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In this paper, the variable-order fractional Laplacian equations with variable exponents and the Kirchhoff-type problem
driven by pð·Þ-fractional Laplace with variable exponents were studied. By using variational method, the authors obtain
the existence and uniqueness results.

1. Introduction

In recent years, the fractional differential operators and equa-
tions have increasingly attracted much attention, since they
are good at describing memory and heredity of some com-
plex systems compared with the integer-order derivative [1,
2]. So far, the fractional differential operators have been
applied in various research fields, such as optimization [3],
fractional quantummechanics [4], finance [5], image process
[6], and biomedical engineering [7]. For more relevant refer-
ences, we refer the readers to [8–10].

The variable-order fractional derivative extends the study
of constant order fractional derivative, which was first pro-
posed by Samko and Ross [11] in 1993. In this concept, the
order can change continuously as a function of either depen-
dent or independent variables to better describe the change of
memory property with time or space [12]. Later, Lorenzo and
Hartley put the variable-order fractional operator to describe
the diffusion process in [13], which may also describe the
change in temperature [14]. From this, many applications
of fractional variable-order spaces have been explored in con-
siderable details [15–17]. The extensive applications urgently
need systematic studies on the existence, uniqueness of solu-
tions to these variable-order fractional differential equations.
In [18], the infinitely many solutions to Kirchhoff-type
variable-order fractional Laplacian equations have been dis-
cussed. Xiang [19] has introduced variable-order fractional

Laplace ð−ΔÞsð·Þ and explores some problems involving this
operator. Moreover, Heydari solved the variable-order frac-
tional nonlinear diffusion-wave equation in [20]. Consider-
ing that for some nonhomogeneous materials, the
commonly used methods in Lebesgue and Sobolev spaces
LpðΩÞ and W1,pðΩÞ are not sufficient; many scholars have
begun to study the differential operator with variable expo-
nent [21–23]. Similar to Lebesgue spaces with variable expo-
nents, Kaufmann [24] introduced the fractional derivative
involving variable exponents. In [25], Chen introduced a
framework for image restoration using a variable exponents
Laplacian. For more literature, see [26–32].

On the other hand, the research on Kirchhoff-type prob-
lems has aroused great interest over recent years. Specifically,
Kirchhoff built the model given by the equation

ρ
∂2v
∂t2

−
P0
h

+ E
2L

ðL
0

∂v
∂y

����
����
2
dy

 !
∂v
∂y2

= 0, ð1Þ

in [33] to extend the famous D’Alembert wave equation by
further investigating the influence of the changes in the
length variation during vibrations. Where v is displacement
of a string, L is the length of the string, E is the Young mod-
ulus of the material, P0 is the initial tension, ρ is the mass
density, and h is the area of cross-section. So far, many
researchers have discussed the fractional Kirchhoff-type

Hindawi
Journal of Function Spaces
Volume 2021, Article ID 6686213, 7 pages
https://doi.org/10.1155/2021/6686213

https://orcid.org/0000-0003-4671-049X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/6686213


problems and wide applications. Pucci et al. [34] studied a
Kirchhoff-type eigenvalue problem which has a critical non-
linearity and nonlocal fractional Laplace. Later, Molica Bisci
et al. [35] centered their work on Kirchhoff nonlocal frac-
tional equations and using three critical point theorem to
obtain three solutions. For more results, see [36–38].

To our knowledge, the results of the variable-order frac-
tional Sobolev spaces with variable exponents and fractional
pð·Þ-Laplace equations with variable order are few. Motivated

by these observations, we focus on the following variable-
order fractional Laplacian equation with variable exponents:

−Δð Þs ·ð Þp ·ð Þv yð Þ + v yð Þj jq yð Þ−2v yð Þ = g yð Þ, y ∈Ω ;

v yð Þ = 0, y ∈ ∂Ω,

(
ð2Þ

and the Kirchhoff-type problem:

Where the nonlocal operator ð−ΔÞsð·Þpð·Þ is defined as

−Δð Þs ·ð Þp ·ð Þv yð Þ = P:V :
ð
Ω

v yð Þ − v zð Þj jp y,zð Þ−2 v yð Þ − v zð Þð Þ
y − zj jN+s y,zð Þp y,zð Þ dz,

ð4Þ

with

s ·ð Þ ∈ C ℝN ×ℝN , 0, 1ð Þ� �
,

p ·ð Þ ∈ C ℝN ×ℝN , 1,∞ð Þ� �
, and

q yð Þ ∈ C ℝN , 1,∞ð Þ� �
,

ð5Þ

and P:V: is a commonly used abbreviation in the principal
value sense.

The remainder of this paper is arranged as follows: in
Section 2, we review some basic knowledge. In Section 3,
we research the existence and uniqueness of the weak solu-
tions to equation (2). In Section 4, we investigate the weak
solutions to Kirchhoff-type equation (3).

2. Preliminaries

In this section, we introduce the main tools and some theo-
rems which will be used in this article.

For notational convenience, we define

s− = min
y,zð Þ∈ℝN×ℝN

s y, zð Þ, s+ = max
y,zð Þ∈ℝN×ℝN

s y, zð Þ,

p− = min
y,zð Þ∈ℝN×ℝN

p y, zð Þ, p+ = max
y,zð Þ∈ℝN×ℝN

p y, zð Þ,

q− =min
y∈ �Ω

q yð Þ, q+ = max
y∈ �Ω

q yð Þ:
ð6Þ

Concerning the function sð·Þ, pð·Þ, and qð·Þ satisfied the
followings:

(A.1) sð·Þ is symmetric, i.e., sðy, zÞ = sðz, yÞ and continu-
ous for all ðy, zÞ ∈ℝN ×ℝN with 0 < s− ≤ s+ < 1.

(A.2) pð·Þ is symmetric, i.e., pðy, zÞ = pðz, yÞ and continu-
ous for all ðy, zÞ ∈ℝN ×ℝN and ps <N for all ðy, zÞ ∈ �Ω × �Ω.

(A.3) pð·Þ and qð·Þ are both bounded away from 1 and∞,
i.e., there exist 1 < q− < q+ < +∞ and 1 < p− < p+ < +∞ so
that q− ≤ qðyÞ ≤ q+ and p− ≤ pðy, zÞ ≤ p+ for every ðy, zÞ ∈
ℝN ×ℝN .

The Banach space LqðyÞðΩÞ is given by

with the norm

vk kLq yð Þ Ωð Þ = inf ξ > 0 :

ð
Ω

v yð Þ
ξ

����
����
q yð Þ

dy < 1
( )

: ð8Þ

It follows from [39] that ðLqðyÞðΩÞ, k∙kLqðyÞðΩÞÞ is a separa-
ble and reflexive Banach space.

Consider the space

C+ �Ω
� �

= ψ ∈ C �Ω
� �

: 1 < ψ for all y ∈ �Ω
� �

: ð9Þ

a + b
ð
Ω

ð
Ω

1
p y, zð Þ

v yð Þ − v zð Þj jp y,zð Þ

y − zj jN+p y,zð Þs y,zð Þ dydz

 !
−Δð Þs ·ð Þp ·ð Þv yð Þ + v yð Þj jq yð Þ−2v yð Þ = g yð Þ, y ∈Ω ;

v yð Þ = 0, y ∈ℝN \Ω:

8>><
>>: ð3Þ

Lq yð Þ Ωð Þ = v : functionv : Ω⟶ℝismeasurableand∃ξ > 0 :

ð
Ω

v yð Þ
ξ

����
����
q yð Þ

dy<∞
( )

, ð7Þ
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Let q′ ∈ C+ð�ΩÞ be the conjugate exponent of q, i.e.,

1
q yð Þ + 1

q′ yð Þ
= 1, for all y ∈ �Ω: ð10Þ

Then, we have

Theorem 1 (Holder’s inequality, [39]). Suppose that u ∈
Lqð·ÞðΩÞ and v ∈ Lq′ð·ÞðΩÞ. Then,

ð
Ω

uvdx
����

���� ≤ 1
q−

+ 1

q′−

� �
uk kLq ·ð Þ Ωð Þ vk kLq′ ·ð Þ Ωð Þ

≤ 2 uk kLq ·ð Þ Ωð Þ vk kLq′ ·ð Þ Ωð Þ:
ð11Þ

In addition, the Sobolev fractional space with variable
exponents and variable order for 0 < sð·Þ < 1 is defined as
follows:

W =Ws y,zð Þ,q yð Þ,p y,zð Þ Ωð Þ

= v : Ω⟶ℝ : v ∈ Lq yð Þ Ωð Þ :
ð
Ω

ð
Ω

v yð Þ − v zð Þj jp y,zð Þ

ξp y,zð Þ y − zj jN+s y,zð Þp y,zð Þ

(

� dydz <∞,forsomeξ > 0
)
,

ð12Þ

and the variable exponent seminorm:

v½ �s y,zð Þ,p y,zð Þ Ωð Þ

= inf ξ > 0 :

ð
Ω

ð
Ω

v yð Þ − v zð Þj jp y,zð Þ

ξp y,zð Þ y − zj jN+s y,zð Þp y,zð Þ < 1
( )

:
ð13Þ

If we equip W with

vk kW = vk kLq yð Þ Ωð Þ + v½ �s y,zð Þ,p y,zð Þ Ωð Þ, ð14Þ

then W is a Banach space.
Let E =ℝN ×ℝN \Ωc ×Ωc. It is proved that the norm

k∙kW is different from k∙ksð·Þ,pð·Þ in [40] since Ω ×Ω ⊂ E but
Ω ×Ω ≠ E. Then, let

W0 = v ∈W : v = 0a:e:inℝN \Ω
� � ð15Þ

be the workspace in Sections 3 and 4. W0 is a Banach space

which is separable and reflexive with the norm

vk kW0
= inf ξ > 0 :

ð ð
E

v yð Þ − v zð Þj jp y,zð Þ

ξp y,zð Þ y − zj jN+p y,zð Þs y,zð Þ dydz

=
ð ð

ℝN×ℝN

v yð Þ − v zð Þj jp y,zð Þ

ξp y,zð Þ y − zj jN+p y,zð Þs y,zð Þ dydz < 1
)
,
ð16Þ

where the inequality is a result of v = 0 a.e. inℝN \Ω. Similar
to the proof of the Theorem 2.4 in [40], there is a constant
C > 0 so that

vk k �P ·ð Þ ≤ C vk kW0
, ð17Þ

for all v ∈W0, where �pðyÞ = pðy, yÞ. Then, k∙kW and k∙kW0
are topological equivalent in W0.

Theorem 2 (Sobolev-type embedding theorem [41]). Suppose
Ω ⊂ℝN (N ≥ 2) is a smooth bounded domain and pð·Þ, sð·Þ sat-
isfy the conditions (A1) and (A2), respectively. Assume α ∈ C+
ð�ΩÞ, β ∈ C+ð�ΩÞ such that αðyÞ ≥ pðy, yÞ and βðyÞ < p∗s ðyÞ≔
Npðy, yÞ/N − sðy, yÞpðy, yÞ for all y ∈ �Ω. Then, there exists a
constant J = JðN , s, p, α, β,ΩÞ > 0 such that for every v ∈W

vk kLβ yð Þ Ωð Þ ≤ J vk kW : ð18Þ

Furthermore, the embedding is compact.

Remark 3. According to Theorem 2.2 in [42], Theorem 2
holds true in W0.

For classical Sobolev space theory such as constant order
and constant exponential, see [43–45]. And for variable
order, variable exponent cases, see [21, 41].

3. Equations in Variable-Order Fractional
Laplacian Equations with Variable Exponents

In this section, we consider the existence and uniqueness of the
solution to equation (2). Suppose g ∈ LkðyÞðΩÞ with 1 < k− < k
ðyÞ < k+ < +∞ for each y ∈ �Ω, and define the following func-
tional

I vð Þ =
ð
Ω

ð
Ω

v yð Þ − v zð Þj jp y,zð Þ

y − zj jN+s y,zð Þp y,zð Þp y, zð Þ
dydz

+
ð
Ω

v yð Þj jq yð Þ

q yð Þ dy −
ð
Ω

g yð Þv yð Þdy,
ð19Þ

and the weak solution to equation (2) in space W0.
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Definition 4.We say that v is a weak solution to equation (2)
if v ∈W0 and

ð
Ω

ð
Ω

v yð Þ − v zð Þj jp y,zð Þ−2 v yð Þ − v zð Þð Þ w yð Þ −w zð Þð Þ
y − zj jN+s y,zð Þp y,zð Þ dydz

+
ð
Ω

vj jq yð Þ−2v yð Þw yð Þdy =
ð
Ω

g yð Þw yð Þdy,

ð20Þ

for any w ∈W0.

Now, we show that there is a unique minimizer of I in
W0 and the minimizer is also a unique weak solution to
equation (2).

Theorem 5. Suppose sð·Þ ∈ ð0, 1Þ is variable order, and qðyÞ,
pðy, zÞ are continuous variable exponents with p− · sð·Þ > 1.
Let g ∈ LkðyÞðΩÞ, with 1 < k− ≤ kðyÞ ≤ k+ < +∞. If we have

Np y, yð Þ
N − s y, yð Þp y, yð Þ > k yð Þ

k yð Þ − 1
> 1 ð21Þ

for any y ∈ �Ω, then there exists a unique minimizer of equation
(19) inW0 which is also a unique weak solution to equation (2).

Proof. We prove the theorem by using the variational
method. By simple verification, the functional I in equation
(19) is strictly convex and bounded below (due to the strict
convexity of the function t⟶ tpðy,zÞ for any y and z).

According to Remark 3, W0 is compactly embedded in
LβðyÞðΩÞ for βðyÞ < p∗s ðyÞ and especially compactly embed-
ded in LkðyÞ/kðyÞ−1ðΩÞ.

It follows from Theorem 1 that

I vð Þ =
ð
Ω

ð
Ω

v yð Þ − v zð Þj jp y,zð Þ

y − zj jN+s y,zð Þp y,zð Þp y, zð Þ
dydz

+
ð
Ω

v yð Þj jq yð Þ

q yð Þ dy −
ð
Ω

g yð Þv yð Þdy

≥
1
p+

vk kp−W0
+
ð
Ω

v yð Þj jq yð Þ

q yð Þ dy − gk kLk yð Þ Ωð Þ vk k
L

k yð Þ
k yð Þ−1 Ωð Þ

≥
1
p+

vk kp−W0
+
ð
Ω

v yð Þj jq yð Þ

q yð Þ dy − C vk kW0
:

ð22Þ

Suppose kvkW0
> 1, it follows that

I vð Þ
vk kW0

≥
1
p+

vk kp−−1W0
− C: ð23Þ

Choose a sequence vj so that kvjkW0
⟶∞ (j⟶∞).

Then, we have

I vj
� �

≥
1
p+

vj
		 		p−

W0
− C vj
		 		

W0
⟶∞: ð24Þ

Thus, I is coercive. There is a unique minimizer of I .
Finally, let us verify that when v is a minimum of equation

(19), it is also a weak solution to equation (2). For w ∈W0, we
obtain

0 = d
dt

I v + twð Þ t=0 =
ð
Ω

ð
Ω

d
dt

v yð Þ − v zð Þ + t w yð Þ −w zð Þð Þj jp y,zð Þ

p y, zð Þ y − zj jN+s y,zð Þp y,zð Þ

�����
� dydzjt=0 +

ð
Ω

d
dt

v yð Þ + tw yð Þj jq yð Þ

q yð Þ
� dy t=0 −

ð
Ω

d
dt

g yð Þ v yð Þ + tw yð Þð Þdy
����

����
t=0

=
ð
Ω

ð
Ω

v yð Þ − v zð Þj jp y,zð Þ−2 v yð Þ − v zð Þð Þ w yð Þ −w zð Þð Þ
y − zj jN+s y,zð Þp y,zð Þ

� dydz +
ð
Ω

v yð Þj jq yð Þ−2v yð Þw yð Þdy −
ð
Ω

g yð Þw yð Þdy:

ð25Þ

Since v is a minimizer of equation (19), v is a weak solution
to equation (2).

Therefore, the proof is completed.

4. The Kirchhoff-Type Problem Driven by a pð·Þ
-Fractional Laplace Operator with
Variable Order

In this section, we consider the existence and uniqueness
of the solution to Kirchhoff-type problem (3) in the
following.

Suppose g ∈ LkðyÞðΩÞ with 1 < k− ≤ kðyÞ ≤ k+ < +∞ for
each y ∈ �Ω. And discuss the functional associated to equation
(3), defined by J ðvÞ : W0 ⟶ℝ

J vð Þ = a
ð
Ω

ð
Ω

1
p y, zð Þ

v yð Þ − v zð Þj jp y,zð Þ

y − zj jN+p y,zð Þs y,zð Þ dydz

+ b
2

ð
Ω

ð
Ω

1
p y, zð Þ

v yð Þ − v zð Þj jp y,zð Þ

y − zj jN+p y,zð Þs y,zð Þ dydz

" #2

+
ð
Ω

v yð Þj jq yð Þ

q yð Þ dy −
ð
Ω

g yð Þv yð Þdy:

ð26Þ

Definition 6. v is said to be a weak solution to equation (3) if
v ∈W0 and

a + b
ð
Ω

ð
Ω

v yð Þ − v zð Þj jp y,zð Þ

y − zj jN+p y,zð Þs y,zð Þ dydz

 !ð
Ω

ð
Ω

� v yð Þ − v zð Þj jp y,zð Þ−2 v yð Þ − v zð Þð Þ w yð Þ −w zð Þð Þ
y − zj jN+s y,zð Þp y,zð Þ

� dydz +
ð
Ω

vj jq yð Þ−2v yð Þw yð Þdy =
ð
Ω

g yð Þw yð Þdy,

ð27Þ

for any w ∈W0.
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Theorem 7. Suppose a, b > 0. Assume that sð·Þ ∈ ð0, 1Þ is var-
iable order, and qðyÞ, pð·Þ are continuous variable exponents
with p−sð·Þ > 1. Let g ∈ LkðyÞðΩÞ, with 1 < k− ≤ kðyÞ ≤ k+ < +
∞ for any y ∈ �Ω so that

Np y, yð Þ
N − s y, yð Þp y, yð Þ > k yð Þ

k yð Þ − 1
> 1, ð28Þ

then there is a unique minimizer of equation (26) inW0 which
is also a unique weak solution to equation (3).

Proof. Let us prove that J is coercive. We have

J vð Þ = a
ð
Ω

ð
Ω

1
p y, zð Þ

v yð Þ − v zð Þj jp y,zð Þ

y − zj jN+p y,zð Þs y,zð Þ dydz

+ b
2

ð
Ω

ð
Ω

1
p y, zð Þ

v yð Þ − v zð Þj jp y,zð Þ

y − zj jN+p y,zð Þs y,zð Þ dydz

" #2

+
ð
Ω

v yð Þj jq yð Þ

q yð Þ dy −
ð
Ω

g yð Þv yð Þdy

≥
a
p+

vk kp−W0
+ b

2 p+ð Þ2 vk k2p−W0
+
ð
Ω

v yð Þj jq yð Þ

q yð Þ dy

−
ð
Ω

g yð Þv yð Þdy ≥ a
p+

vk kp−W0
+ b

2 p+ð Þ2 vk k2p−W0

+
ð
Ω

v yð Þj jq yð Þ

q yð Þ dy − gk kLk yð Þ Ωð Þ vk k
L

k yð Þ
k yð Þ−1 Ωð Þ

≥
a
p+

vk kp−W0
+ b

2 p+ð Þ2 vk k2p−W0
+
ð
Ω

v yð Þj jq yð Þ

q yð Þ dy

− C vk kW0
:

ð29Þ

Suppose kvkW0
> 1, we have

J vð Þ
vk kW0

≥
a
p+

vk kp−−1W0
+ b

2 p+ð Þ2 vk k2p−−1W0

+ 1
vk kW0

ð
Ω

v yð Þj jq yð Þ

q yð Þ dy − C

≥
a
p+

vk kp−−1W0
+ b

2 p+ð Þ2 vk k2p−−1W0
− C:

ð30Þ

Select a sequence vj so that kvkW0
⟶∞ (j⟶∞).

Then, we have

J vj
� �

≥
a
p+

vk kp−W0
+ b

2 p+ð Þ2 vj
		 		2p−

W0
− C vj
		 		

W0
⟶∞:

ð31Þ

Thus, J is coercive. The functional J has a unique
minimizer.

Next, we verify that when v is a minimum of equation
(26), it is a weak solution to equation (3). For v ∈W0, we have

0= d
dt

J v + twð Þ
����
t=0

= d
dt

a
ð
Ω

ð
Ω

1
p y, zð Þ

v yð Þ − v zð Þ + t w yð Þ −w zð Þð Þj jp y,zð Þ

y − zj jN+p y,zð Þs y,zð Þ

 

� dydz + b
2

ð
Ω

ð
Ω

1
p y, zð Þ

v yð Þ − v zð Þ + t w yð Þ −w zð Þð Þj jp y,zð Þ

y − zj jN+p y,zð Þs y,zð Þ dydz

" #2

+
ð
Ω

v yð Þ + tw yð Þj jq yð Þ

q yð Þ dy −
ð
Ω

g yð Þ v yð Þ + tw yð Þð Þdy
!
j
t=0

= a + b
ð
Ω

ð
Ω

v yð Þ − v zð Þj jp y,zð Þ

y − zj jN+p y,zð Þs y,zð Þ dydz

 !

�
ð
Ω

ð
Ω

v yð Þ − v zð Þj jp y,zð Þ−2 v yð Þ − v zð Þð Þ w yð Þ −w zð Þð Þ
y − zj jN+s y,zð Þp y,zð Þ

� dydz +
ð
Ω

vj jq yð Þ−2v yð Þw yð Þdy −
ð
Ω

g yð Þw yð Þdy:

ð32Þ

Hence, v is a weak solution to the equation (3).

Remark 8. When a = 0, b > 0, the equation (3) becomes a
degenerate Kirchhoff-type equation and Theorem 7 still
holds.
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