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In this paper, the variable-order fractional Laplacian equations with variable exponents and the Kirchhoff-type problem
driven by p()-fractional Laplace with variable exponents were studied. By using variational method, the authors obtain

the existence and uniqueness results.

1. Introduction

In recent years, the fractional differential operators and equa-
tions have increasingly attracted much attention, since they
are good at describing memory and heredity of some com-
plex systems compared with the integer-order derivative [1,
2]. So far, the fractional differential operators have been
applied in various research fields, such as optimization [3],
fractional quantum mechanics [4], finance [5], image process
[6], and biomedical engineering [7]. For more relevant refer-
ences, we refer the readers to [8-10].

The variable-order fractional derivative extends the study
of constant order fractional derivative, which was first pro-
posed by Samko and Ross [11] in 1993. In this concept, the
order can change continuously as a function of either depen-
dent or independent variables to better describe the change of
memory property with time or space [12]. Later, Lorenzo and
Hartley put the variable-order fractional operator to describe
the diffusion process in [13], which may also describe the
change in temperature [14]. From this, many applications
of fractional variable-order spaces have been explored in con-
siderable details [15-17]. The extensive applications urgently
need systematic studies on the existence, uniqueness of solu-
tions to these variable-order fractional differential equations.
In [18], the infinitely many solutions to Kirchhoff-type
variable-order fractional Laplacian equations have been dis-
cussed. Xiang [19] has introduced variable-order fractional

Laplace (—A)S(') and explores some problems involving this
operator. Moreover, Heydari solved the variable-order frac-
tional nonlinear diffusion-wave equation in [20]. Consider-
ing that for some nonhomogeneous materials, the
commonly used methods in Lebesgue and Sobolev spaces
1P(Q) and W'(Q) are not sufficient; many scholars have
begun to study the differential operator with variable expo-
nent [21-23]. Similar to Lebesgue spaces with variable expo-
nents, Kaufmann [24] introduced the fractional derivative
involving variable exponents. In [25], Chen introduced a
framework for image restoration using a variable exponents
Laplacian. For more literature, see [26-32].

On the other hand, the research on Kirchhoft-type prob-
lems has aroused great interest over recent years. Specifically,
Kirchhoft built the model given by the equation

v (P, E (‘ov| ov
pE—— JE— —_— _— = 5 1
P (h +2LL dy) 5 0 V)

in [33] to extend the famous D’Alembert wave equation by
further investigating the influence of the changes in the
length variation during vibrations. Where v is displacement
of a string, L is the length of the string, E is the Young mod-
ulus of the material, P, is the initial tension, p is the mass
density, and h is the area of cross-section. So far, many
researchers have discussed the fractional Kirchhoft-type
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problems and wide applications. Pucci et al. [34] studied a
Kirchhoff-type eigenvalue problem which has a critical non-
linearity and nonlocal fractional Laplace. Later, Molica Bisci
et al. [35] centered their work on Kirchhoff nonlocal frac-
tional equations and using three critical point theorem to
obtain three solutions. For more results, see [36-38].

To our knowledge, the results of the variable-order frac-
tional Sobolev spaces with variable exponents and fractional
p(+)-Laplace equations with variable order are few. Motivated

1 — P(-2)
P R
0 _Qp()/) Z) |y _ Zl +p()/,Z)S()/,Z)

v(y)=0,y e RV \ Q.

Where the nonlocal operator (—A);(('_)) is defined as

. v(y) - PO2)2 (y(y) — v
(‘A)p<(.))"()’)=P-V-JQ| ) 1;(Z_)|ZN+5()/,Z()p((3,/Z)) (z))dz,

(4)
with

s() € C(]RN xRY, (0, 1)),
p(-) € C(R xR, (L,co)), and (5)
q(y) € C(RY, (1,00)),

and P.V. is a commonly used abbreviation in the principal
value sense.

The remainder of this paper is arranged as follows: in
Section 2, we review some basic knowledge. In Section 3,
we research the existence and uniqueness of the weak solu-
tions to equation (2). In Section 4, we investigate the weak
solutions to Kirchhoff-type equation (3).

L10) Q)= {v : functionv : Q — Rismeasurableand3& > 0 : J

with the norm

HVHL’I(J’)(Q) = lnf {E > 0 . J
(0]

dydz> (A v + [ 2v(y) = g(y), y € Q5
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by these observations, we focus on the following variable-
order fractional Laplacian equation with variable exponents:

{ A0 PO =gy e

v(y) =0,y € 002,

and the Kirchhoff-type problem:

2. Preliminaries

In this section, we introduce the main tools and some theo-
rems which will be used in this article.
For notational convenience, we define

s = min s(y,z),s.= max s(y,2),
- (}”Z)GIRNXIRN ()/ ) + (y,z)e]RNx]RN (y )

= min . zZ),p, = max . 2),
P- (}’»Z)E]RNX]RNP()/ )P+ (y,z)é]RNx]RNp(y ) (6)
q_ =ming(y), q, = maxq(y).

yel2 ( ) " ye2 ( )

Concerning the function s(-), p(), and q(-) satisfied the
followings:

(A.1) s(-) is symmetric, i.e., s(y, z) =s(z, ) and continu-
ous for all (y,z) e RN x RN with 0<s_<s, <1.

(A.2) p(-) is symmetric, i.e., p(y, z) = p(z, y) and continu-
ous for all (y,z) € RN x RN and ps < N for all (y,z) e Qx Q.

(A.3) p(-) and ¢(-) are both bounded away from 1 and o,
i.e., there exist 1<g_<gq, <+00 and 1<p_<p, <+00 so
that g <q(y)<q, and p_<p(y,z)<p, for every (y,z) €
RN x RV,

The Banach space L1%) () is given by

v()

q()
dy<oo 3, (7)
Q

It follows from [39] that (L19)(Q), ||| 4 ) is a separa-

ble and reflexive Banach space.
Consider the space

C,(Q)={yeC(Q): 1<yforallyeO}. 9)
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Let ¢’ € C,(Q) be the conjugate exponent of g, i.e.,

1 —
—— + —— =1, forallye Q. (10)
90)  4'()

Then, we have

Theorem 1 (Holder’s inequality, [39]). Suppose that u €
L1(Q) and v € LTV)(Q). Then,

J uvdx
Q

1 1
= P + qT (4]l 0 o 1Vl 26 )

(11)

< 2||“||L’7(')(Q) ||V||Lq’<'J(Q)'

In addition, the Sobolev fractional space with variable
exponents and variable order for 0 <s(-) <1 is defined as
follows:

W = Ws0240)p(2) Q)

={V:Q—>]R:VGLW>(Q) :J J ‘VCV)_WZNP(N)
0

Q BV NH0aR0)

- dydz < co,forsome€ > 0},

(12)

and the variable exponent seminorm:

[v] s(2)p(r:2) Q)

—inf {£>0: v0) = @)
"o QfP(N) |y_Z|N+S(,V)Z)P(%Z)

< 1}. (13)

If we equip W with

IVl = V]l 000 + DT (€2), (14)

then W is a Banach space.
Let E=RN x RN\ Q¢ x Q°. It is proved that the norm
[[[ly is different from |||, in [40] since Q2 x Q2 C E but

O xQ+E. Then, let

Wo={veW :v=0aeinR"\Q} (15)

be the workspace in Sections 3 and 4. W, is a Banach space

3
which is separable and reflexive with the norm
i : V) - v(z) ")
M, =int €0 [ | e
(16)

_ () - (2
) Ry 80|y — V021502

)dydz< 1},

where the inequality is a result of v =0 a.e. in RN \ Q. Similar
to the proof of the Theorem 2.4 in [40], there is a constant
C > 0 so that

1¥llp) < ClIYlh, (17)

for all v € W, where p(y) =p(y,y). Then, |[+||, and [|s[|3,
are topological equivalent in W,.

Theorem 2 (Sobolev-type embedding theorem [41]). Suppose
Q c RN (N > 2) is a smooth bounded domain and p(-), s(-) sat-
isfy the conditions (A1) and (A2), respectively. Assume o € C,

(€2), B C,(Q) such that a(y) 2 p(y, y) and B(y) <p(y) =

Np(y,y)IN = s(y,y)p(y, y) for all y € Q. Then, there exists a
constant | = J(N, s, p, a, 3, Q) > 0 such that for every ve W

HVHLM(Q) <J[vll- (18)

Furthermore, the embedding is compact.

Remark 3. According to Theorem 2.2 in [42], Theorem 2
holds true in W,,.

For classical Sobolev space theory such as constant order
and constant exponential, see [43-45]. And for variable
order, variable exponent cases, see [21, 41].

3. Equations in Variable-Order Fractional
Laplacian Equations with Variable Exponents

In this section, we consider the existence and uniqueness of the
solution to equation (2). Suppose g € L'V (Q) with 1 <k_ <k
(y) <k, <+oo0 for each y € O, and define the following func-
tional

V) - v(z) ")

) J ‘J aly =20 p(y, 2) i (19)
() 90)
' J o | %) dy - LQ(Y)V()’)dy,

and the weak solution to equation (2) in space W,



Definition 4. We say that v is a weak solution to equation (2)
ifve W, and

()~ VPP (0() - v(2)) () - w(2))
JQ JQ y — o[V 00 dydz
+j&w“*%@wwmw=Lguwmw@,
(20)

for any we W,,.

Now, we show that there is a unique minimizer of .¥ in
W, and the minimizer is also a unique weak solution to
equation (2).

Theorem 5. Suppose s(-) € (0, 1) is variable order, and q(y),
p(y,z) are continuous variable exponents with p_-s(-) > 1.

Let g € L*V(Q), with 1 <k_<k(y) <k, < +co. If we have

Np(y.y) k(y)
N-=s(».y)p(.y) - > @)

for any y € Q, then there exists a unique minimizer of equation
(19) in W, which is also a unique weak solution to equation (2).

Proof. We prove the theorem by using the variational
method. By simple verification, the functional .# in equation
(19) is strictly convex and bounded below (due to the strict
convexity of the function t — t?) for any y and z).

According to Remark 3, W, is compactly embedded in
LAY)(Q) for B(y) < p*(y) and especially compactly embed-
ded in LKOVK0)-1(),

It follows from Theorem 1 that

V) —v(2) )

7w=| |
o Q|y—Z|N 2Py )p(y,z)

y(y)|40)
P gorors

dydz

Lo [ )
> — v + dy —
oMt | BBy lglo o),
1 : |V(),)|q(y)
> - Iblf,+ [ P2 dy -l
p+ (0} q(y)
(22)
Suppose [|v[[y, > 1, it follows that
e bl (23)
¥,

Choose a sequence v; so that ||v

iy, — 00 (i — co)

Journal of Function Spaces
Then, we have

— 0. (24)

j(vj) = p—||v]| CHVJHW(,

Thus, .7 is coercive. There is a unique minimizer of .7.

Finally, let us verify that when v is a minimum of equation
(19), it is also a weak solution to equation (2). For w € W, we
obtain

= i| ) -v(z) +t(w(y) - w(z))‘P(y,z)
t=0 — JQ[Q dt p(y, Z)\y _ Z|N+S(y,z)p(y,z)

i " w(y)]49)
iy | 41 = )(y)\

0| FI0I00) + )|

i J J [v(y) = v(2) PP (v(y) - v(2)) (w(y) - w(2))
olao ly - Z|N+S(J’>Z)P(y,2)

- dydz + JQW) 1072y (y)w(y)dy - JQg(y)w(y)dy

0= %J(v+tw)

.dy

(25)

Since v is a minimizer of equation (19), v is a weak solution
to equation (2).
Therefore, the proof is completed.

4. The Kirchhoff-Type Problem Driven by a p(-)
-Fractional Laplace Operator with
Variable Order

In this section, we consider the existence and uniqueness
of the solution to Kirchhoff-type problem (3) in the
following.

Suppose g€ L") (Q) with 1<k_<k(y) <k, <+oo for
each y € Q. And discuss the functional associated to equation
(3), defined by #(v) : Wy — R

_ L |v(y) - v(x)P"
f(v)—aJ L)P()’ z) |y — | NP0A02) iz

b 1 |v(y) - v(z)f0? 2 .
+ 2 {JQJQP()’, )‘}’ Z|N+pyzs vz dydz] ( )

y(y)|10) i
+J ‘%) dy—JQy(y)V(y)dy

Definition 6. v is said to be a weak solution to equation (3) if
v € W, and

V) - v(z)["*)
<a+bJ J |y — z|N P02 ”)dyd )JQJQ
0) - v@PP () - v(2) (w() - w(z) (27)

ly - Z‘NH(}',Z)P(%Z)

’ZV(y)w(y)dy:l g)w(y)dy,

JO

-dydz + J |v]90)
Q

for any w e W,,.
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Theorem 7. Suppose a, b > 0. Assume that s(-) € (0, 1) is var-
iable order, and q(y), p(-) are continuous variable exponents
with p_s(-) > 1. Let g€ L*")(Q), with 1<k_<k(y) <k, <+
00 for any y € Q so that

Np(»y) k(y)
N=s0up0ry) k)1

> 1, (28)

then there is a unique minimizer of equation (26) in W, which
is also a unique weak solution to equation (3).

Proof. Let us prove that 7 is coercive. We have

R
F0)= JQJQP( »%) i

X )|)’ Z|N+pyzs
b L po)-val T
+2UQJQP() z) |y — NPV Z>dyd]
()40
+Jol<qy(>yl)dy_J 90Oy
a ] 2 |v(),)‘q(y)
2 vl g M+ o B )
- % —||v 2
|, a0Iwoay= i, + o )ZH %
o) ,
« | =y Lo ||L;y)m>
> e 2. )™ v(y)|")
= ol o M+
~Clly,-

Suppose [|v[[y;, > 1, we have

AR T
.~ P zw
Lo o)
+|v|WOJQ 0 - (30)
> 2 2p_ 1
Sl 5 )zn 1

Select a sequence v; so that [|v|[,;, — 00 (j— 00).

Then, we have

— Q.

(31)

2 H JHZIL C||Vj||W

I )——H it

Thus, 7 is coercive. The functional £ has a unique
minimizer.

Next, we verify that when v is a minimum of equation
(26), it is a weak solution to equation (3). For v € W, we have

d
0= Ej(v+tw)

t=0

_4 (aJ' J 1 |v(y) - v(z) + tw(y) - w(z)) [P0
dt alap(,2) ‘y_Z|N+P(y»Z)S(y,Z)
b 1 |v(y) - v(z) + tw(y) - w(z))[P0? 2
ity |:JQJQP(y’ z) ly — 2 PO dydz}
)OI
o| By | gt <o (y))dy>|,-o
Vo) - v(z)P*?
) (ll‘*'bJ J ly - z|N+P(J’Z)SyZ) dy z)
] VRPE0) - v(E)(wly) = w(z))
ola ly - Z|N+SJ'Z)P(J'
.dydz+J Mqu v(y w(y)dy - Qg(y
(32)

Hence, v is a weak solution to the equation (3).

Remark 8. When a=0,b> 0, the equation (3) becomes a
degenerate Kirchhoff-type equation and Theorem 7 still
holds.
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