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ABSTRACT

Over the past few years, there has been an increased interest in studying the underlying neural
mechanism of cognitive brain activity as well as in diagnosing certain pathologies. Noninvasive
imaging modalities such as functional magnetic resonance imaging (fMRI), positron emission
tomography (PET), and dynamic signal acquisition techniques such as quantitative
electroencephalography (EEG) have been vastly used to estimate cortical connectivity and identify
functional interdependencies among synchronized brain lobes. In this area, graph-theoretic
concepts and tools are used to describe large scale brain networks while performing cognitive
tasks or to characterize certain neuropathologies. Such tools can be of particular value in basic
neuroscience and can be potential candidates for future inclusion in a clinical setting. This paper
discusses the application of the high time resolution EEG to resolve interdependence patterns
using both linear and nonlinear techniques. The network formed by the statistical dependencies
between the activations of distinct and often well separated neuronal populations is further
analyzed using a number of graph theoretic measures capable of capturing and quantifying its
structure and summarizing the information that it contains. Finally, graph visualization reveals
the hidden structure of the networks and amplifies human understanding. A number of possible
applications of the graph theoretic approach are also listed. A freely available standalone brain
visualization tool to benefit the healthcare engineering community is also provided
(http://www.ics.forth.gr/bmi/tools.html).

Keywords: EEG; synchronization; brain dynamics; brain functional networks; graph measures;
random graph models

1. INTRODUCTION

The brain is a complex dynamical system in which information is continuously
processed and transferred to other interconnected regions to make up a functional
network [1-5]. Functional networks are thought to provide the physiological basis for
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information processing and mental representations [6, 7], and have been studied across
different conditions of rest [8, 9, 10] or cognitive load [11].

Studies with detailed electroencephalography (EEG) and magnetoencephalography
(MEG) signals have revealed local synchronization patterns and cortico-cortical
interactions involved in several cognitive functions [12], with composite subtasks being
triggered within different brain regions by unitary brain sources that subsequently
synchronize to complete the task. Thus, the dynamics of interaction among different EEG/
MEG channels may be used for indexing neural synchrony of such local or distant brain
sources [13]. Such sources act synchronously behaving similar to coupled oscillators [14]
and their interactions can be measured using pair-wise linear (cross-coherence or phase-
coherence) [16] or nonlinear dynamics and models [15, 16, 17]. Furthermore, the
causality of the functional coupling of such oscillatory activities can be assessed with
partially directed coherence, which reveals the direction of statistically significant
relationships [18]. Synchronization can be evaluated not only on the actual recordings on
the scalp electrodes but also on independent components. The later are derived from linear
un-mixing transforms and are free from volume conduction effects [15, 16].

Networks are modeled by graphs which consist of a set of vertices and a set of pair
of vertices called edges (Figure 1). In this respect, graph theory offers a unique
perspective and a common framework for studying interactions between local and
remote cortical areas, where areas correspond to vertices and interactions to edges.
These interactions can be estimated from multivariate EEG time series of brain activity
where each vertex is identified with a scalar time series, and there is an edge between
two vertices if and only if statistical relationship is inferred between the corresponding
time series, as described above. Whether an edge exists between the corresponding
vertices is a very informative representation of the entire system, although each
interaction depends on time, space, cognitive task and many other intrinsic details.
Especially during the last decade, it became evident that brain functional networks as
well as brain anatomical networks are characterized by the same topological properties
that are present in most real networks, as for instance relatively small characteristic path
lengths (average length over all shortest paths between each pair of vertices), high
clustering coefficients, fat tailed shapes in the degree distributions, degree correlations,
and the presence of motifs and community structures [2, 19].

Brain anatomical and functional networks are neither totally regular nor entirely
random. Uncovering the hidden regularities and organizational principles of brain
networks often requires comparison with a null model network that has similar
statistical properties. A well-fitting network model that reproduces the network
structure and/or the laws through which the network has emerged can enable us to
understand the underlying processes and to predict the structure and behavior of the
brain. Thus far, four null model networks have been considered: the Erdos-Rényi
random graph, the small world, the scale free, and the geometric random graph models.

The information contained in a network can be summarized with graph measures.
Graph measures have been applied to topological analysis of brain functional networks,
and many of them have been shown to reflect disease and statistically significant
differences between healthy subjects and subjects with neuropathologies such as
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Figure 1. Large-scale anatomical network in the human brain that consists of 45
areas [46]. Two areas are considered anatomically connected if they show
statistically significant correlations in cortical thickness measurements
from magnetic resonance images. This network is modeled as a graph
which consists of vertices (yellow rectangles) and edges (line segments
between pairs of vertices).

epilepsy, Alzheimer’s disease, autism, Parkinson’s disease and schizophrenia [20, 21,
22, 23, 24]. All these diseases have been associated with abnormal neural
synchronization, and as a result, with functional networks that systematically differ
from those of control subjects. Epilepsy has been associated with too high and too
extended neural synchronization [25, 26]. Patients with Alzheimer’s disease show
reduced synchronization in the alpha and beta frequency bands [27, 28, 29]. Cognitive
dysfunctions associated with autism are explained with reduced functional connectivity
and neural synchronization [30, 31, 32]. There are an increasing amount of data linking
impaired motor processing in Parkinson’s disease with excessive synchrony at low beta
frequencies in basal ganglia-cortical loops [33]. Concerning schizophrenia, there is a
growing body of evidence that the clinical symptoms and cognition dysfunctions
observed in schizophrenia are caused by a disturbance in connectivity between different
brain regions. In particular, there is reduction in both local and long-range
synchronization [34, 35, 36, 37]. Additionally, a number of studies demonstrate that
there is a strong negative association between the characteristic path length (the average
shortest path lengths between each pair of vertices) of the resting-state brain functional
network and the intelligence quotient (IQ), suggesting that human intellectual
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performance is likely to be related to how efficiently our brain integrates information
between multiple brain regions [38].

The purpose of this paper is to review the most robust linear and nonlinear
synchronization measures for constructing functional networks including measures for
comparing and charactering networks. It also stresses the significance of network
measures as potential biomarkers of brain pathophysiology.

This paper proceeds as follows: Section 2.1 provides an introductory review of basic
graph concepts and indices that are further utilized in describing the functional
connectivity of a brain network, discussed in sections 2.2 and 2.3. Section 2.4 covers
network models, and section 2.5 briefly reviews the most robust and popular linear and
nonlinear methods for quantifying synchronization between time series pointing to
references for further detailed information. Section 3 presents real case application
paradigms, while section 4 concludes this paper.

2. METHODS

2.1. Preliminaries

A-recent trend in brain functional connectivity analysis is to model the interdependencies
among brain signals with networks [7, 39]. Interdependence among different brain
areas is estimated from multivariate neurophysiological signals (EEG, MEG,
electrocorticography (ECoG)) and/or haemodynamic response images (functional
magnetic resonance imaging (fMRI)). Then a network is formed by corresponding brain
areas or channels to vertices and by considering an edge between two vertices if and only
if the estimated interdependence is above a threshold (Figure 1).

The next step in the analysis is to measure some statistics to characterize the
network. Using the network characterization, one can draw conclusions on the effect of
illnesses or of cognitive loads on functional connectivity [9, 28, 41, 42]. Figure 2
outlines a basic signal preprocessing and analysis schema.

| EEG/MEG/ECoG data |
¥

| Artifacts removal (Cardiac artifacts, eye movements, etc.) |
¥

| Sources estimation (optional) |
]

Bandpass filtering

¥

Synchronization measures — similarity matrices
1]

| Adjacency functions — networks |

]
Analysis and visualization of networks
¥
Relate network concepts to external information

Figure 2. Sample outline of neurophysiological signals analysis.



Journal of Healthcare Engineering - Vol. 1- No. 3 2010 439

A graph G = (V, E) is a pair of vertices V= {v{, s, ..., v,} and edges E = {e}, €2, ...,
emy, where each edge e € E is an ordered or unordered pair of vertices. An ordered pair
e=(u,v) € VX Vis called a directed edge, while an unordered pair e = {u, v}, where
u,v € V,is called an undirected edge. In case u = v, e is called a directed or undirected
loop. In our study, we consider simple graphs without self-loops and multiple edges.
Also, the cardinality of V'is denoted by n (i.e.,n = | V|). The two vertices joined by an
edge are called its endvertices. In the undirected case, if two vertices u, v are joined by
an edge e = {u, v}, they are adjacent and called neighbors. The degree of a vertex ve V,
denoted by deg(v), is the number of edges in E that have v as an endvertex. The sets of
neighbors of vertex v € V is denoted by N(v) = {u € V| {u, v} € E}. In the directed
case,if e = (u,v) € Eis adirected edge, we say that vertex u is the origin of e and vertex
v is the destination of e. The origin of e is denoted by orig(e) and the destination of e
by dest(e). The out-degree of v € V, denoted by deg*(v), is the number of edges in E
that have origin v. The in-degree of v € V, denoted by deg=(v), is the number of edges
with destination v. The degree of v € V, denoted by deg(v), is the number of edges with
origin or destination v (deg(v) = deg*(v) + deg (v)). For every vertex v e V, N*(v) = {u
€ V| (v,u)e E}and N(v) ={u € V| (u,v) € E} are the sets of out-neighbors and in-
neighbors of vertex v, respectively.

A path from vy to v in a graph G = (V, E) is an alternating sequence vy, e, vy, €2,
Va,..., e, vy of vertices and edges such that e; # ¢; for i # j, where e; = {v;_1, v;} in the
undirected case and e; = {vi_1, v;} in the directed case. The length of a path is defined
as the number of edges on the path. There is always a zero length path from vy to vy.
The shortest path distance from vertex u to vertex v is denoted by dg (u, v). If vertex v
is unreachable from vertex u, then dg (1, v) = +oo.

2.2. Graph Metrics

Networks are often classified into unifying categories in order to obtain a better
understanding of their structure and function. In order to classify a network, it is
necessary to reduce the information by describing essential properties of the network
with a few numbers (often called network metrics, measures, or statistics). Network
metrics are chosen to catch the relevant and needed information and to differentiate
between certain classes of networks. They are easily computable in order to be useful
in several algorithms and applications.

Average Degree
The mean degree of a graph is the average degree over all vertices, thus

1
K== deg(v) (1)
velV
The average degree of graph of Figure 1 is 4.53.
Clustering Coefficient

The clustering coefficient C(v) for a vertex v is the proportion of links between the
vertices within its neighborhood divided by the number of links that could possibly
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exist between them. For an undirected graph, if a vertex v; has degree k;, ki (k. = 1)
2
edges could exist among the vertices within its neighborhood, thus

c(v)= 5 e=tv v, v v, € NOJ @)

2
k. (k, —

This measure is 1 if every neighbor connected to v; is also connected to every other
vertex within the neighborhood, and 0 if no vertex that is connected to v; connects to
any other vertex that is connected to v;. The clustering coefficient for a graph is given
by Watts and Strogatz [43] as the average of the clustering coefficient for each vertex,

C =%2 C(v) 3)

velV

and is a measure of the tendency of graph vertices to form local clusters. For example,
in the graph of Figure 1, in order to compute the cluster coefficient for vertex STG.L,
we first determine the other vertices to which it is directly connected. These neighbors
are vertices STG.R, MTG.R, MTG.L and SMG.L. Then we determine how many edges
exist in the set of neighbors. In this case, the edges among neighbors of vertex STG.L
are 3 edges: {STG.R, MTG.R}, {MTG.L, MTGR}, {MTG.L, SMG.L}. Next, we
determine how many edges could have existed between the neighbors. In this case,
there could be 6 edges (one edge for every pair of vertices STG.R, MTG.R, MTG L,
SMG.Y). The clustering coefficient of vertex STG.L is the ratio of 3/6 = 0.5. The
clustering coefficient of the graph of Figure 1 is 0.299.

Eccentricity, Radius and Diameter of a Graph

There are several measures defined in terms of distance, such as the eccentricity of a
vertex, the radius, and the diameter of a graph. The eccentricity £(v) of a vertex v in a
connected graph G is the maximum graph distance between v and any other vertex u of
G [44,45]

e(v)=lmax{d_(u,v)lue V}| 4)

For a disconnected graph, all vertices are defined to have infinite eccentricity. The
radius and the diameter of a graph are the minimum and the maximum eccentricity of
any vertex in the graph, respectively. The diameter represents the greatest distance
between any two vertices.

Average Shortest Path Length
The average shortest path length

)

- n(n—1)

dg(u,v) (&)

u, veV, u#v
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is the average shortest path (distance) connecting any two vertices of the graph and is a
measure of the interconnectedness of the graph. Note that the absence of a path between u
and v implies d_ (u,v) =+o<. In practice, we set d_(u,v)= M >>n,when d,(u,v)=+eo.

Network Efficiency
One drawback of the average shortest path length is that it can only be used for
connected graphs. A measure closely related to the average shortest path length is the
network efficiency:

1 1
= 6
S n(n_l) zu,ve Vu#v dG (u,V) ( )
Network efficiency is the inverse of the harmonic mean whereas the average shortest
path length is the arithmetic mean of the shortest path distances. Note that eqn. (6) can
also be used for disconnected graphs. If some vertices v and u are not connected, they
1 —_—
dg(v,u)

do not contribute to Ey| dg (v, u)=+c0 =

Network efficiency quantifies the effectiveness of information flow within brain
networks. He et al. showed that in multiple sclerosis, the efficiency of the anatomical
network is reduced in a manner proportional to the extent of total white matter lesions
[46]. Achard and Bullmore found that the resting state functional networks provide high
efficiency of information processing for low anatomical connection [47]. Efficiency
was reduced in older people and the detrimental effects of age to efficiency were
localized to frontal and temporal cortical and subcortical regions [47]. The efficiency of
graph in Figure 1 is 0.407.

Assortativity

An important network feature is the similarity between properties of adjacent network
vertices. Newman [48, 49] proposed a measure to quantify the degree of similarity
(dissimilarity) between adjacent vertices in a network using assortative mixing, which
is given by correlation between the degrees of every pair of adjacent vertices. The
assortativity coefficient for an undirected graph is defined as the (sample) Pearson
product-moment correlation coefficient written in a symmetrical form:

4|E|Y,, . deg(u)deg(n)—(X,  _ (deg(u)+deg(v))
-

2E(Y, | [egy +degm)-(T,  (deg(u)+dee(r)))

{

where | E | denotes the number of edges. The assortativity coefficient r lies between —1 and
1, whereby r = 1 means perfect assortativeness, r = —1 means perfect disassortativeness,
and r = 0 means no assortativeness (random linking). A special case of assortative mixing
according to a scalar vertex property is mixing according to vertex degree.
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Many social networks are assortative since vertices having many connections tend
to connect with other highly connected vertices [50]. On the other hand, most
technological and biological networks are disassortative since they have the property
that vertices with high degree are preferably connected with ones of low degree [51].
Exceptions are the protein contact networks and the brain functional networks which
are assortative [52, 53]. Disassortative mixing observed in certain biological networks
(metabolic signaling pathways network, and gene regulatory network) is conjectured to
be responsible for decreasing the likelihood of crosstalk between different functional
modules of the cell, and increasing the overall robustness of a network by localizing
effects of deleterious perturbations [54]. On the other hand, from computational studies,
it has been observed that information can be easily transferred through assortative
networks as compared to that in disassortative networks [48, 49, 55]. Note that the
network of Figure 1 is assortative having an assortativity coefficient of 0.083.

2.3. Centrality Measures

Characterizing local properties of networks is important both in theory and practice
since at the local scale, we can detect which vertices are the most relevant to the
organization and functioning of a network. These local measures are commonly named
centrality measures (or centrality indices), and have proven of great value in analyzing
the role played by individuals in social networks and in identifying essential proteins
[56], keystone species [57], and functionally important brain regions [58].

There is no commonly accepted definition for centrality. Many authors introduced
their own centrality, avoiding a strict definition for centrality in general. The intuition
about a centrality measure is that it denotes an order of importance on the vertices or
edges of a graph by assigning real values to them. As a minimal requirement, most
centrality measures depend only on the structure of a graph.

Degree Centrality

The simplest and most widely studied centrality is the degree centrality Cp(v) of a
vertex v which for an undirected graph is simply defined as the degree deg(v) of v.
Degree centrality is normalized to range [0, 1] by dividing deg(v) with the maximum
possible degree (n — 1).

C, ()= % ®

In directed networks, two variants of the degree centrality may be appropriate: the
in-degree centrality Cp(v) = deg™(v)/(n—1) and the out-degree centrality Cp (v) =
deg*(v)/(n—1).

Degree is the most fundamental network measure and most other measures are
linked to vertex degree. The degree sequence is argued to reflect some fundamental
aspects of natural, social and technological networks [59]. Manke et al. [60] advocate
the view that the degree can be considered as correlation of underlying dynamical
properties, such as the stability of a dynamic process to random perturbations. In the



Journal of Healthcare Engineering - Vol. 1- No. 3 2010 443

graph of Figure 1 we have deg(PrCG.R) = 11, deg(SPL.R) = 11 and deg(SFG.R) = 11.
The corresponding normalized centralities are Cp(PrCG.R) = 0.25, Cp(SPL.R) = 0.25
and Cp(SFG.R) = 0.25.

Shortest-Path Efficiency

Latora and Marchiori [61, 62] defined the efficiency ef,, in the communication between
vertices v and u to be inversely proportional to the shortest distance, 1/dg (v, u). Then
the average efficiency of vertex v is given by:

1 1
Cpy (1) =— 2 ©)

- ueV\v} G(v ll)

Note that eqn. (9) can also be used for disconnected graphs. If some vertices v and u are

1
not connected, they do not contribute to Cgr(v) | d, (v, )=+ = =0 |
d.(v,u)
Shortest-Path Betweenness Centrality
The shortest-path betweenness centrality Cg(v) of a vertex v € V is defined to be [63, 64]

y oy W (10)

( 1)(” z)seV\'v)teV\{v s} Gst

C,(v)=

where G, is the number of shortest (s, 7)-paths, and let o, (v) be the number of shortest
o.(v)
o-s(
are interpreted as the extent to which vertex v controls the communication between
vertices s and 7. A vertex is central, if it is between many pairs of other vertices. The

definition of betweenness applies to disconnected graphs without modification.

(s, H)-paths passing through some vertex v other than s, ¢. The relative numbers

2.4. Network Models

The basic idea behind using graphs as the first step in the study of a brain network is
that measuring some basic properties of a complex network can help us in
understanding its structure. Brain anatomical and functional networks as well as
biological, social and technological networks display non-trivial topological features,
with patterns of connection between their elements that are neither totally regular nor
totally random. Uncovering the hidden regularities and organizational principles of
brain networks often requires comparison with a null model network that has similar
statistical properties. Well established network models which have been extensively
used as null models are the Erdos-Rényi random graph, the small world, the scale free,
and the geometric random graph models. These are briefly mentioned below:

o Erdos-Rényi (random graph) model: Erdos and Rényi introduced the random
graph model and initiated a large area of research [65, 66, 67, 68]. There are two
closely related variants of the Erdos—Rényi random graph model. In the G(n, m)
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model, a graph is chosen uniformly at random from the collection of all graphs
which have n vertices and m edges. In the G(n, q) model, a graph is thought to be
constructed by connecting vertices randomly. Each edge is included in the graph
with probability g, with the presence or absence of any two distinct edges in the
graph being independent. The random graph model fails to adequately represent
brain networks since they have, among other properties, low clustering coefficient
whereas both anatomical and functional networks have high clustering coefficient
[7,47,69].

Scale-free model: The scale-free network model is characterized by its degree
distribution, viz. the probability distribution of the degrees over the whole
network, following a power law. The power law implies that the degree
distribution of these networks has no characteristic scale and that there is a small
number of very highly connected vertices called hubs. Recent interest in scale-
free networks started in 1999 by Barabési, et al. [70, 71] who proposed a
mechanism to explain the appearance of the power-law distribution in a stochastic
growth model in which new vertices are added continuously and they
preferentially attach to existing vertices with probability proportional to the
degree of the target vertex. Many real world networks have power-law degree
distributions, such as the World Wide Web [72], the metabolic reaction networks
[73] and the protein networks [74]. There is no consensus in scientific community
on whether the degree distribution of brain function or anatomical networks follows
either a power law [69, 75] or a power law with exponential cut-off [76, 77].

Small-world model: Many real world networks exhibit what is called the small-
world property, viz. the condition that most vertices can be reached from every
other vertex through short paths. Erdos-Rényi and scale-free networks also have
the small-world property. The network model published by Watts and Strogatz
[43] combines the small-world property, like random graphs, with high clustering
coefficient like lattices. This network model is also called small-world. In brain
network literature, the term small-world refers to this model (viz. networks with
small diameter and high clustering coefficient). Both brain functional and
anatomical networks are small-world [47, 69].

Geometric random model: A geometric graph G(V, p) with radius p is a graph
where points in a metric space correspond to vertices, and two vertices are
adjacent if the distance between them is at most p. More details about geometric
random graphs can be found in [78]. When the position of vertices in a (possibly
high dimensional) Euclidean space is important, the random geometric graph is
a good candidate null model. Computational experiments have revealed close
matches between key topological properties of Protein-Protein Interaction
networks and geometric random graph models [79]. Oikonomou showed that
brain functional networks estimated at sensor space from schizophrenia and
epilepsy data also share key topological properties with geometric random
graphs [80].

Recent articles illustrate that there may be evidence for small world networks in
characterizing certain brain pathologies like the Alzheimer disease [28].

2.5. Interdependence Measures

Before analyzing graph metrics, the graph itself has to be estimated from data such as
EEG. In brain functional networks, each vertex is identified with a brain area and each
edge corresponds to statistical dependence in the activities of two brain areas. We
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assume here that the activity of a brain area is measured in a scalar time series.
Numerous synchronization techniques have allowed the measurement of both the linear
and nonlinear dynamic coupling between different brain regions. In this section, we
preview linear and nonlinear methods capable of assessing synchronization between
different neural assemblies. Such methods applied in different frequency bands have
been successfully used in the past as indices of cerebral engagement in cognitive tasks
or brain pathologies [17].

Magnitude squared coherence (MSC)

MSC (or simply coherence) has been a well-established and traditionally used tool to
investigate the linear relation between two signals or EEG channels. Let us suppose that
we have two simultaneously measured discrete time series x; and y;, i = 1...N. MSC is
the cross spectral density function S,,(f), which is simply derived via the FFT of the
cross-correlation, normalized by their individual autospectral density functions. Hence,
MSC is calculated using the Welch’s method as:

‘<Sxy(f )>‘2
{s.O|(s,N)

Yx,,(f)=‘ (11)

where <-> indicates window averaging. The estimated MSC for a given frequency f
ranges between O (no coupling) and 1 (maximum linear interdependence).

Partial Directed Coherence (PDC)

The main advantage of this linear method is that it is able to derive additional
information on the “driver and response” relationship between observations. The concept
of Granger-causality [81] is based on the commonsense idea that causes precede their
effects in time and is formulated in terms of predictability. In a linear framework,
Granger-causality is commonly evaluated by fitting Vector Autoregressive Models.

Suppose that a set of n simultaneously observed time series x(¢) = [x](t),...,xN (t)]T is

adequately represented by a Vector Autoregressive Model of order p (MVAR(p)):

x(?) zzp:Akx(t—k)+w(t) (12)

k=1

a,(k)y - a,(k)

where Ak = is the coefficient matrix at time lag k, and

anl'(k) - a, (k)

w() = [wi(®),....w. (D] is the vector of model innovations having zero mean and
covariance matrix X,,. The autoregressive coefficients a;i(k), i, j=1,..., n represent the
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linear interaction effect of x;(#-k) onto x,(#). In order to provide a frequency domain
description of Granger-causality, Baccala and Sameshima [18] introduced the concept
of Partial Directed Coherence (PDC) which has recently been generalized to the new
PDC [82] as follows:

P
Let A=) Ae ™ (13)

k=1

be the Fourier transform of the coefficient matrices, where A is the normalized
frequency in the interval [-0.5,0.5] and i =+ —1. Then the new PDC is defined as [82]

1 -
E|Av(l)|

Jﬁ;f‘xw@wz:jm

m=l ""m

|7, ()= (14)

where A1) = I — A(A) and O'i2 refers to the variance of the innovation processes w; (7).
|717,-E ; (l)| ranges between 0 (indicating independence) and 1 (indicating maximum
coherence).

Phase Locking Value (PLV)

Phase synchronization presents a different approach in analyzing the possible nonlinear
interdependencies of the EEG signal and focuses on the phases of the signals. The Phase
Locking Value (PLV) is one of the most used robust phase coupling measures. It
assumes that two dynamic systems may have their phases synchronized even if their
amplitudes are zero correlated [83]. The phase synchronization (PS) is defined as the
locking of the phases associated to each signal:

¢x(t)_¢y(t) = const (15)

In order to estimate the instantaneous phase of our signal, we transform it using the
Hilbert transform (HT), whereby the analytical signal H(¢) is computed as:

H(t) = x(t) + ix(t) (16)

where X(7) is the HT of x(), defined as:

(1) = %PV [ :Ett) dr’ (17)
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where PV denotes the Gauchy principal value. The analytical signal phase is defined as:
¢(t) = arctan ((1)/x(1)) (18)

Therefore, for the two signals x(7), y(f) of equal time length with instantaneous
phases @x(1), ¢y(t), respectively, the PLV bivariate metric is defined below:

PLV = %Eexp (i(9, (jAD) -9, (jA))) (19)

J=0

where At is the sampling period and N is the sample number of each signal. PLV takes
values within the [0, 1] space, where 1 indicates perfect phase synchronization and O
indicates lack of synchronization.

Nonlinear synchronization (state-space approach)

Finally, another group of synchronization measures are based on the assumption that
neurons are highly nonlinear devices, which in some cases show chaotic behavior. Such
measures belong to the generalized synchronization (GS) concept and are based on
analyzing the interdependence between the amplitudes of the signals in a state-space
reconstructed domain [84]. A physiological time series such as the EEG appears to have
more than the single degree of freedom represented just by plotting the voltage as a
function of time. To free up some of these unknown parameters, a standard technique
is to map the scalar time series to a vector-valued one in a higher dimensional space R™,
thereby giving it an extension in space as well as time. Hence, one may measure how
neighborhoods (recurrences) in state space located in one attractor map to each other.
This idea turned out to be the most robust and reliable way of assessing the extent of
GS [85]. First, we reconstruct delay vectors out of our time series:

X - [xt’xz T2 ’xi—(m—l)r]r and yi = [yi’yi—‘r’ ’yi—(m—l)‘r]T (20)

where i = 1..N’, N'=N — (m—1)7 and m, T are the embedding dimension and time lag,
respectively. Let r;; and s;, j = 1, ..., k, denote the time indices of the k nearest
neighbors of x; and y;, respectively. For each x;, the squared mean Euclidean distance
to its k neighbors is defined as:

k
R,.(“(X)=%Z(xi -x, )’ 1)

J=1

The Y-conditioned squared mean Euclidean distance R (X|Y) is defined by
replacing the nearest neighbors by the equal time partners of the closest neighbors of y;.
If the set of reconstructed vectors (point cloud x;) has an average squared radius
R(X)=(/N )z RMV(X), then R (X1Y)=R"™(X)<<R(X) if the systems are
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strongly correlated, while Rf")(X 1Y)=R(X)>> Ri(k)(X ) if they are independent. Hence,
an interdependence measure is defined as:

1S RP(X)
SPYX) ==
X" ’ZR;“(X|Y)

N (22)

Since RV(X1Y)>>R*(X) by construction, it is clear that S ranges between 0
(indicating independence) and 1 (indicating complete synchronization). Although, in
general, SV (X 1Y)#S“ (Y 1X), this measure is not suitable to infer driver response
relationships. Accordingly, we used the mean value S(X;Y)=(S“ (X IY)+S“ (Y 1X))/2,
as a Robust Interdependence Measure (RIM) between X and Y.

3. BRAIN NETWORK VISUALIZATION AND APPLICATION DOMAINS
Brain functional networks can be practically visualized by assigning to vertices the
coordinates of the corresponding channels as described in section 2.1. Additionally, in
order to show the network structure, one can use network visualization techniques such
as the stress majorization technique of Gansner et al. [86] and the binary stress model of
Koren et al. [87]. Apart from real world network visualization and graph analysis cases,
there are some initial but indicative examples of possible translation of graph research
outcomes in the clinical practice. More specifically, considering that the so called
“disconnectivity syndromes” represent many pathological and neuropsychological
diseases, based on their functional impairment symptoms, one can infer directly the
usability and significance of network analysis and visualization tools based on graph
theory. This section briefly discusses applications of graph visualization and analysis in
cognitive and clinical domains, referring to published works of our group.

Rather recently, there is an interest in analyzing motor tasks using graphs in order
to identify the involvement of different brain lobes. Such applications are central in
the Brain-Computer Interface (BCI) field. Such visualizations allow us to select the
most relevant sensors to take into account in the BCI classification tasks (i.e.,
focusing at those regions that act like hubs). Figure 3 depicts such networks using
the PDC interdependence method applied at the mu frequency band [88]. Not only
the interdependences but also the directionality of the coupling is illustrated using
arrows [89].

Apart from the visualization itself, one is able to calculate and use the connectivity
graphs to extract network properties and utilize them as biomarkers for certain
pathologies such as alcoholism (Figure 4). In this case, synchronization was calculated
using magnitude squared coherence and the standard 10/20. International montage
along with an additional 41 sites as depicted in Figure 4 were used. Each subject was
exposed to randomized pictures of objects chosen from the 1980 Snodgrass and
Vanderwart picture set presented on a white background at the centre of a computer
monitor and was requested to memorize and identify them at a later time. The results
indicated that the proposed synchronization analysis in combination with the network
analysis and visualization are able to picture with increased certainty the brain network
topology during this working memory task. The alcoholic individual was found to have
impaired synchronization of brain activity and loss of lateralization during the rehearsal
process (Figure 4), most prominently in alpha band, as compared to a control subject
[24]. What is interesting in this study is that there is no pre-specified threshold selection
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Brain network during foot movement imagination. (a) Network
calculated with PDC at mu band, showing the edges that remain if the
foot network is subtracted from the idle state network. The color of a

vertex shows attributes of vertices

Figure 3.

in this case depicting the Power

>

Spectral Density (PSD) of channels at mu band. Red colors correspond to

higher values than blue, whereas the color of a vertex shows the (average)

PSD of channels. (b) Network calculated with multidimensional scaling

at mu band [88].
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Figure 4. (a) Average network across trials of a control subject. (b) Average
network across trials of an alcoholic subject. All networks were
calculated at alpha band using magnitude squared coherence. Most
significant connections are shown with red colors and wider edges.
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(a) A “healthy” brain network during a working memory task appears to
have higher average degree K and clustering coefficient C, and lower
average shortest path length L values compared to the “schizophrenic”
one (b). These disturbances are more prominent for the connections of the

frontal lobes as well as the temporal lobes.

of edge drawing. Instead, threshold selection was based on testing 35 surrogate datasets
to the null hypothesis from both the control and the alcoholic subjects for each channel
pair. Only statistically significant edges reflecting all network connections are drawn
differing in colour and width to reflect whether a strong (red shaded thick line) or weak
(blue shaded thin line) interdependence is present (Figure 4). Focusing on the beta
frequency band, impaired synchronization was also statistically tested using the
clustering coefficient C parameter proving that the network topology of the alcoholic
subject, as far as the C is concerned, is significantly less dense (t-test p-value <0.001)
as compared to that of a control subject.

Using a similar experimental and computational analysis framework in studying
schizophrenic activity under mental stress, the disconnection syndrome was evidenced
(Figure 5). In this case, the EEG signals in both groups (20 controls and 20 stabilized
patients with schizophrenia) were recorded from 30 cap electrodes, according to the
10/20 international system. Interdependence was calculated using wavelet coherence
that accounts for the non stationarity of the EEG signals as well. In this study the edge
drawing threshold was selected according to f-test statistics applied on various
properties of the resulting graph including the average degree K, the clustering
coefficient C, and the average shortest path length L of our graph. The depicted
topologies as modelled by the former network properties indicated higher levels of
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brain activity of schizophrenic populations than healthy ones. More direct connections
among different functional lobes are needed when coping with mental tasks of
increased difficulty [90].

Finally, as mentioned in the introduction one can also study neural interdependencies
based on its independent components (ICs). Instead of directly measuring the
synchronization using the actual EEG traces, ICs are first obtained and then identified
based on their spatial and frequency properties using ICA decomposition in a
concatenated trials scheme for each channel. Such approaches are most commonly used
in analysing cognitive brain function. In the case of an auditory working memory
paradigm (oddball experiment), induced responses are attributed to oscillatory bursts
from local or distant neural assemblies with variable latency and frequency [91]. The
functional coupling and role of independent components are investigated through the
concept of PDC method. The EEG signals used in this work are selected from two
representative subjects out of 9 healthy participants (age 37-74), who had no history of
neurological or psychiatric disorder. This study indicates that functional connectivity
during cognitive processes may be successfully assessed using connectivity measures
applied on independent components, which reflect distinct spatial patterns of activity.
The results suggest increased phase locked activity most prominently in the delta/ theta
band, while alpha is also apparent in measures of non phase-locked activity [91].
Figure 6 depicts numbered ICs. Even though the control group involves a large
variation in age, it has been demonstrated that processes related to working memory
have been found to weaken with normal aging, but in general follow the same patterns
of activation [92]. This is also verified in Figure 6 showing two similar networks of
subjects of different ages. The strong interaction in the alpha band is indicated by
directed lightblue lines, whereas the weak influence of the theta band from the alpha
band is indicated with dashed lines. The independent components identified relate to the
alpha, theta and delta bands on the basis of their (major) frequency activity. The delta
components (related to cognitive processing) strongly relate to the alpha components.

w| D B RCYCECINO
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Figure 6. Networks of numbered ICs reflecting the synchronization maps of two
representative subjects organized by means of the PDC of the band
activity in Delta, Theta and Alpha. An auditory working memory
paradigm (oddball experiment) induced responses are being attributed to
oscillatory bursts from local or distant neural assemblies, with variable
latency and frequency. Apart from the synchronization itself,
directionality is also identified. The bidirectional coupling indicates no
single influence between the “cause” and “effect” relationship [91].
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In both cases, we can also observe two types of alpha components, an early one
(associated with attention) at lower alpha band and a late one at the fast alpha range,
with the early one driving the late alpha. The early alpha associated with attention
drives a delta component related to cognition, which in turn drives the late alpha
component that is also related to memory operations; this relationship in Figure 6 is
observed as node influence from 5 to 7 to 4 in the left network and from 6 to 19 to 24
in the right network. Similar tendencies maybe easily identified using directed graphs
based on directed coupling methods such as PDC.

Apart from the presented application domains, several studies have been conducted
focusing on other pathologies like Alzheimer Disease [93], Epilepsy [94] and
Parkinson’s disease [95].

4. CONCLUSIONS

Our brain is a complex network in which information is continuously processed and
transported between spatially distributed but functionally linked regions [1]. This
ongoing integration of information enables us to evaluate the world around us and to
respond quickly and flexibly to complex situations. A snapshot of a subject’s dynamic
brain functional network can be estimated from high resolution EEG measurements.
Then this network can be characterized and analyzed using well formed concepts
mainly based on graph theory and statistical physics. Our research has been
facilitated by recent progresses in the development of efficient algorithms to calculate
graph measures and to draw graphs. Graph visualization reveals the hidden structure
of the networks and enhances human understanding, thus leading to new insights and
new findings. To summarize, networks have emerged as a unifying theme for
describing and investigating the functional connectivity. This approach has been very
fruitful in theoretical neuroscience and remains to find its applications to clinical
practice and other applications. For example, differences in graph indices between
healthy and mentally impaired subjects could be used, together with other features, as
“biomarkers” for medical diagnosis. In addition, to accompany this article, we also
provide a freely accessible standalone brain visualization tool to benefit the
healthcare engineering community. The toolkit implements a number of network
indices and visualization techniques for graphs and can be accessed online
(http://www.ics forth.gr/bmi/tools.html). Hopefully, the healthcare community could
greatly benefit from such visualization and graph analysis tools capable of revealing the
hidden brain network structure.
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NOMENCLATURE
A Coefficient matrix at lag k of a multivariate autoregressive process of order
p, MVAR(p)

A(A) Fourier transform of the coefficient matrices of an MVAR(p) process
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Autoregressive coefficients. Elements of matrix Ay
Clustering coefficient of a graph G

Clustering coefficient of a vertex ve V

Shortest path betweenness centrality of a vertex v e V
Degree centrality of a vertex ve V

Out-Degree centrality of a vertex v e V

In-Degree centrality of a vertex ve V

Shortest path efficiency of a vertex ve V

The degree of a vertex ve V

The out-degree of a vertex v e V

The in-degree of a vertex ve V

The destination of an edge e € E

The shortest path distance from vertex u to vertex v
Edges of a graph

The cardinality of edges of a graph

Efficiency of a graph G

Graph

Analytical signal

Average degree of a graph G

Average shortest path length of a graph G

Parameter used to denote the number of edges in random graph models,
interdependence measures parameters

Embedding dimension

Number of samples of a time series

The set of neighbors of a vertex ve V

The set of out-neighbors of a vertex v e V

The set of in-neighbors of a vertex v e V

The cardinality of vertices of a graph (n=|V|), or the number of
simultaneously observed time series (viz. the number of channels).
The origin of an edge e € E

Phase locking value

The order of a multivariate autoregressive process
Probability used in random graph models
Assortativity coefficient of a graph G

Robust interdependence measure between X and Y
Cross spectral density function

The sampling period of a time series

Vertices of a graph

The cardinality (i.e. the number) of vertices of a graph
Hilbert transform of a signal x(7)

Magnitude square coherence for a given frequency f
Eccentricity of a vertex v in a connected graph G
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|7E,H(/l)| Partial directed coherence from channel j to channel i at normalized

frequency A4

p Radius used in the definition of geometric random graphs

Zy Covariance matrix of innovation processes

Oy The number of shortest (s,f)-paths

ou(v) The number of shortest (s,7)-paths passing through some vertex v other than
s, 1

T Time lag

(1)

The analytical signal phase
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