)), with ¢(v,) €
and ¢(v,) €

[0,1)

17v, 1 19v,
gt (o)

[1,00), we have

) 1

d(Wv, - Wy,) = (
1

)
B 4117 (@(Wv —v)) + ¢(Wv, = 1,)).

(24)

Therefore, the map W is Kannan ¢-contraction mapping.
Since ¢ satisfies the Fatou property. By Theorem 24, the map
W has a unique fixed point 6 € (¢((a + 1/2a + 4)220))¢.

Let {v"W} ¢ (¢((a+1/2a + 4)220))¢ be such that lim,
¢p(v" =) =0, where v € (¢((a+1/2a+ 4);2))), with



¢(v<°)) =1. Since the prequasi norm ¢ is continuous, we
have

(m) (0) (0)
nh—r>noo¢( V(n - V<O>) _nhl>nm¢ (V B 1/2_0) - ¢<11/%> >0
(25)

Hence, W is not ¢-sequentially continuous at v(*). So,
the map W is not continuous at vl0),

If ¢(v) = [Toey 1,52, for all vel((a+1/2a+4)

©,)- Since for all v}, v, € (&((a + 1/2a + 4);’20))¢ with ¢(v,),

¢(v,) €0,

oo, we)=o(35 - ) < 7 (o) ¢ (7))

= BWv =)+ (W= ).

1), we have

(26)

For all v}, v, € (€((a+1/2a +4);2))), with ¢(v;), $(v,)
€ [1,00), we have

Vi W 8 19v, 19v,
B = W) =9(35 - 35) < 15 (¢<zo> ' ¢<zo>)

- (B —n) (W -,

(27)

For all vi, v, € (8((a+1/2a+4)%)), with ¢(v,) €
and ¢(v,) €

P(Wv, = Wy,) = (P(% - ;—é) < %qﬁ(lz_gl) _¢<19V2)

8 17v 19v
<5 (o(5) (%))
8

= 1_(‘/5(WV1 —vy)+

[0,1)
[1,00), we have

¢(Wvy=vy)).  (28)

Therefore, the map W is Kannan ¢-contraction mapping

and WP(v) = (v/lSP, $é(v) €[0,1),
vI20°,  ¢(v) € [1,00).

It is clear that W is ¢-sequentially continuous at 0 €
(e((a+1/2a+ 4)520))¢ and {W?v} has a subsequence { Wi
v} converging to 6. By Theorem 27, the point 6 €
(e((a+1/2a+ 4)220))¢ is the only fixed point of W.

Example 29. Let W : (¢((a+1/2a +4).%,)), — (&((a + 1/ 2

a+4)20)) 0 where $(v) = [3 e [v """, for all vee
((a+1/2a+4)5,) and
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1
—8(1+v0,v1,v2,---

1 1

W(V) = ﬁ(ly O) O) 0)"')) V() ﬁ) (29)
! 1,0,0,0 € !
E( > U Us Uy )) VO ﬁ)oo .

Since for all v,t€ (¢((a+1/2a+ 4)‘;20))«5 with vy, t, € (
—-00,1/17), we have

P(Wv - Wt) = ¢<%(v0 —ty, V] — ),V — by, ))

S0 o
8

(p(Wy —v) + d(Wt—1t)).

IN

<

17

For all v,te (8((a+1/2a+ 4)220))¢ with v, t, € (1/17,
00), then for any &> 0, we have

G(Wv—Wt)=0<e(p(Wv-v)+d(Wt-1t)). (31)
For all v,t € (8((a+1/2a+4);2))), with v, € (—00,1/17
) and t; € (1/17,00), we have

o= wo=4(5) < () = fe0wv
< (B(Wv =)+ $(We-1)).
(32)

Therefore, the map W is Kannan ¢-contraction map-
ping. It is clear that W is ¢-sequentially continuous at 1/
17eg € (8((a+1/2a+4);%)); and  there is wve
(¢((a+1/2a+4) 2y))s with vy € (-00,1/17) such that the
sequence of iterates {W#v}={Y?_ 1/18"¢,+1/18”v} has
a subsequence {W#v} ={¥"  1/18"¢,+1/18"v} converg-
ing to 1/17¢,. Then, W has one fixed point 1/17¢; €
(e((a+1/2a+4) 3%))4 Note that W is not continuous

at 1/17¢, € (8((a+ 1/2a + 4)3;’0))¢.
6. Kannan Contraction Maps on Prequasi Ideal

We account the being present of a fixed point of Kannan pre-
quasi norm contraction operator on the prequasi Banach
operator ideal investigated by (£(r))4 and s — numbers.

Theorem 30. Let Z and M be Banach spaces, and (r,) €
(0.1"
((s,(W))2,) be a prequasi Banach operator ideal.

be an increasing, then (S<e(r))¢,(1§), where ©(W)

Proof. Pick up the conditions be verified. By Theorem 13, the
space (£(r)), is a premodular (sss). Therefore, from Theorem
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9, one has O(W) =¢((s,(W)):2,) is a prequasi norm on
S(e(rm. So, from Theorem 10, we obtain the space (S(e(,))¢,

@) is a prequasi Banach operator ideal.

Theorem 31. Pick up Z and M be Banach spaces, and (r,)
e(0, 11" D), where D(W) =
¢((s,(W))22,) be a prequasi closed operator ideal.

be an increasing, then (S(e(,)>¢,

Proof. By Theorem 13, the space (£(r))4 is a premodular

(sss). Therefore, from Theorem 9, we have ®(W) = ¢((s,
(W))52,) is a prequasi norm on S(e(r), Assume W, €

S(e(r)), (Z, M), for each ge.# and lim,__ ®(W )
0. Hence, we have ¢>0 and since Z(Z, M)DS (Z,
M), we have

@<wq—w>:¢(<s (W, - W) ) S,

=9( ) 26wy - W

W),0,0,0, )

(33)

So <W‘1)qe/l/ is convergent in &(Z, M), ie., lim

[W,=W|[ =0 and as (s,(W,))™ € (&(r)),, for every q
€/ and (£(r)), is a premodular (sss). Therefore, we get

q—00

(W) = ¢((s,( = ((sa(W - W+ W,))2,)
S‘P(( (V=) ) +9( (3 (W) )
s¢>((wq—w) ) +26((sa(W),)) <

(34)
we have (s,(W)).2, € (€(r)),, so We S(e<,))¢(Z, M).

Definition 32. A prequasi norm @ on the ideal Sar,» where @

(W) =¢((s,(W))32,), provides the Fatou property if for

every sequence {W,} .., € Sy, (Z, M) withlim,_, ®(W, -
W)=0andallV € Sy, (Z, M), then
DO(V - W) <sup infd(V - W)). (35)

a 120

Theorem 33. The prequasi norm ®(W) =Y ., |s,(W)|", for
all W e S(er), (Z, M) does not satisfy the Fatou property, if (

r.)e(0, 11"

Proof. Let the setting be provided and {W, }p6 P
M) with lim

P*}OO

is increasing.

< Stetry, (%
®(W, - W) =0. Since the space Stewr, 18
a prequasi closed ideal, so W € S(E(r))¢ (Z, M). Therefore, for
every V€ Sy, (Z, M), we have

7
OV-W) =Y s (V=W Y |sum(V-w)|"
aeN aeN
rﬂ
+ Z Starz) (Wi = W)
aeN
<2 sup mfz s.(V —W;)|" (36)

P 2Py

Hence, @ does not support the Fatou property.
Now, we introduce the definition of Kannan ®-contrac-
tion operator on the prequasi operator ideal.

Definition 34. For the prequasi norm @ on the ideal Sy,» where
O(W) =¢((s,(W))52)- An operator G : Sor, (Z, M) — Sy,
(Z, M) is called a Kannan @ -contraction, if we have & € [0,
1/2) so that ®(GW — GA) <E(D(GW — W) + D(GA — A)),
forall W,A € Sa, (Z,M).

Definition 35. For the prequasi norm @ on the ideal Sy, where
D(W) = ¢((sa(W))alo)» G : Sy, (Z, M) — Sy (Z, M) and B
€ Sy, (Z, M). The operator G is called @ -sequentially contin-

uous at B, if and only if, when lim, ,,®(W,-B)=0, then
lim, _,,®(GW, - GB) =
Theorem 36. Set up (r,) € (0, 1" be an increasing and G

FS(e, (4 M) — Sy, (2, M), where  O(W) =3,y
ls,(W)|"*, for every We Ste(r)), (2 M). The point Ae
S<e(,))¢(Z, M) is the unique fixed point of G, if the following

set up are satisfied:

(a) G is Kannan O-contraction mapping

(b) G is O-sequentially continuous at a point A € S(E(’))vs
(z,M)

(c) There is Be Sten), (Z, M) such that the sequence of

iterates {GPB} has a subsequence {GFB} converging
to A

Proof. Let the conditions be verified. If A is not a fixed point
of G, then GA # A. From the setting (b) and (c), we have

lim ®(G"B-A)=0and lim ®(G""'B-GA)=0. (37)
pi—00 pi—00

Since G is Kannan @-contraction mapping, one can see

0<®(GA-A)=d((GA-G""'B) + (G'"B-A) + (G""'B-G"B))
<20(GP'B~GA) +4D(G"B - A)

g\
+4& (1——E> ®(GB - B).



As p, — 0o, this implies a contradiction. Therefore, A is
a fixed point of G. To show that the fixed point A is unique.
Let we have two different fixed points A, D € s(mm(z, M)

of G. Hence, one has
®(A - D) < ®(GA - GD) < {(®(GA - A) + O(GD - D)) =0.
(39)

Therefore, A = D.

Example 37. Let Z and M be Banach spaces, G : Sg(as1/ar
2)220))45(2» M) — S(E((a+1/a+2)a°°:0))¢ (Z, M), where ®(W)=

Yaer (sa(W)™ 2, for every W € S(ariraraizy), (% M)
and

w
=, o(W)eo,),
Gw)=| % | (40)
w
o (W)€ loo).

Since for all W, W, ES(E((a+1/u+2)°<:’U))¢ with ®(W,), ®
(W,) €(0,1], we have

W, W,\ _2( [25W 25W
OGW,-GW,)=0(L- 2)<Z(o@ L +o 2
26 26)°5 26 26

= %((D(GWI - W)+ DO(GW, - W,)).

(41)

For all Wl’ WZES(f((a+1/a+2) ))¢ with (D(Wl)’(D(WZ)

o0
a=0

€ [1,00), we have

W, W,\ 1 36W 36W
DO(GW,-GW,) =0+ - 2)<_ (@ L +o 2
37 37)73 37 37

= %((D(GWI - W) +O(GW, - W,)).

(42)

For all Wl’ W2 € S(ﬁ((u+1/a+2)2:0))¢ with CD(WI) € [O, 1)
and ®(W,) € [1,00), we have

oMo W) 2(BW0) , 14 (36W,
26 37 5 26 3 37

(5 (57)

(O(GW, = W,) +D(GW, - W,)).

O(GW, - GW,)

(43)
Therefore, the map W is Kannan ®-contraction map-
<W/26P, (W) elo,1),

W/378, (W) € [1,00).
It is clear that G is @-sequentially continuous at the zero
operator © € Sy((a1/a12),)), and {G’ W} has a subsequence

ping and GP(W)

Journal of Function Spaces

{GPiW} converging to ®. By Theorem 36, the zero operator
®c S(e((a+1/a+2);‘;u))¢ is the only fixed point of G. Let { W)}

nHOO(D(W(n) - W(O)) =0,
) ))¢> with @(W«))) =1. Since the

a+l/a+2)52,

c S<€((a+1,a+2)330)>¢ be such that lim
where W(© ¢ Se(

prequasi norm @ is continuous, we have

wm w0
lim (D(GW“‘) —GW<°>> = lim @( - )

n—=aoo n—a~oo 26 37

11w
= — 1| >0
962

Hence G is not ®-sequentially continuous at W®). So, the
map G is not continuous at w,

(44)

7. Application to the Existence of Solutions of
Summable Equations

Summable equations like (45) were studied by Salimi et al.
[22], Agarwal et al. [23], and Hussain et al. [24]. In this sec-

tion, we search for a solution to (45) in (£(r)),, where (r,)

€ (0,1]” be an increasing and ¢(v) =Y., v, for all v
€ £(r). Consider the summable equations

M8

Va=p,t ), Alam)f(m,v,), (45)

3
I
(=]

and let W : (€(r)), — (€(r)),, defined by

¢

18

A(a, m)f (m, vm)> . (46)

aeN

W(Va)ae/lf = (pa +

0

3
I

Theorem 38. The summable equations ((45)) has a solution
in (8(r))y, if A: N —Rf NXxR—Rp: N/ — R,
and for allae W , there is £ € [0, 1/2) , so that

m=0

Proof. Let the conditions be verified. Consider the mapping
W : (€(r)), — (£(r)) 4 defined by (46). We have
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YWy —Wt)= ) Wy, - Wt
aeN

=2 | X A@m)lf(my,) = f(mt,,)]

aeN |meN

(2 |

Ly y

pa—tat ), A(am)f(mt,)
aeN m=0

=5(@(Wy—v) + p(Wt—1)).

Ta

(9] a

Pa—Vat Z_O A(a’ m)f(m’ Vm)

)

(48)

Then, from Theorem 24, we have a solution of equation
(45) in (€(r)),.

Example 39. Given the sequence space (£((a+ 1/a + 2)220))¢,

where §(v) = Y ey [vo| "2, for all v € (8((a + 1/a+2)%)).
Consider the summable equations

v, :e—(3a+6) + Z (_1)u+m( vV, )‘1) (49)

2 |
o a® + ml+1

where g>2 and let W:(B((a+1/a+2)§20))¢—>
(¢((a+1/a+ 2)220))¢ defined by

v q
_1 at+m (7ﬂ) .
(=1) a? +m!+1
aeN

M8

W(Vy) ey = <e<3“*6> +

m=0
(50)
It is easy to see that
at+l/a+2
S (e ) - )
= a* + ml+1
atl/a+2
1 < % q
- —(3a+6) _ _1\a+tm a
S3[e V“+Z'( D (a2+m!+l)

m=0

v

Oty (=1 (az + ;1'+1)

+ e a

Mg

0

3
I

a+l/a+2
q ]

(51)

By Theorem 38, the summable equations (49) has a solu-
tionin (€((a+ 1/a+ 2);‘;0))¢.
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