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ABSTRACT
Pressure ulcers are a common problem among patients with limited mobility, such as those bed-
bound and wheelchair-bound. Constant and prolonged applied pressure is one of the extrinsic
factors contributing to the development of pressure ulcers. Analyzing lying postures together with
interface pressure measurements from a pressure sensitive bed helps revealing pressure hot spots
that can potentially lead to pressure ulcer development. We propose an intelligent system that
features lying posture classification with pressure hot spots identification based on interface
pressure measurements to possibly identify potential pressure ulcer risk and to provide effective
preventive measures. Experimental outcomes correctly classify different lying postures with an
accuracy of up to 93%. The proposed system is expected to assist caregivers to detect risk
evidence and to provide timely and appropriate interventions for effective pressure ulcer
prevention.

Keywords: pressure sensitive bed; pressure hot spots; lying posture classification; interface
pressure; pressure ulcer prevention

1. INTRODUCTION
Rapid growth of elderly population is one of the most pressing issues in healthcare
today. For elderly, especially those who are frail with compromised independence, their
safety and quality of care can be enhanced by providing continuous surveillance to
monitor their health status and well being. This form of improved care can be facilitated
with Information-Communication-Technologies-(ICT)-enabled personal health
monitoring solutions which leverage on ambient-assisted living environment using
sensors, actuators and robotics. This new healthcare paradigm is widely accepted as a
viable solution in various healthcare settings [1, 2].



The elderly who are frail and disabled spend most of their time in bed and usually
require around-the-clock care from caregivers. As a result of prolonged recumbency,
those who are immobile face the risk of developing pressure ulcers [3, 4]. Pressure
ulcer, which is an area of localized damage to the skin and to the underlying tissues
caused by pressure, shear and/or friction, is a common and important issue to be
addressed [5]. The current understanding of pressure ulcers confines the definition only
to deep tissue injuries caused by sustained deformations of subcutaneous soft tissues in
the vicinity of bony prominences [6]. About 11% of nursing home residents in the U.S
suffer from pressure ulcer related problems [7]. Also, epidemiological studies in the UK
reported pressure ulcer prevalence ranging from 4.4%, in a community unit, up to 37%
in palliative care [8]. The cost of managing pressure ulcers is enormous and estimated
by the UK National Health System to be in the range of 1.4 to 2.1 billion pounds
annually, with most of the cost attributed to nursing time [9]. According to a recent
survey [10], pressure ulcer is still a major and costly healthcare issue in care institutions
due to the inability to provide timely preventive measures. Hence, the importance of
early recognition of potential risk factors and timely interventions to alleviate this
problem must be emphasized.

With advances in pressure sensing technologies, pressure sensing devices can
measure interface pressure [11] exerted on a subject unobtrusively and continuously
[12, 13]. Interface pressure measurements are usually analyzed offline [14, 15] to
evaluate and assess the pressure relieving capabilities of different support surfaces and
devices. On the other hand, real-time interface pressure measurements are utilized to
provide the interventions of turning the subjects and positioning appropriate support
surfaces [16, 17]. However, measured interface pressure and pressure ulcer do not have
a very high qualitative relationship [18, 19]. Although interface pressure alone has
inherent limitations to identify pressure ulcers development, proper interpretation and
processing techniques of analyzing interface pressure measurements may assist in
effective prevention of pressure ulcers [16, 17]. Our approach for pressure ulcer
prevention is conceptually based on continuous interface pressure measurements
identifying potential pressure hot spots on vulnerable areas of the body. This allows
caregivers to have a better understanding of pressure ulcer risks, thus enabling to
implement timely and appropriate preventive measures. For example, mapping
appropriate interface pressure parameters with recognized lying position/posture as
shown in Figure 1, the system can provide the caregivers an understanding and
assessment of possible pressure ulcer risks of the subject. In the event of a high risk of
pressure ulcer development, the caregivers can be notified through in-situ alerts and
reminders. Although we have targeted our solution to pressure ulcer prevention, the
recognized features and contexts of pressure evidences can be applicable to other bed-
based health and well-being monitoring applications.

The objective of this work is to present and to test an intelligent system that features
lying posture classification with pressure hot spots identification based on interface
pressure measurements to possibly identify potential pressure ulcer risks. The paper is
organized as follows: in section 2, we provide literature survey on various pressure
ulcer prevention approaches and the rationale for pressure ulcer prevention using the
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pressure sensitive bed. The sensing hardware and system architecture of our pressure
ulcer prevention pilot testbed, intelligent BEdsore Prevention System (iBEPS), are
discussed in section 3. Section 4 provides details of the proposed lying posture
classification approach and various methodologies. Detailed analyses of different lying
posture classification approaches with experimental results, limitations and future
directions are presented in sections 5 and 6, respectively.

2. RATIONALE FOR PRESSURE ULCER PREVENTION
The risk factors for pressure ulcer development can be broadly classified into intrinsic
and extrinsic factors. Intrinsic factors are comprised of parameters specific to the
human subject such as body weight, immobility, sensory perception and nutrition.
Extrinsic factors refer to environmental conditions such as intensity and duration of
interface pressure, friction, shear force and degree of skin exposure to moisture.
Intrinsic factors are not usually easily remediable in the short term, whereas extrinsic
factors are more modifiable and of these, the magnitude and duration of interface
pressure is deemed to be of utmost importance [20]. Both Reswick and Rogers
pressure-time curve [21] and Sigmoid injury threshold [22] for pressure ulcer risks
illustrate this point properly. Therefore, interventions to decrease the risks of pressure
ulcers should aim at reducing the magnitude and duration of the applied pressure
exerted on the subject’s body parts. To fulfill this requirement, the potential risk
evidence caused by the applied pressure on the pressure hot spots must be detected and
identified continuously through a pressure sensing device [12].

2.1. Pressure Ulcer Assessment and Prevention Approaches
Although there are several guidelines, assessment skills, and approaches for pressure ulcers
prevention [23, 24], it is still an unresolved issue in practical nursing care environments.
Risk assessment skills on specific subjects were studied to validate the applicability of
existing risk measures [24, 25] but performing accurate risk assessment to individual
subject is still a challenging task. Defloor et al. evaluated different operating-table
mattresses to determine the most suitable support surface for pressure ulcer prevention
[26]. Their study revealed that there were apparent differences in interface pressure for
different positions of the subject, and no mattress could reduce applied pressure
sufficiently. A review on different support surfaces shows that pressure ulcer
development also depends on the types of materials used for supporting surfaces, but
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none of them is able to fully prevent pressure ulcers [27]. Turning of the patient has
been shown to be a feasible method of reducing pressure ulcers, but the effect of posture
change during the turning interval has not been considered [28]. Evaluation of interface
pressure on pressure ulcers prevention with pressure sensors [12] proved that body
turning or repositioning, either voluntarily [17] or based on continuous pressure
measurements, could reduce the risks of developing pressure ulcers.

Air-filled mattresses [29] are commonly used for relieving applied pressure on the
body and have been shown effective [30]. However, the actuation (filling/releasing air)
is typically performed either randomly or based on a simplified human model [29]. It
does not determine the potential risk locations associated with a lying posture or the risk
of developing pressure ulcers at those locations. From the biomechanical perspective,
the prevention of ulcers caused by internal tissues load has been studied, and the effect
of high internal load but low external load that causes tissue deformations has been
demonstrated [31, 32]. Actimeter and elastography were employed to observe activity
levels and to monitor tissue deformation, but they could only observe limited areas of
the body and could not measure the effect of applied pressure on human body [33]. A
portable gauge measuring skin biomechanical properties was developed to detect tissue
deformation or injury, but could not measure applied load exerted on different areas of
the body [34]. Although the risks of pressure ulcers can potentially be reduced through
various approaches, it is still difficult to provide effective preventive measures due to
the complex interplay of multiple intrinsic and extrinsic factors associated to pressure
ulcer development.

2.2. Pressure Sensitive Bed for Pressure Ulcer Prevention
The constant and prolonged applied pressure over bony prominences is one of the
extrinsic contribution factors of developing pressure ulcers [35]. However, considering
interface pressure measurements alone may not be able to prevent pressure ulcers
completely [19]. Not all commonly used and well-known interface pressure parameters
can provide reliable representation of pressure ulcer risk evidence [18]. Recent research
has also pointed out that pressure ulcers can still occur due to high internal tissue load
or stress even if the interface pressure is low [31, 32]. However, as tissue tolerance is
still an undetermined parameter, the best solution for now is to identify high interface
pressure points, viz. pressure hot spots, and to facilitate desirable pressure changes at
the earliest stage. By profiling interface pressure with body position/posture
continuously over time, the potential pressure hot spots at critical locations of the
patient’s body can be determined. According to the identified pressure hot spots and
pressure distribution with the lying posture, potential pressure ulcer risks may be
recognized accurately. This helps caregivers to provide timely and appropriate
interventions to relieve the applied pressure from the identified pressure hot spots.

Decreasing the excessive applied pressure over bony prominences and avoiding
prolonged body rest are currently well-known strategies for pressure ulcer prevention
[23, 35]. Ideally, if caregivers know where the potential risk locations are, they can
implement the interventions such as relieving pressure, changing lying posture,
providing support surfaces, applying medications, etc. [5, 28], thereby decreasing the
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likelihood of pressure ulcers development. Knowledge of high risk locations can be
determined by employing a pressure sensitive bed to continuously monitor the
potential risk evidences (pressure hot spots) over bony prominences [12, 13].
Reenalda et al. demonstrated that shifting in sitting posture might reduce the pressure
ulcer development as this process increases tissue oxygenation [17]. Our work
illustrates the possibility of an intelligent and personalized means of identifying
potential pressure ulcer risks from interface pressure measurements with pressure hot
spots identification using a pressure sensitive bed. Figure 2 delineates how interface
pressure causes development of pressure ulcer. The mapping or association of
interface pressure measurements with body position/posture provides information
about the locations of pressure hot spots. In this paper, we present a two-level lying
posture classification approach with experimental analysis of different posture
classification methods. In our ongoing work, we are examining the aspect of mapping
identified hot spots to the posture through the use of three-dimensional computer
graphics modeling techniques.

3. PILOT TESTBED FOR INTELLIGENT BEDSORE PREVENTION 
SYSTEM: iBEPS
The purpose of iBEPS is to provide a system for continuous monitoring of applied
pressure, thereby enabling continuous assessment of potential pressure ulcer risks. It is
important from clinical perspective that the system is cost-effective and it should be
easily integrated with other preventive measures [23].

3.1. Hardware Configuration
An array of piezo-resistive pressure sensors called Force Sensing Resistors (FSR,
Interlink Electronics, Camarillo, CA, USA) was configured in a manner similar to the
Tekscan Flexiforce sensor (Tekscan Inc, Boston MS, USA) to determine both spatial
and temporal pressure evidences of the subject. According to the sensor’s technical
specifications and our evaluation experiments, the sensor exhibits non-linearity of 3%,
repeatability of ±3% of full scale, accuracy with variation of ±5%, and has a response
time of 1 to 2 msec. The acquired pressure data are fed into relevant processing

Journal of Healthcare Engineering · Vol. 1 · No. 2 · 2010 221

Sustained tissue
deformations

Tissue
damage

Abnormal
pressure

Pressure
hot spots

Pressure ulcer
prone areas

Prolonged &
constant pressure

Interface
pressure

Lying
posture

Pressure
ulcers

Contribute

Cause Exist Cause

Apply

Temporal

Intensity

Spatial

Correlate Identify

Progress

Contribute

Other intrinsic
factors
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modules to extract features, to classify postures, and to detect movements of the
patient lying on the bed. Figure 3 illustrates how pressure sensors are packaged and
configured on a bed of 1.8 m2 area. The spacing between adjacent sensors, both
circular and long FSRs, is about 10 cm. In order to achieve high sensitivity in
measuring the applied normal pressure, a puck is attached to the sensing area of each
circular FSR as shown in Figure 3(b). The pressure map, a sheet that contains matrix
of pressure sensors, is sandwiched between the thin mattress pad and underlying thick
mattress as shown in Figure 3(c).

The sensing bed layout consists of a total of 56 sensors including 49 circular FSRs
and 7 long FSRs as shown in Figure 3(a). The analog readings from these sensors are
sampled from 1.0 Hz to 10.0 Hz. The readings are converted into digital representation
ranging from 0 to 1023 (10 bits resolution) through data acquisition units. The applied
load to each FSR is then converted into weight in kilograms, Wkg, from acquired data,
x, according to FSR applied load-voltage characteristics provided by the manufacturer
after conditioning and calibrating the sensors using Equation (1):
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Subsequently, the weight is used to calculate interface pressure (kg/cm2) based on
the coverage area of each sensor. The weight distribution of the pressure sensitive bed
is used for lying posture classification.

3.2. System Architecture and Development
A basic functionality of iBEPS is continuous sensing of interface pressure exerted on the
subject. Its extended functionalities can range from recognizing the risk evidences from
interface pressure measurements to supporting prompts and reminders for timely
intervention. As shown in Figure 4, the pressure sensors on the bed measure the applied
pressure exerted on the subject. The controller is mainly responsible for acquiring data
from sensors and converting them into meaningful interface pressure parameters. The
analyzer performs processing of measured pressure data and provides automated
personalized intelligence to recognize risks associated with pressure ulcers. It interacts with
various reminder components that provide desirable audible and visual reminders to notify
the caregivers when potential risks or undesirable events occur to the patients. The database
server provides a unified storage for the whole system. The application server enables
seamless access, and either local or remote management of the system. All components of
iBEPS, except sensors and reminders, are software-based. A major challenge addressed in
iBEPS is to reduce uncertainty due to noisy pressure sensor data, ensuring that the
automated intelligence provides sufficiently reliable and robust outcomes.

3.3. Pressure Ulcer Prevention Process
Figure 5 illustrates the step-by-step operations and processes involved in pressure ulcer
risk recognition using iBEPS. By correlating and mapping the subject’s position or
posture with interface pressure parameters, potential pressure hot spots can be identified
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continuously. The intelligent analysis of pressure measurements can also extend to
identify the subject’s movements, to observe the repositioning or changes in pressure
distribution, and to determine the associated pressure relieves caused by such
movements. The intelligent algorithms carry out data/information fusion based on
various identified pressure evidences [18], prior pressure ulcer risks, as well as personal
profiles. The potential pressure ulcer risks of the patients are then estimated based on
measured pressure evidences and patient’s specific parameters. Finally, appropriate
alerts and reminders are sent to the caregivers who should promptly respond to
the patients according to recognized pressure ulcer risks. As depicted in Figure 5,
pressure ulcer prevention process includes two parts: (a) an automated classification of
the lying posture into one of the canonical lying postures, and (b) the use of interface
pressure measurements to predict potentially at risk hot-spots in each lying posture. The
current implementation includes accurate and reliable lying posture classification,
whereas future implementation will involve from personalized pressure hot spots
identification to pressure ulcer risks recognition and notification.

4. APPROACH AND METHODOLOGIES FOR LYING POSTURE 
CLASSIFICATION
In addition to the lying posture classification of the subject, the interface pressure
measurements can also be used to determine the duration and intensities of applied
pressure to the subject’s body. Based on the intensities and duration of interface pressure
associated with the detected lying posture, pressure hot spots that may potentially lead to
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development of pressure ulcers can be identified. Previous works on posture classification
used different sensor configurations, and considered only coarse-grained lying postures
[36, 37]. In our work, a two-level classification approach is proposed to enhance the
robustness and accuracy of posture classification, as shown in Figure 6. First, desirable
features vectors are extracted from pressure distribution. Both features vectors and
pressure distribution are used to classify the postures of the subject. Finally, the outcomes
from different classifications are fused to achieve the resultant lying posture.

4.1. Principal Component Analysis
Principal Component Analysis (PCA) [38] is a non-parametric method of extracting
hidden features from high dimensional data sets (see Figure 7). It transforms complex
data set to reveal hidden and simplified underlying structure that cannot be observed
directly. The salient spatial features for particular posture can be identified by finding
orthogonal linear combinations of principal components (PC)s. The PCs of any data
matrix X can be formulated and represented as follows:

(2)

In our case, means and variances of the whole pressure distribution over bed are used
as basic features for classifying postures. The directions of maximum variance contain
the best features for discrimination under Gaussian assumption, and current features
possess the most important dynamic of underlying data sets. Although there are many
PCs available, selecting optimal number of PCs guarantees minimum loss of
information while still retaining important data dynamics. In our analysis, we selected
the four most dominant PCs to perform features fusion with Support Vector Machine
(SVM) classifiers.

Φ Φ
Φ

i i
T

i

X= { }
=

arg max var
1

Journal of Healthcare Engineering · Vol. 1 · No. 2 · 2010 225

Features
extraction

Pressure
sensing
system

Raw data

Pressure
readings

Feature
vectors

Classified
postures

PCA
Descriptive statistics

Posture
classification

SVM Voting fusion

Posture
decision

Resultant
lying

posture

Figure 6. Two-level lying posture classification approach and methodologies.

Data
normalization

Pressure
readings

Perform eigen
decomposition

Select
dominant PCs

Eigen
features

Normalized
pressure

Eigen values &
vectors

Figure 7. PCA features extraction process.



By processing and analyzing input pressure readings according to Figure 7, the
Eigen features can be extracted to reveal hidden and low dimensional features of
specific lying postures through covariance methods. First, normalized pressure matrix,
Pbed, with a dimension of M × N are composed.

(3)

where N is a specified number of samples and M is the desired data width, with their
values being 56 and 80, respectively. The covariance matrix can be calculated as

(4)

Finally, Eigen values and Eigen vectors of resultant covariance matrix can be
computed as

(5)

where µi and vi are Eigen values and Eigen vectors of covariance matrix, respectively.
Finally, the most dominant PC (4 PCs in our case) are selected according to their ranks
from ascending orders of Eigen values. The highest Eigen value means the most
important dynamics of underlying pressure readings. From the selected PCs, the Eigen
features are provided to classifiers to classify the lying posture of the subject.

4.2. Descriptive Statistics
Descriptive statistics generally provide basic features of underlying data through simple
summaries based on data dispersion and central tendency from pressure distributions.
Because of spatial variability of different lying postures on the bed, the applied
pressure intensity distributions of different regions are varied statistically. For this
reason, the whole bed is divided into nine regions as shown in Figure 8. The number of
pressure sensors in a region varies according to the configuration shown in Figure 3.
Four descriptive features are calculated in each region to identify spatial features
specific to a particular posture. The extracted features include mean (Fmean), variance
(Fvariance), standard deviation (Fstddev), and Root Mean Square (Frms) values from
respective regions. Subsequently, area feature vectors can be determined by combining
extracted features from all divided regions. The resultant area feature vectors are
modeled with SVM to classify different lying postures. The feature vectors extracted
from a set of pressure readings Farea over a specific area of the bed can be expressed as

Farea(X) = [Fmean(X), Frms(X), Fvarience(X), Fstddev(X)]T (6)

4.3. Support Vector Machine
Support Vector Machine (SVM) is basically a non-parametric supervised binary
classification technique based on statistical learning theory [40]. It projects original data
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into a higher dimensional space specified by a kernel function, and computes a
maximum-margin hyperplane decision surface that linearly separates the two or more
classes. It can achieve best posture classification accuracy from pressure data and
features through respective optimal hyperplanes. Our aim is to construct classifier
models to predict the lying posture class from unknown data sets in which only
attributes are provided. Three different classifiers are trained and constructed according
to classifier inputs: pressure intensity data, Eigen features and area statistics features.
SVM classification can be presented as the following duality function:

(7)

The goal of this duality function is to optimize the margin, ω, constructing a classifier
model with canonical separating hyperplanes through the scaled data sets, Θ(xi):

(8)

The procedures of creating posture model with specific kernel parameters and
applying it to posture prediction involve offline training and online classification
processes as illustrated in Figure 9. The inputs to classifier include pressure data, Eigen
features and statistical features. They are independently transformed into scaled data
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sets of [0, +1] range with M’ variables and N’ widths (M’ × N’ data) as labeled training
data sets. The values of M’ are 5, 36 and 56 for Eigen statistics, area statistics features
and pressure data, respectively. The value of N’ is 50 for all three classifiers.

The classifiers are modeled with the appropriate Kernel function and parameters
according to the characteristics of underlying data distribution. The following Gaussian
kernel, Radial Basis Function (RBF) is used:

(9)

Cross-validation and testing is then performed to select the Gaussian kernel
parameter, γ , and regularization cost parameter, C, according to cross-validation
accuracy. Different pairs of C and γ were analyzed and the ones with the best posture
classification accuracy were selected. It is an iterative process to identify the optimal
kernel and classifier parameters with the best posture classification accuracies. The
values of C and γ pair used in the posture prediction are (23, 2−3) and (210, 2−7) for both
features and data inputs, respectively. Finally, trained classifier models are saved into
files to be used in online prediction of posture with unlabeled data sets. To perform
online posture classification, trained classifier model is first loaded. Lying posture is
predicted based on input pressure features/data. The classifiers’ outputs are then fused
with weighted voting fusion in order to determine the resultant lying posture.

4.4. Weighted Voting Fusion
Due to the high possibility of degradable and erroneous measurements from multiple
pressure sensors, uncertainties can be propagated through feature extraction and
classification stages. In order to alleviate these problems, intermediate posture results
from different classifiers are combined to identify the correct lying posture. Weighted
voting is a type of fusion in which some members’ votes carry more weight than others
through prior empirical measurements [40]. The posture classification accuracy can be
enhanced by fusing the intermediate classification outputs from different classifiers to
infer the actual lying posture. The posture decision, Dposture, can be represented as a
function of a set of classifiers, Cm and postures, Pn. The decision can be made by
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selecting the posture with maximum weights by summing weights of the same posture
from different classifiers according to the prior assigned posture weight of particular
classifier, W p

Cm.

(10)

The weights assigned to the classifiers with respect to lying postures are formulated
through classification accuracies obtained from the testing phase. The voting matrix can
be built from empirical weights with input classifiers and posture classes. The values of
weights in voting matrix are assigned prior to fusion process by analyzing the confusion
matrices calculated from different classifiers’ outcomes. The assigned weights cannot
be altered during the online classification process as their values are dependent on the
trained classifier models. Figure 10 illustrates the use of weighted voting to determine
the resultant lying posture from SVM classifiers’ outputs.

Table 1 shows the voting matrix derived by comparing posture classification and
posture misclassification rates with respect to different lying postures. The weights
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Classifier

Statistics Features 48 39 25 28 39 37 46 45 46
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specified in the matrix are used to identify the resultant lying posture of the subject by
taking inputs from different classifiers.

5. EXPERIMENTAL ANALYSIS AND DISCUSSION
Since our goal is to develop a monitoring system for lying postures classification
through pressure sensitive bed, we conducted posture classification experiments with
healthy volunteers using proposed classification approach. The common lying postures
considered for experiments include nine postures (P1 through P9) as shown in Figure 11
[41]. Six lying postures (P’1 through P’6) were identified by grouping some postures of
similar spatial characteristics among these nine postures. The postures with minimum
spatial differences according to the experiments are regarded as one posture in order to
evaluate generalized classification accuracy among different posture classification
approaches. For example, left log (P3) and right log (P4) are combined as log (P’3);
starfish (P7), freefaller (P8) and soldier (P9) are combined as straight (P’6), as depicted
in Figure 11.

5.1. Experimental Methods
This study has been approved by the local research ethics committee for protection of
human subjects. Five volunteers with height, weight and age of 164.4 ±1.4% cm (mean
± relative standard deviation), 63.2 ±15.2% kg, and 30± 5.3% years, respectively, were
involved in the experiments conducted at the lab. The pressure measurements of different
lying postures with five subjects were collected over three different experiments, resulting
in 15 unique data sets. Along with the pressure data, video data were also recorded by a
video camera to label pressure data and to validate the posture classification outcomes. In
order to avoid having similar data sets and errors propagated from sensors, data collection
for each subject was not performed consecutively and the calibration procedure was
repeated before each data collection. The influence of sensor’s mechanical loading effects
such as wear and tear, bending, etc. were minimized through calibration before each
experiment. After the experiments, data of three arbitrarily chosen subjects were grouped

230 Lying Posture Classification for Pressure Ulcer Prevention

Left
yearner

P1 P2 P3 P4 P5 P6 P7 P8 P9

Right
yearner

Left
log

Right
log

Right
foetus

Starfish Soldier Freefaller
Left

foetus

P1
P

,
1 P

,
2 P

,
3 P

,
4 P

,
5 P

,
6

P2 P3 P4 P5 P6 P7 P8 P9

Figure 11. Lying postures considered in posture classification analysis.



as training data (9 data sets), while those of the other two subjects were grouped as testing
data (6 data sets). Before applying any feature extraction or classification algorithm, data
scaling or normalization was performed on all data sets to make sure that there was no
bias in data collected from any subject. Posture classification using SVM classifiers were
then applied according to the types of inputs: pressure data, Eigen features and area
statistics features. Finally, weighted voting fusion was applied to further enhance the
posture classification accuracy by minimizing the misclassification rates.

5.2. Experimental Results
Although the analysis was primarily performed with no overlap of data from the same
subject in training and testing, we sometimes mixed data of different subjects into
testing data. The intention was to test whether the trained classifier model was biased
by data from particular training subject. No apparent bias was found in classifying
different lying postures. From preliminary classification outcomes, the posture
classification accuracies and misclassifications for classifier with normalized
pressure data inputs are exhibited in the confusion matrix as shown in Table 2. The
same analyses were also conducted for both area statistics features and Eigen features
inputs to determine their confusion matrices similar to Table 2.

The confusion matrix shows detailed analysis of classification outcomes from single
annotated test data of a particular subject. From similar matrices obtained from different
classifiers, the degree of misclassification of postures can be determined. By analyzing
the confusion matrices from different classifiers, the weights specified in voting fusion
matrix as shown in Table 1 can be determined. Tables 3 and 4 illustrate the classification
outcomes from our experiments with different posture classes using different
classification approaches. Comparison between Tables 3 and 4 demonstrates that the
classification accuracy is improved with fewer posture classes (9 postures vs. 6
postures). The classification accuracies remain the same for all classifiers. This means
that the current spatial sensing resolution is still not high enough to classify all possible
fine-grained lying postures.
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Table 2. Confusion matrix for posture classifier with normalized pressure 
data input (data in %)

% P1 P2 P3 P4 P5 P6 P7 P8 P9

P1 87 0 7 2 3 0 0 1 0
P2 0 90 0 4 0 3 0 3 0
P3 7 0 73 10 0 0 0 8 2
P4 0 9 12 65 0 0 0 4 0
P5 0 0 0 0 78 0 9 1 12
P6 0 5 0 5 0 83 1 2 4
P7 0 0 2 0 0 88 10 0
P8 0 0 2 3 0 0 3 82 10
P9 0 0 2 0 5 1 9 23 60



Table 3. Comparison of classification rates of different approaches using nine
lying postures (data in %) 

Method P1 P2 P3 P4 P5 P6 P7 P8 P9

PCA + 56 50 53 56 64 60 42 46 40
SVM

Data + 90 72 70 59 75 86 81 76 63 
SVM

Statistic + 87 65 71 60 68 72 51 63 45
SVM 

With Voting 95 92 76 70 89 88 83 80 73

It is noted that the classification between left and right lying postures (P1 and P2, P3

and P4, P5 and P6 in Table 3; P’1 and P’2, P’4 and P’5 in Table 4) did not show similar
recognition rates. This may be due to variations of spatiality among subjects. The
current results suggest that the classification rate of the posture classifier with
normalized data input is generally higher than that of feature-based inputs. As expected,
the weighted voting fusion approach using intermediate posture outputs from three
classified postures achieves better posture classification outcome than other
approaches, as shown in Figure 12.

5.3. Discussion and Future Directions
The current experiments show that the mean posture classification accuracy of pressure
data input is better than those of features inputs, Eigen features (PCA+SVM) or area
statistics features (Statistics+SVM). The extracted features may possibly lose valuable
pressure information and hence are unable to correctly differentiate one posture from
another. Hence, posture classification with Eigen features can work well with any
configuration of sensing map as its classifications are based on spatial compact patterns
relevant to particular posture from pressure readings. Although posture classification
with area statistics features is able to achieve medium classification rate, its features
are completely dependent on spatial dimension and variability of lying posture. The
change in orientation of current postures may result in different features and incorrect
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Table 4. Comparison of classification rates of different approaches using six lying
postures (data in %)

Method P′1 P′2 P′3 P′4 P′5 P′6

PCA + SVM 58 53 64 68 70 75 
Data + SVM 92 88 81 72 78 90 
Statistic + SVM 95 74 73 78 75 71 
With Voting 98 94 93 94 96 92 
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classification. Some of the lying postures may not be distinguishable from others due to
insufficient spatial difference among different postures although each sensor can provide
reliable and accurate measurements. Further analysis is needed to find possible factors
affecting the unsymmetrical posture recognition accuracies between left and right
symmetric postures. Moreover, the lying postures should not be limited to the current
nine and six posture types. It is important to include varieties of different and random
lying postures in future experiments to validate our posture classification approach.

Posture classification with direct pressure data worked well with current sensor
configuration, but this approach is not easily scalable with high sensor resolution and
requires high-performance computing resources. The posture classification using direct
pressure data may also not work well when the sensor configuration is considerably
changed. The classification accuracies of the PCA+SVM and Statistics+SVM are
consistently lower than that of the Data+SVM approach for most of the posture classes.
This can be due to the low resolution of the sensor’s spatial coverage and the spatial
similarity among different lying postures. Table 5 compares the resolution of our
pressure sensing bed with others that employ high spatial resolution of sensor coverage

Table 5. Comparison of spatial sensing resolution of pressure sensitive facilities 

Total Sensors Sensing Area, m2 Sensor Resolution, sensors/m2

Sensing Chair [33] 2016 0.19 10748 
Robotic Bed [34] 221 2.00 110.5 
Our Bed 56 1.62 to 1.8 34.6 
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Figure 12. Overall lying posture recognition rates of various approaches over
different postures.
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[36, 37] and shows the low sensor resolution of our sensing bed. Because of the low
spatial sensing resolution of the pressure sensitive bed, the classification accuracies
may be dependent on the granularity and type of the postures considered. Hence, we
may need to consider validating the current posture classification methods with
different numbers and configurations of pressure sensors to examine the relationship
between the diversity of postures and resolution. There is no information about
comparing the current pressure sensitive bed with high resolution commercial products
such as Body Pressure Measurement System (Tekscan Inc, Boston MS, USA) and
Pressure Imaging System (XSENSOR Technology Corp, Calgary, Alberta, Canada).

As pressure measurements of real and mockup subjects as well as non-sleeping and
actual sleeping conditions have subtle differences, we will validate our system with real
patients in actual care settings instead of healthy volunteers measured in the lab. A
complete implementation and evaluation is necessary to investigate how lying posture
classification and pressure hot spots identification based on interface pressure
measurements contribute to assessing potential pressure ulcer risks of the subject.
The mean posture classification accuracy of posture outcomes for three classifiers with
voting fusion is better than those without voting fusion. An ongoing research effort
investigates the performance of multimodal sensors fusion [42] in improving the
numbers of successfully identified postures and posture classification accuracies. This
may be accomplished by integrating video data into the current implementation for
lying posture classification.

6. CONCLUSION
This paper presents the design and development of a pressure sensitive bed, iBEPS,
featuring lying posture classification with pressure hot spots identification based on
interface pressure measurements. Specifically, different methodologies for lying
posture classification were evaluated using the pressure sensitive bed. By continuously
monitoring the lying posture with interface pressure measurements, potential pressure
hot spots of the subject can be identified and appropriate interventions can subsequently
be implemented. The design, implementation and evaluation of two-level lying posture
classification approach and methodologies are presented in details. Lying posture
classification experiments were conducted with the proposed methodologies to evaluate
their classification accuracies and limitations, and the results demonstrate that lying
postures can be classified up to 93% accuracy. The current posture classification
method may be further enhanced and validated  by taking into account random lying
postures, testing with different configurations of pressure sensors with real patients in
actual care settings, and integrating with inputs from video modality.

NOMENCLATURE
b The offset of hyperplane from the origin along the unit vector of margin ω
C Cost parameter of SVM that controls the tradeoff between training errors

and model complexity
Cbed Covariance matrix of the normalized pressure matrix
Cm A set of classifiers considered in weighted voting fusion process



Dposture Posture decision resulted from weighted voting fusion process
Farea Feature vector of particular area of the bed according to Figure 8
Fmean Mean pressure measurements calculated from specific area of the bed
Fvariance Variances of pressure measurements calculated from specific area of 

the bed
Fstddev Standard deviation of pressure measurements from specific area of the bed
Frms Root Mean Square (RMS) of pressure measurements from specific area of

the bed
K Kernel function of SVM model such as RBF, polynomial, sigmoid, etc.
m Total number of classifiers considered in voting fusion process (m=3 in our

experiment)
M Total number of rows (number of pressure samples) of input pressure matrix

for PCA
M′ Dimensions of input data/features of SVM model
n Total number of lying posture classes considered in voting fusion process

(n=9 for nine postures and n=6 for six postures in our experiment)
N Total number of columns (data width) of input pressure matrix for PCA
N′ Width of data/features vectors of SVM model
P Normalized pressure matrix consisting of M × N pressure measurements

used in PCA
Pn Posture classes considered in weighted voting fusion process
v Eigen vector of the covariance matrix Cbed

W Weight assigned to particular posture class and posture classifier used in
voting fusion

x Pressure reading measured from a single pressure sensor
X A set of pressure readings composed in either vector or matrix form

Greek
α Number of support vectors which define the classifier’s margin
γ Gaussian kernel parameter of SVM classifier with RBF kernel
Θ Input scaled data set to model SVM classifier
µ Eigen value of the covariance matrix Cbed

ω SVM classifier’s margin to classify among different posture classes
σ Positive number that represents the scaling factor of RBF kernel
Φ Principal components of input pressure data matrix X
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