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ABSTRACT
Modern hospitals are equipped with sophisticated monitoring equipment that displays enormous
volumes of raw data about the cardiopulmonary and neural functions of patients. The latest
generation of bedside monitors attempts to present these data to the clinician in an integrated
fashion to better represent the overall physiological condition of the patient. However, none of
these systems are capable of extracting potentially important indices of pattern variability
inherent within biological signals. This review has three main objectives. (1) To summarize the
current state of data acquisition in the intensive care unit and identify limitations that must be
overcome to achieve the goal of real-time processing of biological signals to capture subtleties
identifying “early warning signals” hidden in physiologic patterns that may reflect current
severity of the disease process and, more importantly, predict the likelihood of adverse
progression and death or improvement and resolution. (2) To outline our approach to analyzing
biological waveform data based on work in animal models of human disease. (3) To propose
guidelines for the development, testing and implementation of integrated software and hardware
solutions that will facilitate the novel application of complex systems approaches to biological
waveform data with the goal of risk assessment.
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1. INTRODUCTION
More than four million patients are admitted to intensive care units (ICUs) each year.
Mortality rates average between 10–20% and approximately 500,000 patients die in US
ICUs each year [1–3]. Given the high stakes involved, timely and effective care is
paramount, and this requires continuous patient surveillance using sophisticated
monitoring equipment that gathers enormous volumes of raw physiological data. As a
result, ICUs are complex, data-intense environments and the ability of clinical
personnel to quickly detect subtle changes in patient physiology and to respond rapidly
is crucial. Dozens of systemic parameters are monitored, including heart rate,
respiration, arterial oxygen saturation, temperature, and end tidal CO2 concentration.
Insertion of specialized catheters enables monitoring of arterial blood pressure, central
venous pressure, pulmonary arterial pressure, right and left atrial pressure, as well as
calculations of stroke volume, systemic and pulmonary vascular resistance, and cardiac
output. Additional neuromonitoring that includes intracranial pressure, brain tissue
oxygenation, cerebral blood flow, and continuous electroencephalography, is often
superimposed on systemic monitoring [4]. New and improved instruments continue to
be developed and incorporated in the ICU to monitor physiological parameters.
Because biological organisms are innately complex dynamical systems, the effective
integration of these data is essential to improving critical care in the ICU.

It is our hypothesis that the state of an individual (in health and disease) is reflected
in the temporal patterning of physiological signals over time, and in the dynamic
relationships between these signals [5, 6]. Thus, we are proposing a paradigm shift in
thinking where the analysis of dynamic (temporal) changes in physiologic signals and
their relationship to organ system interconnections is as important (and possibly more
important) than individual organ system function. The potential of studying nonlinear
disease dynamics has been demonstrated in various clinical states such as sudden
cardiac death after acute myocardial infarction, congestive heart failure, brain injury,
sepsis, and the prediction of hypotension during dialysis [7–19]. However, techniques
for the analysis of nonlinear systems from observed time series data have never been
systematically applied to all the recorded physiological data simultaneously within the
intensive care unit setting and never in real-time [20, 21]. Ultimately, we envision
measures (linear stochastic/nonlinear deterministic) of pattern variability as “additional
vital signs” that provide diagnostic and predictive information to clinicians. While
initially applied in the intensive care unit, these approaches will be easily applied in other
settings identifying patients in need of a higher level of care or more intensive therapy.

The latest generation of monitors attempts to integrate this diverse dataset to better
represent the overall physiological condition of the patient, but typically this
encompasses only means and data trends that are inadequate for managing complex
biological systems in the ICU. As a result of proprietary data formats from instrument
vendors, the ability to effectively use waveform data is hampered by difficulties in the
real-time acquisition and time-synchronization of the raw physiological data.
Therefore, despite the growth in the need for critical care and advances in the
development of new measurement and sensing technology, the basic information
technology infrastructure needed to support signal data acquisition, analysis, integration
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and management remains primitive and outdated [22, 23]. Significant challenges must
be overcome to assure that next-generation monitors are capable of real-time processing
of waveform data to capture subtleties identifying “early warning signals” hidden in
physiologic patterns that reflect current severity of the disease process and, more
importantly, to predict the likelihood of adverse progression and death or improvement
and resolution.

In this review we will: 1) examine the current state of data acquisition in the ICU,
2) outline our approach to analyzing biological waveform data based on work in
animal models of human disease, and 3) propose guidelines for the development,
testing and implementation of integrated software and hardware solutions that will
facilitate the novel application of complex systems approaches to biological data with
the goal of risk assessment.

2. CURRENT STATE OF ICU DATA ACQUISITION AND INTEGRATION
The widespread use of patient monitoring was central to the evolution of critical care
medicine as a specialty in the 1950s. By 1980, three major developments had occurred:
(1) Pulmonary units were established to cope with the polio epidemics that had swept
through the U.S. and Europe; (2) Coronary care units were established following the
introduction of synchronous direct-current cardioversion; (3) Anesthesia critical care
developed to co-manage complex surgical patients in surgical ICUs. These developments
provided increased operating efficiency by grouping patients in a single location and
spawned the development of specialized instrumentation such as the pulmonary artery
catheter and continuous electrocardiographic monitoring of the heart.

Since the inception of critical care medicine, monitoring technology has advanced
significantly. Although monitoring systems have improved, concomitant advances in
data analysis have not. In most instances, caregivers laboriously log the parametric data
from the monitor by hand onto paper charts or into electronic medical records with no
significant processing or analysis of physiologic data beyond simple trending. With the
growth of electronic medical records, many devices are capable of directly populating
the medical record with monitored data. However, even when this is available, data are
recorded at very slow (seconds or minutes) sampling rates as compared to the intrinsic
dynamics of the signals being recorded. While this approach may provide general trend
information, physiological signals have information content over much faster time
scales. This information is obscured, lost and unrecoverable from data that is sampled
below critical sampling rates.

Currently, the waveform physiologic data commonly collected in the ICU
(electrocardiogram, respiration, blood pressure, etc…) are not integrated into a
searchable and secure data archive. Although “full-disclosure” ICU monitoring systems
are becoming more common, tools that translate physiological data streams into
analyzable time series with high sampling rates are rare. The latest generation of
commercially available monitors is capable of measuring multiple parameters at
varying temporal resolutions (Table 1). Despite this, most bedside monitors numerically
display 3–5 s time-averaged parametric data next to waveforms. Any processing that is
performed is restricted to linear time series analysis using conventional statistics (e.g.
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mean, variance, correlation, coefficient of variation). Alarm limits are often based on
simple threshold crossing of an instantaneous signal without regard for the dynamic
interactions between physiological variables [24]. In a recent review of clinical decision
support capabilities of commercially-available clinical information systems, analysis of
waveform data was not available as “input data” for any of the systems [25].
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Table 1. Vendor data export specifications

Monitor Measurement Sample Rate Communications

Philips IntelliVue [70] ABP waveform 125 or 500 Hz RS232 MIB
ECG waveform 125 or 500 Hz RS232 MIB
ICP waveform 125 or 500 Hz RS232 MIB
Pleth waveform 125 or 500 Hz RS232 MIB
Resp waveform 125 or 500 Hz RS232 MIB
ICP numeric 0.98 Hz RS232 MIB
CPP numeric 0.98 Hz RS232 MIB
EtCO2 numeric 0.98 Hz RS232 MIB
FiO2 numeric 0.98 Hz RS232 MIB
HR numeric 0.98 Hz RS232 MIB
MAP numeric 0.98 Hz RS232 MIB
RR numeric 0.98 Hz RS232 MIB
SpO2 numeric 0.98 Hz RS232 MIB
Temp numeric 0.98 Hz RS232 MIB
Tart numeric 0.98 Hz RS232 MIB
Tcore numeric 0.98 Hz RS232 MIB
Tesop numeric 0.98 Hz RS232 MIB
Tnaso numeric 0.98 Hz RS232 MIB
Trect numeric 0.98 Hz RS232 MIB
Tskin numeric 0.98 Hz RS232 MIB
Tven numeric 0.98 Hz RS232 MIB

Integra Licox [71] PbtO2 2 Hz RS232 Serial – ASCII
ICT 2 Hz RS232 Serial - ASCII

Integra Camino [72] ICP wave Approx 190 HZ RS232 Serial
ICP numeric 1 Hz RS232 Serial
MAP numeric 1 Hz RS232 Serial
CPP numeric 1 Hz RS232 Serial
ICT numeric 1 Hz RS232 Serial

Somanetics INVOS [73] RSO2 0.2 Hz Serial Output
Hemedex Bowman Perfusion 1 Hz

Perfusion [74] Tperf 1 Hz RS232 Serial 
∆Tperf 1 Hz RS232 Serial

CSZ Blanketroll III [75] Tcore 0.2 Hz USB 
Twater 0.2 Hz USB
TsetPt 0.2 Hz USB
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This inability to integrate and time-synchronize physiologic signal data
simultaneously into one dataset has been a major limiting factor in intensive care
monitoring. The status quo has a negative impact on patient care and impedes clinical
research studies. For example, attempts have been made to develop integrated
knowledge-based systems for ventilator control and intelligent ICU monitoring [26, 27],
but these are not widely used in part due to the inaccessibility of pertinent physiological
waveform data streams. Furthermore, the fields of dynamical systems analysis and
information theory have already developed techniques for measuring potentially
important indices of pattern variability from biological signals, and there is a growing
body of evidence that these measures may be clinically relevant [14, 16, 28–44].

The future of critical care will require “information management”, which includes
the real-time collection, integration, and interpretation of various types of physiological
data from multiple sources, specifically, (1) the continuous integration and time-
synchronization of multiple channels of physiological data, and (2) real-time data
analysis and feature extraction using multivariate and nonlinear (“complex systems”)
time series analysis methods together with visualization tools designed to facilitate
rapid diagnosis and treatment.

3. APPROACH TO APPLYING COMPLEX SYSTEMS ANALYSIS TO 
BIOLOGICAL WAVEFORM DATA
Biological systems are intrinsically nonlinear and thus have a degree of complex and
chaotic behavior (seemingly random behavior from a deterministic system), which is
often an intrinsic property of the normal, healthy state [45–47]. In fact, the complex
pattern variability of physiological waveforms is often considered a hallmark of the
normal physiological state and has two basic components: Stochastic variability in
which the present state of the system does not completely determine succeeding states
and fluctuations about the mean trend are random and unpredictable, and Deterministic
variability in which the pattern includes temporal structure (often beyond that described
by linear correlation) that exists across time. These dynamics can change in critical
illness [6], and emerging evidence suggests that nonlinear changes in dynamics over
time may have predictive value, facilitating earlier recognition of deterioration and
more timely intervention resulting in better patient outcomes [13, 48–50]. Techniques
for the analysis of nonlinear systems have emerged from the mathematical and
engineering sciences but, for the most part, have not been systematically applied to
physiological data in the ICU setting. Our fundamental hypothesis is that: Patient
care in the ICU can be significantly improved through the application of
complex system analysis methods to acquired and synchronized physiological
signal data.

Traditional analyses fallaciously assume that all fluctuations and pattern variability
are stochastic and fail to isolate and quantify deterministic sources of variability. We
have developed a framework (Figure 1) for the analysis/interpretation of biological data
using nonlinear dynamical systems techniques applied to the physiological time series
measurements acquired at the appropriate sampling rates. Methods for complex systems
analysis complement existing approaches, quantify temporal variability, and provide
insight into the potential mechanisms of variability underlying physiological signals.



While sources of both stochastic and deterministic variability contribute to system
behavior, these determinants of variability cannot be measured directly, nor completely
separated. However, through a consistent and disciplined approach incorporating multiple
methods and suitable surrogate data analysis, a comprehensive understanding of signal
variability and its relationship to health and disease can be achieved.

Our overall goal is to understand how different components of biological variability
interact during health and disease using a balanced application of computational
methods while recognizing the strengths, assumptions and limitations of each approach.
For example, reliance on a single technique may lead to over-interpretation [51],
whereas a comprehensive view enables the formation of mechanistic hypotheses that
evaluate the sources of variability more fully. To help formalize this process, we have
prepared a set of conceptual properties, each describing a unique facet of variability
(Fig. 1):

Distributional Variance: Provides a measure of how variability is distributed
independent of temporal dynamics. This property treats the signal as a stochastic
process and uses standard measurements such as mean, standard deviation and
Shannon Entropy.
Linear Properties: Characterizes linear relationships in the data in both the time
and frequency domains. Measurement tools include autocorrelation, multiorder
histograms, Poincaré plots (circle-return maps).
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Figure 1. Conceptual properties describing biological variability and selected tools
to quantify sources of variability.
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Nonlinear Properties: Measures temporal relationships in the data that are not
linear in nature. Surrogate comparisons of mutual information and sample
entropy, as well as multiorder histograms and Poincaré analysis provide insight
into nonlinear properties.
Attractor Properties: Reconstructs the attractor (if one exists) and characterizes
invariant measures such as correlation dimension and Lyapunov exponents.
Predictability: Is related to both the linear and nonlinear properties in that it
measures relationships, but more specifically characterizes the amount of
information that is contained in the measurements and characterizes the time
series from an information theory perspective.

It is important to realize that although variability by itself is a useful concept, the
mechanism that is responsible for the variability may also be important. Stochastic and
deterministic variability are two types of variability that may result from independent
physiological sources. The facets are neither independent nor comprehensive; they are
meant as suggestive of the types of variability that can be quantified in time series data
and that we have observed to be of interest in many of our studies. Linear deterministic
systems are “predictable” and cannot produce the type of variability that can result from
either a stochastic or nonlinear system. Therefore the major issue is to distinguish
between linear stochastic and nonlinear sources of variability. The list of analytical
tools associated with each conceptional property is far from comprehensive, and is
meant only to illustrate the breadth of techniques that can provide insight into varous
facets of signal varibility. We now briefly summarize some important analytical
techniques for signal analysis that are part of our stepwise approach:

(1) Selection of stationary epochs to minimize the influence of other physiologic
factors that could influence dynamics.

(2) Conventional Analysis including mean, standard deviation (SD), coefficient of
variation (CV) and frequency domain analysis of periodic signals like cardiac
activation or breathing pattern.

(3) Assessment of pattern morphology: For periodic signals, the morphology and
variability of each cycle can be different. For example, breathing pattern
morphology will not be completely captured by an analysis of phase durations
(e.g., TI = time of inspiration, TE = time of expiration and TTOT = total duration of
respiration). While part of the observed variation is due to noise, deterministic
changes in the morphology of the respiratory pattern may reflect alterations in the
processing of afferent inputs by the cardiorespiratory network.

(4) Multiorder histograms capture all sources of variability, show periodic
distribution of data and give an intuitive display of data dependence.

(5) Autocorrelation functions constructed across a range of time delays (τ ) assess
linear dependence in the data set.

(6) Mutual information (MI) quantifies statistical dependence in the data set by
assessing how the uncertainty of a time-shifted coordinate x(t + τ ) is influenced
by the knowledge of a coordinate in the original data set x(t).

(7) Poincaré analysis examines the relationship between cycles in periodic signals
and determines the relationship between switching behaviors. We generalize the
Poincaré construction as n vs. n + d and compare how the variability measurements
change across delays (d) and in relationship to changes in underlying physiology.
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(8) Sample entropy (SampEn) is a measure of self-similarity in a time series [52, 52]
with lower values indicating more self-similarity, lower complexity and less
variability. SampEn is initially computed with standard parameters [54]: pattern
length m = 3 points, tolerance r = 0.2*Standard Deviation, and time delay τ = 1.
To reveal additional temporal patterns in the data m is varied, and computations
across different values of τ for each epoch are used to explore nonlinear
contributions to pattern complexity [55].

(9) Surrogate data testing investigates the mechanisms generating variability [56].
Surrogate data sets are computed using the iterated amplitude adjusted Fourier
transform (iAAFT) which moves data into the frequency domain for adjustment
and then back into the time domain while ensuring that both the frequency
distribution (power spectrum/autocorrelation function) and the amplitude
distribution are maintained [57]. Differences between the MI or SampEn of the
surrogates and those of the original data are used as an index of the amount of
nonlinear complexity present in the data for a given value of τ .

(10) Correlation dimension (D2) quantifies complexity and is an approximate
measure of the number of active degrees of freedom of the system [58]. D2 can
be used to differentiate between stochastic and deterministic sources of
variability, as D2 can only be calculated when levels of stochastic variability are
very close to zero. An inability to obtain a stable measure of D2 is interpreted to
mean that significant stochastic variability is present.

(11) Integrate Results into a Comprehensive Picture: Once a full analysis has been
completed, the different results are studied in a complementary fashion. Biological
systems are highly complex and capable of displaying a wide variety of behaviors.
In this regard, features that capture both the linear stochastic and nonlinear
deterministic aspects of the signal are important. Thus comprehensive analysis
integrates multiple techniques in order to understand how changes in stochastic
and deterministic variability are applicable to changes in patient status.

4. BREATHING PATTERN VARIABILITY AS A POTENTIAL PREDICTOR 
OF MORTALITY
The raw data (Figures 2A, 2B, and 2C) are plethysmographic recordings and depict
respiratory patterns from awake rats breathing room air on 1, 5, and 9 days after the
induction of chemically-induced acute lung injury (ALI). These three selected animals
include: an ALI animal that died on the 6th day after bleomycin instillation (Figure 2A);
an ALI animal that recovered with eventual return to normal weight gain and no
evidence of lung fibrosis as measured by lung collagen content at two weeks after initial
injury (Figure 2B); and a ‘control’ animal that received sham surgery with intratracheal
instillation of saline rather than bleomycin (Figure 2C). Breathing patterns were
assessed in all animals at each time point. Respiratory rate increased in both animals
with ALI, but the ALI survivor maintained more temporal pattern variability in its
breathing pattern when compared to the animal with lethal ALI. The decreased
variability in the lethal ALI animal is evident in the raw record, particularly at day 5
(Compare Figures 2A and 2B). Even though frequency remained elevated on the 9th day
in the ALI survivor, variability returned to a level similar to that observed in the sham
surgery control (Compare bottom traces of Figures 2B and 2C). Properties of the



breathing pattern are quantified in Figures 2D, 2E, and 2F. Despite the increase in
respiratory rate, the ALI survivor maintained a moderate level of variability, a harbinger
of its eventual recovery. Entropy measurements quantified an increase in predictability
as a potential marker of eventual mortality. Specifically, temporal pattern variability of
the breathing pattern was quantified by the analysis of successive differences in the
duration of expiration across the data set (Figure 2D). The standard deviation time
series of the successive differences is analyzed using SampEn across time lags
determined by mutual information for all animals across all time points and reveals the
following: a) Sham surgery control (blue bars) had the least predictable (most complex;
highest entropy) breathing pattern at all time points; b) The animal with lethal ALI
(black bars) had the greatest predictability on the day prior to death; c) The ALI
survivor (orange bars) had increased predictability of breathing pattern during acute
lung injury but demonstrated evidence of recovery by day 9 with entropy measurements
similar to the saline control. In contrast, coefficient of variation of time of exhalation
was unable to discriminate between these three conditions (Figure 2E). For example,
the lethal ALI animal had similar coefficient of variation to the sham surgery control on
the day prior to death. Trend data for respiratory frequency (Figure 2F) as quantified by
mean time of exhalation identified changes at day 5; however, this measure was not able
to identify at day 1 animals that would go on to develop ALI. While anecdotal, these
results suggest that measures of breathing pattern variability should be investigated
further as potential predictive tools for risk assessment.
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Figure 2. Breathing pattern variability as a predictor of mortality.



Our approach to developing human patient data acquisition at the bedside in the
ICU is based on the development of distributed data acquisition and control systems
in the process in manufacturing industries, as illustrated in Figure 3. In our model, the
patient is the process and all the ICU instruments are connected to a data highway
through a plug-and-play sensor interface module that provides information to a
monitor for standard trending. In addition, unfiltered waveforms are passed to a data
aggregation and feature extraction module where information from physiological
signals can be analyzed, integrated, and presented to the intensive care staff using
novel visualization tools. Data archived in a secure data warehouse can then be merged
with electronic medical record data to provide a more complete dataset that is available
to the ICU team and other caregivers. As part of our ongoing study, we have collected
data using commercial ICU monitors and Rugloop II software (Demed, Belgium).
Preliminary feature extraction was used to quantify temporal pattern variability in
respiration and heart rate as shown in Figures 4, 5, and 6. Figure 4 (ECG, Breathing
and EEG verses time in seconds) illustrates the simultaneous acquisition of real-time
data including automatic identification of R-waves and inspiration and expiration
times, and in Figures 5 and 6, Poincaré analyses of heart rate (R-R) and respiratory
(inspiration) variability reveal a change in the temporal structure of variability as a
function of delay d.
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5. DISCUSSION
Beyond simple trending, there is a dearth of processing or analysis of physiological
signal data in current ICU practice. Because most physiological signals include both
linear stochastic- and nonlinear deterministic-features, the development and deployment
of modeling methods that can effectively and efficiently use both types of information
in characterizing phenotype differences based on these measured variables is required.
The medical field has traditionally used linear statistical techniques to approximate
trends in biological data and, although these techniques are useful, they are limited in
their applicability to complex biological systems that are intrinsically nonlinear and
exhibit complex behavior.

The analysis of variability and other methods of feature extraction of biological
waveform data have the potential to provide unique and complementary information for
clinical decision-making. Pattern variability in biological signals is an intrinsic property
of the normal, healthy state [60]. There is a “sweet spot” for physiologic time series
variability as a biomarker for disease. In this context, too little variability and too much
variability are indicators of “poor health.” Further, changes in variability occur
pathologically in critical illness, and recovery from critical illness is characterized by
recovery of the inherent variability of the healthy state [30, 61–67]. This information
regarding variability is “hidden” in commonly monitored physiologic signals and may
provide important information about interconnections between organ systems,
interdependencies and feedback relationships, and the overall physiology of the patient.
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Here we have proposed a comprehensive algorithmic framework for the analysis and
interpretation of ICU data using nonlinear dynamic systems techniques applied to time
series measurements. Complex systems analysis methods are complementary to existing
approaches, can quantify temporal variability, and provide insight into potential
variability mechanisms in physiological signals. On a mechanistic level, stochastic and
deterministic sources of variability contribute to system behavior, but directly measuring
and separating these sources is challenging. Through a consistent and disciplined
approach incorporating complementary methods, improvements in understanding signal
variability and its relationship to health and disease can be achieved. Because these
approaches can capture the subtleties of dynamic physiological control systems in both
health and disease they can provide useful insight into disease onset, tracking disease
progression and the deployment of novel and more effective therapeutic interventions
in the ICU.

The main obstacle to providing this enhanced information set is the availability of
appropriately acquired (sampling rate, resolution, and time-synchronization) data. In the
standard ICU setup it has been nearly impossible to acquire and integrate a diverse set of
physiological data into one dataset for subsequent analysis. Even acquiring physiological
waveform data and performing basic linear time series analysis using conventional
statistics is, currently, frustratingly difficult. A fresh approach to developing patient-
centered cognitive support for critical care is needed. Using mathematical models of
physiologic subsystems to map clinical observations to testable hypotheses about
physiologic conditions has the potential to improve insight into current patient status and,
eventually, to predict responses to therapeutic interventions and to forecast more precisely
individual patient trajectories [59]. However, this will require the development of tools for
data acquisition, integration, time-synchronization, and analysis (using a full array of
complex systems analysis methods).

The medical device industry has not incorporated many of the advances in
computer science, biomedical engineering, signal processing, and mathematics into
new products for the ICU. Thus, ICUs have yet to realize the vision of full integration
of instrumentation, patient records, decision-support and reference tools, as well as
their general computing and communication resources [9]. Several challenges need to
be overcome before measures of variability can be incorporated into healthcare
decision-making:

• Proprietary restrictions on data acquisition including but not limited to non-
uniform irregular sampling of time-averaged physiologic data for diagnosis,
prognosis and clinical decision-making.

• Insufficient computational power and a lack of specialized software.
• Incompatibility between monitoring equipment and systems for data collection

and analysis, as well as limits to patient data storage.
• True plug-and play interoperability of all system components, both software and

hardware. This is a key to future development of the ICU and a paradigm shift in
patient care [9].

• Need to fully demonstrate and quantify the value of these advanced measures and
biomarkers extracted from physiological time series data in facilitating clinical
decision-making and improving clinical care.
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• Removing financial constraints that inhibit companies from adding advanced
signal analysis to existing software. The availability of an improved information
set has the potential to add value compared to conventional management of ICU
information, but the cost/benefit tradeoff question remains unanswered.
Unfortunately, the data needed to provide such a comparative analysis is not
available at this time.

All of these problems should be surmountable. However, a complete overhaul of the
basic information technology infrastructure in the ICU is required. We need
standardized systems for data acquisition, integration, and real-time data analysis, and
clear, user-friendly visualization tools incorporating decision support software to assist
clinicians. A coordinated effort involving multi-institutional collaborations of clinicians,
engineers, computer scientists, and experts in informatics and complex systems analysis,
as well as industry is required to decisively move this emerging field of “critical care
informatics” forward. As summarized in Figure 7, a multi-pronged approach is necessary:

1) Develop an open source information architecture, consistent with the Integrated
Clinical Environment (ICE) architecture that supports the acquisition, time-
synchronization and archiving of physiological wave form data from the ICU.
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2) Simultaneously develop computational models and algorithms using animal
laboratory data to investigate which measures have the greatest promise for
improving real-time clinical decision-making in the ICU.

3) Design and implement human research and clinical studies that can provide the
necessary data to reliably address the utility (cost verses benefits) of the proposed
approach.

The potential payoffs are great; the routine availability of this information would
fundamentally change the way medicine is practiced, improving risk stratification,
evaluations of efficacy, quality of care assurance, and ultimately patient outcome. In
addition, this technology would be applicable to Tele-ICU networks capable of
exporting expertise to hospitals and intensive care units where current personnel
resource limits make the highest quality of care challenging.

6. CONCLUSIONS
The amount of data available to the clinician at the bedside has grown tremendously
because of advances in medical monitoring and imaging technology. This situation is
particularly evident in the critical care setting in which patients may be continuously
monitored for upwards of 30 different variables related to multiple, changing and
interacting complex physiological subsystems. Treatments are often titrated on a
minute-to-minute basis. Taken together, this has created an information overload at the
bedside that is overtaxing human capabilities to cope with large amounts of data 
[68, 69]. The solution is to improve organization, analysis and presentation of monitored
variables in the ICU. We have reached the limit of currently available methods of data
acquisition to leverage complex systems analysis towards this goal. The limitations of
the current approach are underscored by the fact that an improved capacity to acquire
quantitative measurements highly relevant for therapeutic decision-making has failed to
improve outcome. This failure is related primarily to our inability to acquire and
integrate the sheer volume of available data, and to transform these data into information
that can ease the cognitive burden of clinical personnel in interpreting the complicated
and often nonlinear interactions of the various physiologic subsystems. While electronic
charting systems are an improvement over paper records, they generally just recapitulate
the record rather than provide additional integration or analysis.

In summary, the “ICU of the Future” will be based on an information architecture
that supports plug-and-play interoperability with ICU instruments for data acquisition,
specialized application modules for data processing and advanced signal analysis, and
interactive visualization and decision support modules that facilitate the display and
interpretation of multimodal physiologic data for ICU decision-making. To achieve this
goal, we advocate a phased approach where the first step is to make all available trend
data electronically available for clinical decision support. The second phase is to move
from trend data to high resolution time-synchronized waveform data that can be
integrated, archived and analyzed using both conventional and advanced signal
processing methods. The third phase is to develop visualization and decision support
tools that will transform data to useful information made available to clinical personnel
in real-time to support decision-making and improve situational awareness.
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