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ABSTRACT
Diffuse optical tomography (DOT) and fluorescence molecular tomography (FMT) are two
attractive imaging techniques for in vivo physiological and psychological research. They have
distinct advantages such as non-invasiveness, non-ionizing radiation, high sensitivity and
longitudinal monitoring. This paper reviews the key components of DOT and FMT. Light
propagation model, mathematical reconstruction algorithm, imaging instrumentation and medical
applications are included. Future challenges and perspective on optical tomography are discussed.
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1. INTRODUCTION
Optical imaging depends on the interaction between light and biological tissue. It uses
multiple physical parameters to produce contrast mechanism. Compared with other
functional and physiological imaging, optical approaches have distinct advantages such
as non-invasiveness, non-ionizing radiation, high sensitivity and longitudinal
monitoring. Visualization with light is among the most common practices in today’s
academic and clinical research [1].

The ability of light to penetrate tissue was first exploited by Bright as early as
1831 [2]. For light in the visible spectrum, penetration depth is limited by strong
absorption of hemoglobin and other molecules. In 1977, Jobsis found the ‘near-infrared
window’ between 700 nm and 1000 nm [3]. At these wavelengths, absorption by
haemoglobin, lipid, and water is minimum. Near-infrared light can penetrate up to
several centimeters in biological tissue [4].

Oxy-haemoglobin and deoxy-haemoglobin are two main absorption molecules in the
near-infrared spectrum [5]. They are indicators of tissue’s blood volume and oxygenation.
To monitor these physiological signatures, near-infrared spectroscopy (NIRS) was
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developed [6–8]. This technique uses wavelength scanning at a single site. In order to
get spatial information, scientists combined multiple NIRS measurements and made the
first images of brain [9]. Up to now, many imaging techniques have been developed to
produce spatially resolved information. Generally speaking, there are two kinds of
techniques, i.e., topography and tomography. The former refers to methods that produce
two-dimensional (2D) or planar images of subjects. It has intrinsic inability to quantify
or detect deep targets due to the non-linear dependence of light on depth [10]. Diffuse
optical tomography (DOT), a three-dimensional (3D) tomographic technique, was
developed to overcome the limitation [11].

DOT models the light propagation in tissue by taking the highly scattered photons
into account [12]. It illuminates the tissue with near-infrared light from an array of
sources and observes the multiply-scattered light using an array of detectors. By means of
an inversion scheme, DOT reconstructs the tissue properties (absorption and scattering
coefficients) that have close correlation with oxy- and deoxy-haemoglobin concentration
blood saturation. Since carcinogenesis features like angiogenesis and hypoxia are often
associated with blood saturation, DOT can reveal functional or pathological disorders of
living subjects [13].

Traditional DOT is based on absorption and scattering coefficients. The intrinsic
contrast mechanism suffers from low sensitivity and lacks specificity to targeted cells.
Extrinsically administered molecules are employed to enhance the contrast [14]. These
reagents often aggregate in the tumor region while washed out in the normal ones.
Among them, Indocyanine Green (ICG) is the only NIR agent approved by the US Food
and Drug Administration (FDA) for human use [15].

Fluorescence molecular tomography (FMT) is another strategy to improve the
contrast and detection specificity. It was first put forward by Vasilis et al. in 2002 [16].
It shares tomographic principles of DOT, but simultaneously uses optical properties and
fluorescence measurements for accurate 3D reconstruction of exogenous probes, such
as green fluorescent protein (GFP), red fluorescent protein (RFP), cyanine dyes (Cy5.5,
Cy7) and nano-particles [17]. These injected fluorophores accumulate preferentially in
diseased tissue. This specificity distribution as well as their different decay properties
could be useful to localize tumors [18].

FMT has unique features such as repeatable excitation and emission, in vivo multi-
target labeling and visualization of specific physiological activity [19]. In addition, the
use of fluorophore can also have access to information like pO2, pH and intracellular
calcium concentration [20]. In recent years, FMT has aroused increasing interest among
scientists and clinicians [19, 21–23].

This work reviews the key components of DOT and FMT. First, we describe the
fundamental principle of DOT, including light propagation model, mathematical
algorithm and imaging instrumentation. The current clinical application in optical
mammography, infant brain imaging and detection of other tissues are followed. Unlike
DOT, most of in vivo studies using FMT are conducted on small animals. We present
basic theories of FMT in a separate section with the emphasis on its distinctive features
and preclinical application. In the end of this article, future challenges and perspective
on optical tomography are discussed.
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2. FUNDAMENTAL PRINCIPLE OF DOT
2.1. Light Propagation Model
When near-infrared light travels through biological tissue, it will undergo reflection,
diffraction, absorption, scattering, etc [24]. Modeling light propagation through tissues
is critical for making quantitative optical imaging a feasible endeavor [25, 26].

There are many different models to describe light propagation within tissue [27–30].
Generally, they can be classified into two categories: deterministic and stochastic.

Deterministic models use Maxwell equation to well interpret the interaction
between light and medium taking into account scattering, absorption and reflection.
But it is too complex to get its analytic solution in practice. In most biological tissues,
the effect of scattering dominates. Radiative transfer equation (RTE) is usually chosen
to treat photons as elastic particles after ignoring any wave effects [31]. RTE is a
conservation formulation describing the change of energy radiance due to changes in
energy flow. Its analytical solution is usually scarce and exists only in certain simple
and homogeneous cases [32]. When geometries of tissue and the distribution of optical
properties are complicated, diffusion equation is favorable. Diffusion approximation is
based on the assumption that scattering dominates over absorption and regions of
interest are far from sources and detectors [30]. This is generally the case in bulk
tissues, but it breaks down in regions near the source, the surface, internal boundaries,
as well as in anisotropic and high absorbing or low scattering tissues. In these
situations, the higher-order spherical harmonics approximation [33] or RTE-based
models [34, 35] may be required.

Stochastic models simulate the trajectories of individual photon that either escapes
from the boundary or is absorbed by the tissue. By tracking a sufficient number of
photons, physical quantities such as diffuse reflectance can be estimated [36]. The
procedures are conceptually simpler to implement and rely on fewer assumptions, but
at the expense of computational time. Among them, Monte Carlo (MC) is the most
commonly used method [28]. It incorporates Poisson error into the model naturally and
simulates the photon migration in both the diffusive and non-diffusive domains [37–39].
In fact, MC is often regarded as the ‘golden standard’ in diffuse optics [40]. Another
statistical approach is the Random walk theory, where photon transport is modeled as a
series of steps on a discrete cubic lattice. It is particularly suited to time-domain
measurements, and has been used, for example, to quantify the optical properties of a
breast tumor [41] and to simulate diffusion in brain extracellular space [42]. More
details can be found in [12].

2.2. Reconstruction Algorithm
Photons do not follow straight paths as X-ray does, so the standard back projection in
computer tomography (CT) is no longer accurate for image reconstruction. Instead, the
model is dictated by the above-mentioned Maxwell equation, radiative transport
equation, or the diffusion approximation. Two problems are involved: the forward
problem and the inverse problem [43].

The forward problem uses the light transport model to predict the distribution of
light in the object under examination. This stage generates a sensitivity matrix (the
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Jacobian) that relates the measurements to the internal optical properties. Since scatter
is dominant, the forward problem becomes a series of integrals over the entire volume.
Arridge first derived the analytical solution using Green’s function for different
geometries [44] and various modification such as Kirchhoff approximation [45] and
regularization theories[46] were proposed. Finite element method (FEM) [12, 47], finite
difference method (FDM) [48–50], finite volume method (FVM) [49, 51, 52] and
boundary element method (BEM) [53–55] are employed to discrete the continuous
partial differential equations (PDE). Among them, FEM is most widely used, because it
can represent the inhomogeneous distribution of optical properties in an arbitrary
geometry [30, 56].

In the inverse problem, the sensitivity matrix is inverted and the spatial distribution
of optical parameters is reconstructed according to the boundary measurements. Since
each measurement is sensitive to the whole volume, the inverse problem is often ill-
posed. Up to now, many reconstructive techniques have been proposed [30, 57]. For
example, Hielscher and Klose proposed an iterative image reconstruction model
(MOBIIR) based on the equation of radiative transfer [58, 59]. Davis et al. compared
the Tikhonov approach with a modified Levenberg-Marquardt formulation [60].
Schweiger et al. attempted Gauss-Newton method [61], and Konovalov et al. used
algebraic reconstruction with post-processing [62]. Generally, these approaches can be
categorized into linear reconstruction and non-linear reconstruction [63]. Linear
problems use difference data between two neighboring states to quantify images of
measured changes, rather than absolute quantitative ones [30]. Nonlinear reconstruction
establishes an objective function and repeatedly narrows the gap between predicted data
and measurements to update the reconstructed variables [64]. More details of
reconstruction algorithm can be found in reference [65].

2.3. Imaging Instrumentation
With regard to excitation-detection manner, there are three types of optical imaging
systems: continuous-wave (CW), time-domain (TD), and frequency-domain (FD). 

CW mode requires a source that either emits at a constant intensity or is modulated
at a low (a few kHz) frequency [63]. The transmitted light is collected to resolve the
attenuation. The major advantages of CW system include its compactness and
economical hardware as well as optimum signal-to-noise performance. Philips
Research Laboratories evaluated a breast tomography system based on CW
measurements[66]. Schmitz et al. used a CW DOT system, named DYNOT (NIRx
Medical technologies, NY) to reveal cyclic hemodynamic changes[67]. Other
companies like Imaging Diagnostic Systems Inc. and Advanced Research Technologies
Inc. once developed diffuse optical imagers. Nowadays, CW systems have been
intensively used in optical tomography [68–71].

TD technology uses a short pulse of light (100fs∼100ps) to illuminate the medium.
The time-of-flight and amplitude of photons are recorded by high-speed electronic
instrumentation, such as streak cameras, fast avalanche photodiodes and gated optical
image intensifiers [24]. Temporal distribution of photons can be described with
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temporal point spread function (TPSF), which extends over several nanoseconds after
travelling through several centimeters. For instance, a 32-channel time-resolved system
was developed based on time-correlated single-photon counting (TCSPC) technology
[67]. Some research was conducted on a custom-made dual-wavelength (670 nm, 785 nm)
time-domain optical mammogram instrument [72]. Eda et al. built a 64-channel time-
resolved optical tomographic imaging system [73]. Other studies using TD systems can
be found in [74–76].

FD technology uses modulated light of a modulated intensity at 100 MHz to 1 GHz
frequency. Amplitude attenuation and phase shift of diffuse photon density wave
(DPDW) are measured by sensitive detectors such as a gain-modulated ICCD [77].
Data obtained at multiple frequencies improve its performance over CW mode and is
equivalent to TD data via the inverse Fourier Transform. During the mid-1990s, two
companies, Carl Zeiss and Siemens have developed two breast imaging systems based
on FD measurements [40]. In 2001, McBride et al. reported a FD system for breast
imaging using five optical wavelengths and 16 photomultiplier tubes [78]. Recently,
Orlova et al. have invented an experimental multicolor FD DOT system to visualize
neoplastic of breast tissue [79].

It is noted that each mode has its pros and cons. CW system is compact and
inexpensive. But it is somewhat difficult to distinguish absorption with scatter. TD and
FD setups suffer from low signal-to-noise ratio and complex structures, though their
contrast and resolution are higher than CW mode. For more details refer to [40].

3. MEDICAL APPLICATION OF DOT
3.1. Optical Mammography
Breast cancer is among the leading causes of death for women all over the world [80].
The survival chance of breast cancer drops from a rate of about 95% when the lesion is
about 0.5 cm in size to a rate of 75% when the cancer is treated at a size of about 2.5 cm
[81]. Early detection and treatment is of vital importance for decreasing mortality.

X-ray mammography is the routine method for mass screening of the population.
However, relatively large lesion is required to produce detectable contrast. X-ray also
causes ionizing radiation and its diagnosis is not satisfactory in premenopausal women.
On the other hand, magnetic resonance imaging (MRI) and ultrasound techniques are
technically demanding and not suitable for routine inspection [82].

Optical mammography utilizes non-ionizing, low-power near-infrared light to
scan the female breast [83]. It measures wavelength-dependent tissue optical absorption
coefficient, which in turn provides the access to blood dynamics, total hemoglobin
concentration (THC) and tissue blood oxygen saturation (StO2) [84]. Since tumors are
often associated with increased vascularization [85], the contrast in growing tumors is
physiologically plausible for optical imaging. The noninvasive nature of NIR and its
potential of high specificity are also attractive for human breast imaging.

Optical techniques for imaging the breast can be traced back to the late 1920’s [86].
Cutler presented the first clinical results using transillumination as an aid in the
diagnosis of breast lesions. In the past two decades, optical techniques received
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renewed attention owing to the development of accurate mathematic models and
reconstruction strategies [87]. Especially in recent years, diffuse optical tomography
has been intensively applied in 3D breast imaging [82, 88–90].

Generally, optical mammography features either a compressed or an uncompressed
system, as shown in Figure 1. The former measures optical properties using parallel
plate geometry. The breast is compressed either between two parallel arrays of sources
and detectors, or between two plates over which individual sources and detectors are
scanned in a rectilinear manner. Vasilis and his colleagues at the Massachusetts General
Hospital and Harvard Medical School first used this configuration to obtain images of
a 70-year-old patient with a 0.8 cm infiltrating ductal carcinoma [93]. ICG was used as
the contrast agent and optical results were validated by simultaneous MRI images.
Later, they integrated optical tomography into a breast X-ray tomosynthesis system and
measured 18 patients, aged 49 to 79, all of whom were scheduled for biopsy for
suspicious findings [91]. Optical images were reconstructed for both benign and
malignant lesions, revealing optical contrast close to the location of the lesions shown
in the corresponding X-ray images. They also studied the spatio-temporal imaging of
hemoglobin in the compressed breast with this setup and observed the global return of
blood following compression [94].
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Figure 1. (a) Structure of compression plates designed for coregistered X-ray and
optical breast imager [91].
(b) Arrangement of source-detector fiber bundles attached to three
interconnecting rings [92].



Researchers have also developed a three-dimensional diffuse optical tomography
system in the parallel-plate compression geometry. They studied three cases of invasive
ductal carcinoma, ductal and lobular carcinoma in situ and fibro adenoma. The data
demonstrated that malignant lesions had a twofold average increase in optical
parameters, while the benign tumors did not exhibit significance in the tumor-to-normal
ratios of any parameter. Figure 2 shows the DOT result of a 53-year-old woman with a
2.2-cm invasive ductal carcinoma in her right breast comparing with MRI images [83].

It is considered that compression may cause some physiological changes or
potential reduction in the blood volume [95, 96]. Uncompressed geometry was
explored and developed fast in recent years. As early as 1997, Pogue et al. built a
frequency domain optical imaging device for breast cancer detection [97]. The
imaging chamber was composed of 16 source and 16 detectors located around a two-
dimensional ring with the pendulous breast stabilized naturally within it. With this
system, the distribution of absorption and reduced scattering coefficients of a patient
with a 3.4 cm fibro adenoma in the upper central region of her breast was displayed
[98]. They also quantified typical values of hemoglobin concentration, oxygen
saturation, water fraction, scattering power, and scattering amplitude within the breast
tissue, and conducted a systematic study of the menstrual variations in these
parameters [99]. Later, they integrated MRI into the system and imaged the breast
tissue of 11 normal female subjects. Higher water and blood signals were found in
fibro-glandular fraction than that in adipose tissue [100].

Using a DOT system to image uncompressed breast, Jiang et al. conducted a study
to differentiate cysts from solid tumors. The pilot results showed that solid breast
tumors demonstrated higher absorption and scattering related to the normal tissue while
cysts had lower absorption and scattering coefficients compared with the surrounding
normal tissue [101]. Yates et al. imaged uncompressed breast using 32-channel time-
resolved system composed of a conical fiber holder in the form of three connecting
rings. The breast was placed in a hemispherical cup surrounded by sources and
detectors, and the remaining space was filled with a fluid with tissue-like optical
properties [102]. One of their experiments was conducted with three healthy volunteers
and twenty-one patients. Seventeen cases of lesion were successfully detected [92].
They also used this system to monitor the changes of optical properties after laser
treatment of a fibro adenoma in breast tissue. Images of the absorbing and scattering
coefficients revealed the expected response consistent with corresponding ultrasound
examinations [103]. A series of clinical three-dimensional optical images have been
presented, showing that hypervascularization associated with tumors provides high
contrast due to the increased absorption by hemoglobin [104].

Some commercial systems are currently available for breast imaging such as
DYNOT (NIRX Inc., NY, USA) [105], CTLM (Imaging Diagnostic Systems Inc., FL,
USA) [106], and SoftScan (ART Inc., Quebec, Canada) [107–109] . The first two
work in CW mode while the SoftScan is based on time-resolved measurements.
SoftScan uses two plates to perform compression, while CTLM uses uncompressed
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Figure 2. MRI and DOT images of a 53-year-old woman with a 2.2-cm invasive
ductal carcinoma in her right breast [83]. (a) The sagittal dynamic-contrast-
enhanced (DCE) -MRI showing the tumor center. (b) The axial DCE MRI
slice along the red horizontal line in (a), oriented in caudal-cranial view.



chamber. DYNOT system has exchangeable heads with various geometries
including circular geometry for the limbs, folding hemisphere for the breast, helmet-
like device for the head, and various two-dimensional fiber array designs for nearly
planar geometries [110].

3.2. Infant Brain Imaging
Optical brain imaging has undergone 30 years of intense development [111]. It is
portable and less sensitive to motion artifact (compared with functional MRI). It can
obtain repeated quantitative regional information and longitudinal monitoring of brain
function (unfeasible for CT). Furthermore, it avoids the radioactive exposure that may
cause injury in the neonate or premature infant (superior to PET) [112]. Therefore, it is
particularly suitable for infant brain.

Optical diagnosis includes spectroscopy, 2D topography and 3D tomography. In the
beginning, NIRS was used to study infant cerebral hemodynamic and neural activation
[113]. Later, optical topography was employed to produce 2D images of activated
regions on the surface of the brain [114–118]. To identify changes occurring in deeper
tissues, tomographic methods have been studied to produce 3D volumetric images of
the whole neonatal brain [119–123].

As early as 1985, Arridge et al. pointed out that NIR trans-illumination could be
used to visualize and measure the oxygenation state of brain and muscle in newborn
infants [124]. In 2000, Benaron et al. demonstrated the first tomographic images of
infant brain [125]. They measured the flight times of photons between points on the
head circumference with a headband of 34 source-detector pairs. Images of an infant
undergoing heart-lung bypass and another infant with hypoxic-ischemic injury were
successively showcased and compared with CT, ultrasound and MRI images [125, 126].

Hebden et al. used a 32-channel time-resolved instrument (named MONSTIR) as a
continuous bedside monitor to obtain functional images of premature infants’ brains
[127]. Sources and detectors are coupled to the infant head by a custom-made foam-
lined plastic helmet [128]. Although the positions of the bundles on the helmet are
recorded using a 3D digitizing arm immediately before or after the clinical
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measurement, these are not always sufficiently accurate for absolute imaging given the
natural displacement during the scan. To overcome this problem, scientists inserted a
‘reference’ subject (fluid-filled balloon, fluid-filled latex shell or compressible head
phantom) into the helmet for a difference imaging [119, 129, 130]. They compared the
acquired data with those obtained from the homogenous reference and found that
regional cerebral blood volume (rCBV) and regional tissue oxygen saturation (rSTO2)
from healthy infants were symmetrical, while those from intraventricular hemorrhage
(IVH) were asymmetrical with a much greater light absorption on the side of
hemorrhage [131].

Optical tomography can detect not only static brain injury, but also changes in brain
oxygenation due to changes in inspired oxygen and carbon dioxide in ventilated infants.
Imaging by MONSTIR system was reported on a severely brain-injured 38-week-old
female infant who had suffered a global hypoxia-ischemic insult following uterine
rupture [132]. Three dimensional absorption images of brain in response to the increase
in ventilated CO2 were reconstructed. Gao et al. also studied hemodynamic changes in
response to the alterations of the ventilation settings on two preterm infant brains [75].

DOT has also been applied in imaging passive motor-evoked responses in premature
babies. Gibson et al. conducted optical tomography during raising and lowering an
infant’s arm. Their reconstructed results showed good agreement of changes in optical
property with the expected anatomical position of the contra lateral motor cortex, as
shown in Figure 3 [131].

DOT has not been used as widely in infant brain as optical topography and
spectroscopy [132–134]. This is partly due to the complexity of instrumentation and
difficulties in taking measurements from premature babies. Moreover, light transmission
across the whole head is challenging due to its serious attenuation with depth [135].

3.3. Other Tissues
In addition to the above typical clinical applications, optical tomography has been
employed in the 3D imaging of high scattering media such as human forearm and low
scattering region like finger joint. 

The forearm muscle has been studied by optical imaging since 1994 [136]. In 2000,
Graber et al. used a CW optical tomography system to explore the real-time response
of the forearm vasculature to rhythmic contraction of antagonistic striated muscle
groups [137]. Hillman et al. also evaluated adult forearm using their 32-channel TD
system [138]. Zhao et al. used an NIR DOT system composed of time-correlated
single-photon-counting channels to obtain in vivo images of human lower legs and
forearm. Their images showed increases in blood volume and oxyhemoglobin
concentration in the arteries and hypoxia in the corresponding muscles [139].

Rheumatoid arthritis (RA) is a chronic, progressive, inflammatory disease that
primarily attacks peripheral joints and surrounding tendons and ligaments. As early as
1998, Klose et al. developed an NIR scanning system to collect amplitude and phase
delay of photon density waves in frequency domain [140]. Xu et al. investigated the
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in vitro and in vivo bones and joints with a Clemson multi-channel diffuse optical
imager based on CW measurements [70]. In 2005, Hielscher reported a sagittal laser
optical tomography for rheumatoid finger joints [141] and was clinically evaluated by
Scheel et al. a year later [142]. Using dual-wavelength tomography and MOBIIR
software, Hielscher et al. proposed a dynamic optical tomography system and observed
differences of hemodynamic effect in finger joints between healthy volunteers and RA
patients [143]. Recently, new diagnostic strategies such as photoacoustic tomography
[144] and X-ray guided optical tomography [145] have been explored for RA detection.
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4. FUNDAMENTAL PRINCIPLE OF FMT
4.1. Theoretical Models
The interaction of light with tissue in FMT is similar to that in DOT. The main difference
falls in the number of equations. Fluorescence involves the following two processes: (1)
fluorescent probes absorb excitation energy and change from the ground to the excited
state, and (2) the excited fluorophore returns to the ground state with a characteristic time
constant as well as the emission of photons with a longer wavelength. Two parameters
are commonly used to describe the fluorescence phenomena: the fluorescence lifetime
and Stoke shift.

Predicting photon paths in real high scattering and anisotropic tissues is extremely
complex. Statistical methods based on Monte Carlo are valid to model fluorescent
photon trajectories [146–149]. However, in most cases, two coupled RTE or DE
approximations are preferable [81, 150–158]. One of the equations describes the
excitation plane wave from the external light source to the medium while the other refers
to the fluorescence emission from the fluorophore marker to the detector. Other
mathematical formulations such as Monte Carlo with diffusion model [159, 160], hybrid
transport and diffusion model [35, 161, 162] and telegrapher equation (TE) based model
[163] have also been reported.

4.2. Reconstruction Algorithm
The inverse problem in FMT is to reconstruct the concentration distribution or lifetime
of fluorescent probes. Many effective algorithms have been proposed, including the
gradient-based optimization technique [164–168], penalty/modified barrier function
(PMBF) method [169–171], Born-type approximation techniques [172, 173],
Landweber iteration [174], Newton’s or Newton-type optimization methods [175],
Bayesian nonlinear least squares approaches [176], adaptive finite-element-based
method [177], Tikhonov regularization method [178], the matrix-free algorithm [179],
to name just a few.

FMT features an ill-posed inverse problem with certain challenges. One challenge is
the optical heterogeneity of biological tissue [180–183]. The fluorescence intensity
recorded at tissue boundary is a comprehensive effect of the fluorescence distribution
and the tissue absorption and scattering distribution. However, it is difficult to determine
tissue’s optical properties. Most of the current approaches assume a homogeneous
background with known absorption and scattering parameters. On the other hand,
normalized Born ratios [172], video reflectometry measurements [25] and DOT guided
FMT [150, 184] are proposed to deal with the heterogeneity.

FMT is also greatly affected by the excitation leakage [185–187], system noise [188]
as well as the nonspecific background autofluorescence [189]. Strategies such as using
interference filters[186] or gradient index (GRIN) lenses [187], data pre-processing
with subtraction [190, 191] or pre-filtration schemes [192, 193], as well as multispectral
imaging [194] have been attempted to remove these influences.

FMT suffers from a large number of unknowns and a relatively limited number of
measurements, which essentially causes under-determined equations. A promising
solution is to use a priori information to guide the reconstruction [195, 196]. Typically,
two types of prior information are available. One type is the localization information of
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a certain fluorophore based on its chemical and physical properties. The other is the
internal edge structure information from another imaging modality such as CT [197] ,
MRI [198], PET [199], and ultrasound [200].

4.3. Imaging Systems
There are three types of FMT instrumentation: CW, TD and FD. FMT prototype for
small animal was first developed by Ntziachristos et al. [16]. In 2003, Graves et al.
developed a constant-wave sub-millimeter resolution imaging system that enabled
planar imaging as well as fluorescence tomography [173]. Fluorescence measurement
of referenced ac intensity and phase shift in response to point illumination measurement
geometry was conducted using a homodyned intensified charge-coupled device system
[201]. In 2005, Patwardhan et al. reported a TD FMT system for imaging the kinetics
of probe distributions through the whole body of small animals [202]. Other researches
on TD system can be found in [203–207].

The past two decades have witnessed the great structural improvement in the FMT
system. For example, the earlier systems were mainly based on fiber coupling and
imaging chambers with matching fluids [172]. Later, the cumbersome system was
replaced with the flying spot illumination and charge coupled device (CCD)-based
detection for multi-view boundary measurements [173, 208]. In 2007, a non-contact
free-space fluorescence tomography system of full angle geometry was reported [209].
Such imaging strategies eliminate the need for individual fibers in contact with the
highly scattering volume. In addition, noncontact measurements from diffuse media
could facilitate the use of large detector arrays at multiple angles that are well-suited for
tomography applications. Recently, real-time continuous detection becomes a new trend,
and is expected to realize full-angle dynamic observation superior to the traditional step-
by-step mode [210]. Figure 4 shows the schematic rendering of such a system.
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Currently, there are some commercial systems for in vivo small animal fluorescence
imaging, such as IVIS® Spectrum (Xenogen Corporation), FMT 2500LX (VisEn Medical
Corporation), Maestro (Cambridge Research & Instrumentation Incorporation), Pearl
Imager (Li-COR Biosciences), eXplore Optix® Series (General Electric Healthcare
Corporation), etc. Among them, IVIS® Spectrum and FMT 2500LX can perform three-
dimensional tomography in some applications. For more details see reference [211].

4.4. Preclinical Application
Unlike DOT, FMT has not reached a state of maturity which allows routine clinical
practice in human. Most of preclinical studies have been conducted on small animals or
tissue phantoms.

As early as 2002, Vasilis et al. used a prototype FMT imager to obtain three-
dimensional in vivo images of a protease in orthopic gliomas [16]. They found a
correlation between matrix metalloproteinase, cathepsinsB and the HT-1080 tumor
burden [212]. In terms of tumor responses to treatment, they studied antitumor treatment
with an annexin V-Cy5.5 conjugate [213]. With the same system they quantified tumor
therapeutic modulation with an anti–vascular endothelial growth factor (anti-VEGF)
antibody drug [214]. After the appearance of non-contact configuration, 3D in-vivo
images of GFP-expressing T-cells in mice were reported [215]. FMT has been so far
successfully applied in pulmonary inflammation [216], lung cancer [217], neurological
disorders [218], cardiovascular diseases [219, 220], immunologic diseases [221], etc.
Human breast phantom has been extensively studied using fluorescence-enhanced
optical tomography [77, 171, 192, 201, 222–227].

Combination of FMT with other modalities is another growing application. For
example, Davis et al. implanted U-251 human gliomas into nude mice and completed
MRI and FMT acquisition after administration of a VEGF-targeted NIR fluorophore.
Tissue structural information obtained from standard and contrast enhanced T1-
weighted images was used to spatially constrain the FMT reconstruction [228]. Gliomas
response to chemotherapy was also explored by combined FMT-MRI system in the
living mouse brain [229]. Hybrid FMT-CT imaging is another example which has been
applied to detect inflammation in murine atherosclerotic plaques [230], and amyloid-β
plaques in a murine Alzheimer’s disease model [218]. Figure 5 compares the ex vivo
results with in vivo FMT imaging for a 13-month-old C57B/6 control mouse (first row),
a 17-month-old APP23 tg mouse (Second row), and a 26-month-old APP23 tg mouse
(third row) [218].

The process of drug development is a long, high-risky and costly endeavor with 
an average of 10∼15 years and $1.9 billion for a new approved drug [231]. Imaging
methods, such as positron emission tomography (PET) [232], MRI [233] and
bioluminescence [234], have been employed to enhance the speed of preclinical
study for novel anti-cancer agents. In 2007, three-dimensional FMT was adopted to
explore the effect of a vascular endothelial growth factor (VEGF) blockade on
angiogenesis [235]. Scientists have designed experiments to evaluate the treatment of
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the anti–VEGF antibody. Fifty-eight CT26 colon tumor–bearing mice were imaged
after intravenous administration of long-circulating near-infrared fluorescent blood-
pool agents. Figure 6 shows FMT imaging in three cohorts of mice: animals receiving
no treatment (normal), animals receiving saline (PBS), and animals receiving
treatment (Avastin) [235].

As mentioned earlier, specific fluorophores are vital for the application of FMT. To
optimize the parameters in labeling NIR fluorescent dye, Qian et al. inspected the
stability of cypate-protein conjugate in blood serum and its distribution in small animals
under various labeling conditions [236]. Preclinical application of FMT is now rapidly
growing [211, 237–239].
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Figure 5. (a) Full brain images in the excitation channel using a planar reflectance
imaging system. The red dotted line denotes the approximate location
corresponding to the slice shown in subsequent columns. (b) Planar
reflectance images of normalized fluorescence from a single slice. (c) Planar
images at the excitation wavelength (top) and FMT reconstructions
overlaid on normalized planar fluorescence images (bottom). (d) In vivo
multi-modal FMT reconstructions for a slice corresponding to the same
location as the ex vivo images, overlaid on a representative CT slice. All
FMT reconstructions are scaled to the same colorbar.



5. CONCLUSION
After decades of development, DOT has emerged from a research concept to a practical,
working clinical tool [240]. Though FMT is not as mature as DOT, it is an evolving field
that has already achieved major advances in human breast phantom and small animal
imaging. Currently, the major difficulties may be in the improvement of quantitation,
spatial resolution, as well as the identification of more target-specific biomarkers [135].
Most of the light propagation models are based on simplified assumptions which may
lead to inaccuracies in the imaging. Advances in theory and reconstruction algorithms
are needed to facilitate the development of more sophisticated models. Additionally,
more efficient computational technology and imaging instrumentation are in demand to
collect large data sets. It is hoped that optical tomography may become a promising
alternative to the existing imaging technologies.

Multi-modality imaging, which combines two or more different imaging techniques
into one context, is an emerging field in both clinical research and small animal imaging
[241–244]. As modern medical and diagnostic technology develops, comprehensive
information provided by different imaging modalities may be needed. In the past
several years, DOT-ultrasound [245], DOT-MRI [246], DOT-CT [247], FMT-MRI
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[248], FMT-CT [249, 250], FMT-PET [251] and FMT-ultrasound [252] have been
extensively studied. Although few multimodality systems have been clinically applied
to date, there are encouraging signs that a new generation of multi-modality imaging
will emerge and find wider application in the near future.
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