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ABSTRACT
Intensive Care Units (ICUs) are hospital departments that focus on the evolution of patients. In
this scenario, the temporal dimension plays an essential role in understanding the state of the
patients from their temporal information. The development of methods for the acquisition,
modelling, reasoning and knowledge discovery of temporal information is, therefore, useful to
exploit the large amount of temporal data recorded daily in the ICU. During the past decades,
some subfields of Artificial Intelligence have been devoted to the study of temporal models and
techniques to solve generic problems and towards their practical applications in the medical
domain. The main goal of this paper is to present our view of some aspects of practical problems
of temporal reasoning in the ICU field, and to describe our practical experience in the field in the
last decade. This paper provides a non-exhaustive review of some of the efforts made in the field
and our particular contributions in the development of temporal reasoning methods to partially
solve some of these problems. The results are a set of software tools that help physicians to better
understand the patient’s temporal evolution.

Keywords: temporal reasoning, case-based reasoning, knowledge acquisition, temporal data
mining, artificial intelligence in medicine.

1. INTRODUCTION
An Intensive Care Unit (ICU) is a hospital service that provides critical attention to
medically recoverable patients.  ICU is a data-intensive environment particularly
suitable for extensive use of data analysis [1]. One of the fundamental characteristics of
this domain is that patients require permanently available monitoring equipment and
specialist care. The temporal evolution of patients is, therefore, permanently recorded
and analysed by physicians, who must tackle a wide range of patient pathological
problems (cardiovascular, renal, infections, neurological, etc.).

In this scenario, intensivists have to deal with an overwhelming amount of temporal
information provided not only by on-line monitoring but also from patients’ records
collected from different hospital departments (e.g., laboratory results, radiology, etc.).
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Although the management of all this information is a complex task that these specialists
must face, they are also required to intervene immediately if any patient event occurs,
and to provide detailed reports describing the diagnosis and the subsequent actions
(tests, treatments, or needed for a new laboratory analysis).

Computer-based systems are required in ICUs to record and manage temporal
clinical data. However, in order to improve the health care quality, new tools such as
those manage medical knowledge and support medical decisions, are required.
Artificial Intelligence (AI) is an interdisciplinary field devoted to the study of
mathematical, physical and computational aspects that make the representation of
human knowledge in a computer possible [2] as well as the development of methods to
solve complex tasks such as classification, planning, diagnosis or pattern matching. 

From its early beginnings, the AI community has focused on the challenging
problems of the medical field, such as reliable medical diagnosis, optimal therapy to a
patient, etc. One illustrative milestone of these works is the MYCIN system, a diagnosis
support system for infectious diseases [3]. AI in general, and its application to medicine,
known as Artificial Intelligence in Medicine (AIM), have also paid attention to the
temporal dimension, since time is involved in most of these complex tasks in medicine,
for example, the definition of the temporal models for temporal diagnosis [4], the
temporal models for patient monitoring [5], or the treatment support system based on
patient analogy [6].

AIM is a consolidated field and one that faces new challenges. One of the problems
to deal with is that, after three decades, few systems have so far been accepted for
routine use. In [7], the author identifies a main problem: AI systems are isolated from
the clinical environment itself and are perceived as experimental entities. Therefore,
new efforts must be made to obtain effective AI systems in medical environments. The
problem consists of identifying what the user needs to interpret, internalize and apply
from the wealth of information in a report [8]. The creation of a computer-based system
that manages knowledge requires substantial modelling activity: deciding what clinical
events and patients are relevant and identifying the concepts and relationships between
them. However, most of the medical data structured in hospitals are aimed at Electronic
Health Record (EHR), which is not usually structured in a way that can be reused for
decision making, and is often redundant [9]. 

In our view, most temporal information of the ICU is stored in the EHR of the patient
(in the form of physical examinations, laboratory results or even the clinical scenario
leading to the current state) or acquired and registered from the biosignals monitored.
On one hand, the signals acquired from patients are usually represented by time series,
where there is a wealth of methods to summarise, compress and find patterns [10]. On
the other hand, the temporal information extracted from the EHR is radically different,
since it is high-level information and lacks noise or irrelevant data. Therefore, it seems
convenient to apply AI techniques to bridge the gap between the raw data and the high-
level information.

In this work, we describe a spectrum of issues to exploit the temporal dimension of
ICU data from the AI perspective. In particular, we address the following tasks:

1. The management of temporal information: from the traditional modelling of
temporal data for storage, to more complex representations that make
reasoning about the information possible.
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2. The measurement of temporal analogy between EHR of patients to provide
advanced search engines and decision support tools (case-based reasoning).

3. The extraction of temporal medical knowledge from two different sources: the
physicians (knowledge acquisition) and the temporal database itself (temporal
data mining).

In the following sections, we introduce each of these issues and describe our experience
in the practical applications.

2. ICU INFORMATION SYSTEMS AND TEMPORAL REASONING
The main purpose of the ICU information systems is to manage the personal and health
information of the patients. These systems traditionally deal with the management of
explicit temporal information of EHR (timestamps of tests, duration of therapies , etc.)
and the processing, visualization and storage of monitored biosignals (ECG, O2 in
blood, etc.) [1]. Next we describe these systems and the special attention that must be
paid to time in such a context.

2.1. Current Temporal Data Recording
Although temporal databases have been formally defined by some models [11,12] and
query languages [13], and despite intense research on advanced temporal databases in
the literature [14-16], their use has not been adopted by the industry. In practice, most
extended EHR systems still use traditional Relational Data Base Management Systems
(RDBMS) with extra columns to include temporal information for the events defined in
the database. An example of this type of systems is the CH4-EHR [17] which is made
up of three subsystems: the Medical Information System (CH4), the Nursing
Information System (NS4) and the Administrative Information System (Admin). Each
system is designed to meet the needs of a particular type of staff (physicians, nurses and
administrative staff) in  ICU while complementing each other and giving rise to a
common EHR with a wealth of temporal clinical data.  Figure 1 shows the overall
architecture of the CH4-EHR System.

Figure 1. CH4-EHR Architecture.
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CH4 is a tool designed for ICU physicians, enabling them to register, search, and
display information of patients from their admission to discharge from the ICU. Both
administrative and health data (e.g., personal information, laboratory tests, treatments,
diagnostics, scoring systems, etc.) can be managed. 

Another noteworthy feature of the system in terms of standardizing clinical tests and
therapies is its flexibility and adaptability for individual ICU, thus providing an easy
way to incorporate new parameters such as medical tests, treatments, and new
diagnoses. This system is, therefore, completely adaptable to the usual ways of working
of different ICU services as well as to different clinical protocols in use. 

NS4 provides an interface similar to traditional nursing sheets (see Fig. 1), which are
documents that record the temporal evolution of the care and treatments received by
patients. NS4 allows the nursing staff to manage the patients easily by means of report
templates, facilities to search and browse patients, and a simple way to fill in data
within the ICU box.

Figure 2. NS4 system.

The CH4-HER system is designed to work in a distributed client-server manner over
a local area network infrastructure (Fig. 1). All the subsystems are intercommunicated
across the Temporal Integration Platform through mechanisms based on message
queues, visual alerts, and notifications on the respective interfaces. In this way, the
nursing staff is notified when a new temporal event is triggered for a patient, e.g., when
the administration of new treatment starts or when it finishes. The system also provides
communication mechanisms through the Integration Layer to exchange information
with other department systems where patient’s information is stored. For example, the
communication with the Hospital Information System to obtain affiliation data, or with
the laboratory in order to obtain the results of the clinical tests needs an exchange of
HL7 messages. The Patient’s Database has been implemented over a Postgres RDBMS
improved in indexing capabilities to achieve efficient temporal queries. In parallel with
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the Patient’s Database, the system provides a Report Database to store and query
clinical documents generated by an XML based reporting engine.

The CH4-EHR System has been evaluated positively by members of the medical
staff at the ICU of the University Hospital of Getafe (Madrid, Spain). Currently, the
system is in a deployment phase and has been adapted to meet the requirements of this
ICU, including care of patients with burns, among other particularities.

2.2. Temporal reasoning
Apart from time-stamped data, it is also possible to find other type of temporal
information in an EHR, such as temporal relations between different clinical events, for
instance, “2 minutes after the observation of the ST segment elevation in the ECG, the
physician provided a 0.4 mg/5 min. dose of sublingual Nitro-glycerine and 30 minutes
after the incidence the patient was stable”. This information can be processed and new
temporal information could be produced (e.g., to conclude that the sentence is
temporally inconsistent). The representation of temporal information is, therefore,
essential in providing the system with the capacity to perform temporal reasoning.

The role of temporal reasoning in these systems is to formalise the notion of time,
providing the tools to represent the temporal aspects of knowledge, and using models
to reason with them [18,19,20]. The analysis of time representation is mainly centred
on the expressivity, reasoning capability and its efficiency. The expressivity is
determined by the temporal primitives and the temporal relations that are allowed
between them. The temporal primitives are points and intervals, and both qualitative
and quantitative relations are defined.

Qualitative point algebra [21] assumes the temporal points as a unique primitive, and
three binary basic relations can be distinguished: before, after, and equal. When the
expressivity of points is not enough for some applications, the interval algebra by Allen
[22] applies, which states intervals as primitives and defines thirteen binary relations
between intervals. An integrative proposal is that described by Vila [23] defining a
simple method for maintaining both temporal entities (points and intervals).

Apart from qualitative temporal relations, quantitative relations that express the
distance between temporal entities are also possible. The simplest quantitative relations
are those that describe an absolute numerical temporal value between an arbitrary time
origin and the instant when the temporal event occurs (absolute relations). A date, an
hour, or any other type of conventional timestamp usually represents these
relationships. Both qualitative and quantitative relations can be combined [24,25].

The previous models were proposed in the quest for maximum expressivity in the
representation of temporal information. But for practical applications, it is important to
be able to reason with them, and thus, it is necessary to achieve a trade-off between
expressiveness and computational complexity. For example, interval algebra is a very
expressive model, but the most interesting task is NP-Complete. Nevertheless, a
number of tractable sub-algebrae have been defined [27]. Each subalgebra loses some
representation capacity but gains in computational complexity. Research has also been
done in this work on the improvement of algorithms for temporal reasoning without
reducing expressivity.
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Different formalisms have been applied to solve interesting problems in temporal
reasoning such as determining the consistency of temporal information. A first approach
to the formal study of temporal reasoning is temporal logic. However, the use of the
Constraint Satisfaction Problem (CSP) provides a very simple way of formalizing the
temporal reasoning models and, moreover, well-known algorithms can be used for
consistency checking and constraint propagation purposes.

In most real life situations, especially in medicine, the notion of time is linked to a
certain degree of vagueness that can be found, for instance, when a patient describes
symptoms, as in “The pain started about one hour ago”. Therefore, any attempt to
develop a valid application for these fields would have to provide the adequate temporal
models to deal with the aforementioned imprecision. One way of reflecting this
imprecision is through the use of qualitative or imprecise quantitative temporal
constraints, given that in this way it is possible to establish different levels of precision
[18] (for example, ”John arrived before Steve” is less precise than ”John arrived less
than 2 minutes before Steve”).

2.3. FuzzyTIME temporal reasoner
A temporal reasoner is a module that is able to represent and reason about time [28]. We
have designed and implemented one of these modules: FuzzyTIME [29]. FuzzyTIME
is a general purpose temporal reasoner providing reasoning capabilities in imprecise
temporal constraints between temporal variables which can be represented by both
instants and intervals. 

We presented a diagnosis based model where temporal information is a fundamental
element [30]. The model was used to check temporal consistency of the diagnosis
hypothesis in order to make an early prune of non-valid solutions. The importance of
considering a temporal reasoner in this context is given by the inherent imprecision of
the temporal constraints that can occur between every pair of events of any disease.
However, when all the independent temporal constraints are considered as a single
scenario of an illness, they must be temporally consistent.

In order to interact with this theoretical framework, a high-level temporal language
has been proposed and implemented in FuzzyTIME.  The key element in FuzzyTIME
high-level language is the temporal relation. A wide range of qualitative and
quantitative temporal relations between temporal entities is allowed in the high level
language. We allow the use of qualitative point-point relations [21], qualitative interval
to interval relations [22], qualitative point-interval/interval-point relations [23], first
introduced by [31], and imprecise metric point-point relations [32].

For instance, FuzzyTIME language could represent the following fuzzy temporal
expressions that physicians use in their common practice:

(dehydration) APPROX 1 HOUR BEFORE (pain, location, precordial)
The above expression represents the temporal evolution of a patient suffering from
dehydration (formally, this manifestation is internally represented as
(dehydration,presence,true)) approximately one hour before a precordial pain.

FuzzyTIME uses the Fuzzy Temporal Constraint Network (FTCN) [32] as an
underlying model for low-level representation of temporal constraints. An FTCN can be
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seen as a fuzzy Simple Temporal Problem (STP), which has also been used to model
clinical problems [33]. An FTCN can be represented by means of a directed constraint
graph, where nodes represent temporal variables and arcs represent binary fuzzy
temporal constraints. The inference of unknown relations is carried out by applying an
efficient constraint propagation algorithm. This constraint propagation process removes
impossible values from the original constraints.  It is thus possible to obtain a minimal
network that contains the most precise temporal information and is consistent with the
temporal information provided [32].

FuzzyTIME provides procedures for maintaining and querying temporal information
at FTCN level, which is given as high-level temporal sentences. Of all the possible
temporal relations, we have limited ourselves to the subset of convex disjunctions of
basic relations. This is a key commitment between expressiveness and efficiency in the
temporal reasoner.

The capability of query resolution is another relevant aspect of FuzzyTIME.  It
considers queries that recover information that is already present in the knowledge base,
and modal queries about the possibility and necessity [34] of the compatibility of new
temporal information with the information present in the knowledge base. One
competitive advantage obtained with the fuzzy temporal constraints is the capability of
using the Possibility Theory [35], so that the answer to a query belongs to a range of
values between 0 and 1, instead of being a binary answer. 

Other temporal reasoners, such as LaTeR [36], consider quantitative and qualitative
temporal information using classic modal operators for query answering instead of the
possibility theory approach used by FuzzyTIME. The Restrict [37] reasoner deals with
different models and selects the most suitable algorithm for each problem presented. In
a more recent approach to temporal reasoning, a formalism based on fuzzy sets is
presented, but it only deals with qualitative temporal relations [38]. A similar approach
is being explored in the BabyTalk project [39] in an application for automatic report
generation in the neonatal domain. Sections 4.2 and 4.4 present how FuzzyTIME can
be used in other domains such as knowledge acquisition or data mining.

3. TEMPORAL CASE-BASED REASONING
The capacity to decide whether elements (treatments, patients, EHR) are similar is a
useful tool in medicine. Computer systems can easily obtain an exact match between
data. However, the calculus of a certain similarity between complex objects is not
trivial. The Case-based Reasoning (CBR) is a topic of AI focused on how to obtain this
similarity and how to use it to solve problems. CBR tackles new problems by referring
to analogous problems that have already been solved [40]. Therefore, CBR seems to be
an effective approach in medical domains, since cases refer to patient episodes within
the EHR. 

The two most important concepts in CBR systems are the cases and the similarity
functions.  Cases describe the knowledge acquired after solving specific problems.
They can be considered as the atomic elements of the knowledge bases in a CBR
system. The general idea is that a case is essentially composed of the 3-tuple problem,
solution, and outcome. The cases are stored in a knowledge base, called Case Library
(CL). The similarity functions allow the system to quantify how similar two cases are. 

Journal of Healthcare Engineering · Vol. 1 · No. 4 · 2010 621



Figure 3. CBR-cycle proposed by Aamodt and Plaza [42].

The CBR has been understood as a methodology for the development of knowledge-
based systems [41] since Aamodt and Plaza proposed the CBR cycle methodology in
1994 [42]. They suggested that CBR is a cyclic 4-step process, composed of the
Retrieve, Reuse, Revise and Retain steps (see Fig. 3). In the Retrieve step, the system,
given an input case, looks for similar cases in the CL. The Reuse method tries to obtain
a solution for the incoming case from a combination of the solutions of the retrieved
cases. In the Revise step, the system checks if the solution is valid for the incoming
case. Finally, there is a feedback step, called Retain step, the system checks if this new
problem solved is considered relevant for the system.

We highlight three major advantages of using CBR. First, the explicit experience is
easy to add to CBR systems, since they can insert, replace and eliminate cases at the
explicit knowledge base. Second, the continuous integration of cases during the use of
the CBR system allows an incremental acquisition of knowledge. Finally, another
advantage of the CBR is its integration with medical information systems since the
EHR itself serves as the basis of cases.

In the clinical domain, CBR systems have been effectively used for decision support
in the treatment of patients on dialysis [43], study on therapy failure [44], or cancer
diagnosis from mammograms [45].

3.1. Temporal CBR
The CBR methodology and components presented above are general descriptions that
must be clarified when the temporal dimension is considered. We now focus on case
definition and temporal similarity. Temporal cases are traditionally represented by a set
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of temporal features, defining time series and temporal event sequences. On the one
hand, time series define collections of ordered data points measuring a single parameter,
usually sampled from a continuous signal. For instance, in the medical domain, an
electrocardiogram and a digital phonocardiogram are represented by time series. The
time series retrieval problem is widely studied in the literature [46], proving  the
advantages of transformation and dimensionality reduction such as Fourier transform,
discrete wavelet transform or dynamic time warping [47,48,49]. Other approaches deal
with the temporal abstraction problem, i.e., obtaining a higher-level temporal
description from a time series [50]. Some results of the temporal abstraction applied in
the medical domain provide an effective way for the intelligent analysis of clinical data
[51] or the improvement of time series management in medical CBR systems [52].

On the other hand, event sequences deal with a collection of temporal elements
describing the evolution of a fact. Unlike time series, the elements of an event sequence
are not compulsorily spaced in uniform time intervals; they could describe measures
from different information sources and this information may be quantitative or
qualitative. In the particular situation where event sequences are not homogeneous (i.e.,
combination of qualitative and quantitative information), it is difficult for systems to
retrieve similar cases. Given the temporal nature of events, we identify two different
scenarios: sequences of time points (hereinafter termed event sequences) and those
made up of intervals (hereinafter termed interval sequences). For instance, the set of
tests carried out on a patient could be considered as an event sequence, whilst the
therapeutic administration (usually intravenous in the ICU) describes an interval
sequence. Since these scenarios have a direct match on the EHR, we focus on the
problem of retrieving heterogeneous sequences.

In measuring the similarity between temporal cases, CBR is traditionally based on
the definition of similarity functions. It is common to adopt the binary and normalized
similarity function S; i.e., S: Case × Case → [0, 1]. Due to the different temporal cases
(sequences of heterogeneous events or sequences of intervals), different strategies must
be adopted to develop temporal similarity functions. 

Attending to heterogeneous event sequences, recent proposals have focused on
direct matching between sequences often by applying the classical distance concepts
(e.g., Euclidean or Minkowsky distances) [53, 54], but ignoring the implicit temporal
relations between all elements of the sequences and the uncertainty produced in any
similarity process. In this sense, temporal constraint networks (see Section 2.3.) have
been used in many AI systems to model time [30], providing a powerful reasoning
capacity for both time points and intervals. Since each event of the sequence is
represented in the time space with a time point, the similarity could be also calculated
by time point constraint networks. We proposed a non-classical approach to measure
temporal similarity of cases which are heterogeneous temporal event sequences [55].
The temporal similarity is measured by describing a unique temporal scenario of
possible temporal relations (from 2 or more input cases), and by measuring the
uncertainty produced.

Cases can be also described by sequences of interval events and temporal similarity
must also be calculated. Since an interval is composed of two time point events (starting
and ending points), an initial approach consists of the decomposition of intervals, i.e.,
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transforming the sequence of intervals into an event sequence and then using the
temporal similarity methods described before. Although the time point decomposition
is a well known approach to simplify the complexity of managing intervals, from the
conceptual perspective the use of the interval concept implies not only a starting and
ending point but also the presence of the temporal event that provides additional
information between the two points.

Other approaches consider the sequence as an atomic element of the sequence. The
authors analyse the problem of comparing clinical scenarios composed of both time
point events and intervals, using temporal constraint networks to represent the scenario
[56]. 

The similarity measure we proposed in [57] provides a direct mechanism for
comparing interval sequences by translating each sequence to a temporal constraint
network, providing explicit temporal information about interval distances. Figure 4
depicts an example of interval sequences and the translation in their temporal constraint
networks.

Figure 4. Interval sequence similarity using temporal constraint networks.

In one of our recent works, the similarity function is a linear combination of functions
that compares the interval events (nodes) and their relations (arcs) [57]. The temporal
information of the interval events describes the duration of the intervals, while arcs
represent both quantitative and qualitative relations. The similarity between interval
relations is based on the quantitative information of beginning and ending points, while
the qualitative information is compared using the Freksa reticle proposed in [58].

The practical impact of time on the CBR systems has not been studied in depth [52],
despite the importance of the temporal dimension. From a theoretical perspective, a
CBR system was proposed for the temporal abstraction of dializer biosignals in the
form of time series [59]. With respect to the methodolical aspects of the development
of temporal CBR systems, a temporal framework was proposed in [60], featuring two
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levels to manage time from time series: (a) the case level, or the set of events that occur
during a short period of time, and (b) the history level, or a set of related cases (e.g., the
patient’s life-long history).

3.2. T-CARE system
The Temporal CAse REtrieval System (T-CARE) is a CBR system that retrieves similar
cases of patients for medical decision supported by searches in a case library for
patients with temporal evolution [40]. T-CARE undertakes the following tasks: (1)
acquisition of temporal cases from the EHR of a HIS define and storage in the Temporal
Case Library (TCL), and (2) retrieval of similar temporal cases from the TCL.

T-CARE system provides two main tools: the temporal case acquisition tool and the
temporal case retrieval tool. The temporal case acquisition tool helps the physicians to
build the TCL from the patient’s information recorded in the EHR, in a semi-automatic
process. The temporal case retrieval tool provides a graphical interface to describe the
evolution of a new patient and calls the case retrieval engine to find the most similar
case, using the temporal similarity measures described in [53,54,58]. Figure 5 shows
the main elements of the T-CARE architecture.

Figure 5. T-CARE system architecture 

The T-CARE system was evaluated in a Burn Unit as a tool for medical decision
support. Patients in the Burns Unit of the ICU are critical long-term patients. Clinical
trials showed that demographic data and the temporal evolution of certain indicators
during the first 5 days are essential for assigning a patient survival profile. Some of
these were age, gender, depth of burn injuries, the 5 days evolution of diuresis, level of
bicarbonate, skin ph, and acidosis level. The data studied were selected from the EHR
of 375 patients in a Burns Unit between 1992 and 2002, by physicians using a temporal
case acquisition tool. T-CARE was a useful complement in supporting physicians to
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evaluate severity based on the temporal evolution of the first 5 days of the stay.  The
aim of this experiment was to configure T-CARE in order to ascertain the patient’s
survival based on the evolution of the patient and the demographic data of individual
cases. The experiment was carried out considering 52 input cases from the initial set
(selected randomly), while 323 temporal cases made up the TCL where survival was
known.  Once the TCL was defined, the system required the calibration of the similarity
measure. The attribute weights of the global similarity measure were assigned based on
the relevance of each parameter with respect to patient survival.  The results of the
experiments showed the advantages of different similarity measures described. Table 1
summarizes the results of the experiments and compares T-CARE with classical CBR,
considering the temporal information as a numerical attribute and other temporal CBR
approaches using event sequence similarity measures.

Table 1. Comparison of T-CARE and other approaches.

4. MEDICAL KNOWLEDGE
Knowledge Management (KM) and Knowledge Management Systems (KMS) have
been demonstrated to provide an effective stimulus for organizations to structure,
mobilize and reuse knowledge stored in a knowledge base (KB), resulting in improved
performance [62]. Thus, it seems reasonable to consider that, after a careful adaptation
of KM and KMS, this strategy could be valid in clinical environments. In this section,
we describe two approaches of knowledge base to the population: knowledge
acquisition and knowledge discovery. 

4.1. Knowledge Acquisition in Medicine
Knowledge modelling and acquisition should not be regarded as a process of mapping
expert knowledge for computational representation, but as a model-building process
[63]. In medical domains, we identify two key issues: (1) standardising medical
knowledge and (2) constructing computable models using a Knowledge Acquisition
Tool (KAT) adapted to the medical domain.
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The problem of medical knowledge standardisation has been widely discussed in the
literature. On one hand, medical coding systems and thesauruses have been developed
in attempt to solve problems of redundancy and ambiguity concerning medical terms,
focusing on causes of death and forms of illness. Some of the most widely used coding
and terminological systems are ICD, UMLS, HL7, LOINC, CTV-3, and SNOMED CT
[64-69]. On the other hand, ontologies are mechanisms for concept sharing and reusing,
that entail a deeply detailed description of terms and axioms needed for a formal
knowledge representation of the domain. Healthcare ontologies extend medical
thesauruses by describing explicit formal relations and constraints, so adding semantics
to the vocabulary. There is a wealth and wide variety of ontology proposals in the
literature related to the clinical domain such as GALLEN, OPENEHR, GO, OBO and
ON9 [70-74].

Knowledge acquisition is also a well known problem in the literature. One of the
most cited generic-domain KMS is Protégé [75], a suite of tools and a methodology for
building ontologies and generic KATs that should be adapted to a specific domain, such
as in [76]. One significant example is KAVE [77], a KAT for decision support system
for artificial ventilation. Other systems proposed are based on deep qualitative models,
such as KARDIO for electrocardiogram interpretation and QuMAS, a qualitative model
acquisition system for automatic learning [78]. With regard to the integration of KMSs
into clinical information processes, some success has been achieved with QMR, a
medical consultation system in various knowledge-based variants for decision support
such as INTERNIST-1 (for general internal medicine) and CADECEUS AI [79].

At this point, we identify three factors considered essential for building KM and
KMS integrated into the medical domain: (1) the need to represent specific knowledge
depending on the medical field (e.g., atemporal or temporal aspects), (2) the need to
implement effective knowledge acquisition tools adapted to the medical service in order
to build the KB, and (3) the need to share a common medical terminology.

In order to effectively build a medical KB using the aforementioned models, KATs
are required to help physicians to extract and formalise their tacit knowledge using
these formal structures. Significant advances have been achieved in this field through
the years, and clinical decisions based on knowledge have been found to be effective
[80,81]. 

4.2. Temporal Knowledge Acquisition in Medicine: CATEKAT2
We presented the Temporal Behavioural Model (TBM), a temporal and causal model of
diseases [30]. The TBM describes the underlying structure stored in the KB. This model
is structured as a causal network in which each disease (etiological diagnosis) is
connected to the abnormal manifestations (signs and symptoms) and to other diseases
caused (pathophysiological diagnoses). The time dimension is an important factor to
consider in the ICU domain. Therefore, each disease description is extended to include
temporal knowledge as a set of temporal constraints among elements in disease
symptoms. 

In addition to the causal and temporal knowledge, contextual knowledge is also
required in medical domains. Disease finding could be different when, for example,
some drugs are prescribed to the patient, or some risk factors are present. Temporal
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contexts are specified by at least one contextual concept, which may have associated
temporal knowledge (i.e., those contextual concepts describing drugs prescriptions) or
may not (e.g., those contextual concepts describing risk factors associated to patients).
For instance, a temporal context can be described by the presence of dehydratation
before an Acute Myocardial Infarction, which can induce a bradycardia after Mixed
Shock Syndrome.

CATEKAT2 is the CAusal and TEmporal Knowledge Acquisition Tool presented in
[30] that allows experts to interact in the construction of the KB. To this end, the tool
provides a wizard strategy, which is needed because of the complexity of the TBM,
where the physicians could contribute step by step in the construction of the KB.
Experts can insert causal relations between concepts as well as temporal constraint to
particularize each disease. The consistency of the temporal constraint network
described is checked using FuzzyTIME (see Section 2.3).

In the KA process, users other than physicians, such as knowledge engineers, might
contribute to the development of the TBM. Therefore, CATEKAT2 was conceived as a
multi-user KA Tool accessible via a web-based interface (see Figure 6), allowing
cooperative work through role management, notice board, and e-mail. CATEKAT2 not
only allows editing, but also browsing, querying, and managing the KB.  Ontologies
provide CATEKAT2 with a simple way to manage structure and maintain medical
terminology. CATEKAT2 uses its own ontology based on some parts of standard coding
systems. The domain ontology was carried out by following the methodology proposed
in [82]. In this process, physicians and KEs build an ICU ontology with Protégé3 Editor
and, once the ontology reaches a stable version, it is loaded onto the CATEKAT2
ontology server. The ontology server is implemented on the Protégé framework,
developing a web service to edit and query the ontology. The server is deployed using
the Apache Axis toolkit plus the Tomcat web container to define web-service compliant
interfaces. CATEKAT tool also provides a web interface to edit part of the ontology.  

Figure 6. CATEKAT2 interface
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In addition to KB management, CATEKAT2 may also be used for medical training.
Each model using CATEKAT describes a particular etiological diagnosis discussed by
the medical team to obtain a set of signs and symptoms, its possible pathophysiological
diagnoses and the causal and temporal relation between all these elements. For instance,
CATEKAT2 can be used to show students and junior physicians a concise description
of the most common pathologies and their temporal evolution in the ICU.

The knowledge acquisition tool development entails studying the domain in full
depth. The medical domain, in particular ICUs, is hard to classify and its terminology
is hard to interpret.  In some cases, the definition of terms may cause possible wrong
interpretations. Hence, the knowledge acquisition lies in an ontology. This allows a
consistent use of medical terms. Thus, using ontologies, KB acquisition could be
viewed as a process of enlarging the domain ontology with specific knowledge of a
particular domain. In some other cases, terms are equivalent but not considered in the
ontology. We suggest the use of dictionaries of synonyms and thesauruses.

Another point that we dealt with was the incompleteness of the knowledge acquisition.
For example, the physician could describe some related clinical signs, however, without
specifying how these signs should be interpreted when they are observed in the patient.
The missing information must be acquired from some other experts.

WOMKA [83] is an adapted version of CATEKAT particularly for paediatric
medical needs and to implement part of the Evidence-Based Medicine methodology
[84]. This KAT is currently in use at the Paediatric Service of the Virgen de la Vega
Clinical Hospital (Murcia, Spain).

4.3. Temporal Knowledge Discovery and Data Mining
Knowledge Discovery (KD) can be defined as the process of extracting non trivial,
unknown, and potentially useful information implicit in the data [85]. This process
incorporates techniques from databases, statistics and machine learning with two main
purposes: pattern discovery and prediction.

In the medical domain, the collection of the vast amount of data provided by the
EHR makes it possible to apply Data Mining (DM) techniques aimed at discovering
new relationships between all the recorded data (pathologies, symptoms, treatments,
etc.). This is particularly true for the ICU where continuous monitoring of patients
generates an enormous amount of heterogeneous data, including biological signals
sampled periodically, data from clinical history, events and episodes that reflect states
and trends. In this domain, DM techniques have been found to be powerful in
applications such as patient clustering for identification of colorectal cancer risk groups
[86] or temporal decision trees for predicting mortality in the ICU [87]. 

Temporal Data Mining (TDM) can be defined as the activity of searching for
interesting correlations or patterns in large sets of temporal data accumulated for other
purposes [88]. It is capable of mining activity, inferring associations of contextual and
temporal proximity, some of which may also indicate a cause-effect association. Such
important knowledge may also be overlooked when the temporal component is ignored
or treated as a simple numeric attribute [49]. The underlying idea in this research is the
generation of potential knowledge that can suggest new ideas to physicians about the
behaviour of these variables.
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4.4. Temporal Data Mining in Medicine
Most TDM techniques are based on conventional data mining techniques that have been
slightly modified in order to be applied to temporal data. However, the rich semantics
of temporal information can be exploited to devise TDM algorithms that provide more
informative outputs. Based on this idea, a number of methods for discovering more
expressive temporal patterns have been proposed [89].

The frequent pattern mining problem was introduced by Agrawal [90] who
discovered frequent association rules in databases of item sets. Different variations of
the algorithm for discovering association rules with temporal information have been
proposed, such as temporal association rules [91] and cyclic rules [92]. The simplest
temporal pattern is a sequence [93,94] and consists of a set of events that are ordered in
time. Episodes presented in [95] are defined only by means of a partial order between
all the elements of a pattern, thus generating richer patterns. Recent works in this field
are focused on the efficient discovery of frequent patterns [96], the discovery of fuzzy
patterns [97], and finding patterns with more properties [98].

Association rules, episodes and sequences are the basic temporal patterns. We
presented the TSETmax algorithm for the discovery of sequential patterns in transaction
databases [99]. The strategy is an a priori, look-ahead technique using a set-
enumeration tree to store the detected sequences. This algorithm implements a model
based on Dempster-Shafer Theory to generalize frequent sequences into temporal
episodes, in order to compactly describe all the possible temporal orders in which
frequent events may appear. 

The next step is to mine temporal relations which are more complex relations than
the simple chaining of events. However, the more temporal relations used, the more
complex the process. Thus, recently proposed models limited the number of temporal
relations used. We selected the Fuzzy Temporal Constraint Networks (FTCN)
formalism to represent both the input and the output of the mining process [100]. This
model allowed us to build more expressive temporal patterns, including basic temporal
relations of all kinds between both time points and intervals. Computational complexity
is bounded to practical limits if small patterns are considered. It is inspired by a-priori-
like methods, and applies temporal constraint propagation to pruning non-frequent
patterns and temporally inconsistent patterns.

Both algorithms have a clear use in medicine. On one hand, the sequential patterns
in medicine allow us to explore the patients’ evolution. For instance, we obtained
patterns from the data of the first days of stay of patients in an Intensive Care Burn Unit
(problem also introduced in Section 3.2). On the other hand, the second model is more
complex but it allows us to establish more complete patterns from the temporal point of
view. For example, we could obtain an exhaustive temporal description of the relations
between events and therapies in an Acute Myocardial Infarction.

5. CONCLUSIONS
Intensive Care Units are hospital services which monitor and care for severely ill
patients. The patient-evolution study is critical and, therefore, the temporal dimension
plays an essential role in this medical domain.
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Far from being a survey in the temporal reasoning topic, the current work should be
understood as a position paper. The main goal, therefore, is to give our view of some
aspects of practical problems of temporal reasoning in the ICU field, providing our
practical experience in the field in the last decade.

In this work, we provide a short review of some of the most relevant aspects for
managing the temporal information in ICUs from the AI perspective. In particular, we
consider (1) the traditional management of time in medical information systems, (2) the
representation of time for reasoning purposes, (3) mechanisms to implement temporal
similarity, (4) the acquisition of temporal medical knowledge, and (5) temporal
knowledge discovery. We also elaborate on each of the aforementioned aspects by the
description of our practical work in this field in the last decade.

The proposed analysis is a vertical view of the relation between the ICU information
process and time, in both explicit and implicit representation. Firstly, the brief analysis
of the representation currently used in medical information systems highlights the
shortcomings in traditional systems in exploiting temporal information. Since these
systems are confined to storing the timestamps of some events of the EHR, the temporal
querying or reasoning is difficult to develop. These features are fundamental in the
development of AI applications, since in most cases, they need a high level of
knowledge to be captured and represented. 

Secondly, the mechanisms described in the rest of the paper provide the
infrastructure to implement intelligent software applications for different purposes.
Temporal reasoning engines [e.g., 29, 32, 33] could be used for temporal inconsistency
detection in a diagnosis application on an EHR. Once the clinical hypothesis and data
are time consistent, advanced temporal querying could be implemented, thanks to the
temporal similarity functions in a CBR system, such as the T-CARE system [61] or the
multi-level temporal abstraction CBR system described in [52]. 

Certain healthcare quality improvement can probably be achieved via the Evidence-
Based Medicine (EBM). EBM integrates individual clinical expertise with the best
available external clinical evidence (clinically relevant research) [84]. For instance,
CATEKAT2 [83] is a tool that enables physicians to define the evolution of the temporal
behaviour of heart pathologies, and to make this knowledge available to the medical
team. Thus, knowledge management tools could be used to support EBM in order to
objectivise and share knowledge and experiences. 

Finally, knowledge discovery techniques based on raw or pre-processed data could
provide additional information on medical research when the analysis of the temporal
information is complex.  TDM is almost uniquely based on statistical methods and has
been rarely used in medical research. However, physicians must consider the temporal
patterns obtained, such as sequential patterns and scenario patterns, as alternative
hypotheses that must be validated using the well established clinical methods.

Some other considerations must be taken into account when the aforementioned
approaches are developed. Although AI models are well known from the theoretical
point of view, their practical development in each medical scenario must be individually
analysed. The interference produced by the extension of the ICU information systems
to the existing clinical work must be reduced. 
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Our work for the next few years will focus on home-patient healthcare models
combined with biomedical monitoring for risk detection.
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