
Research Article
Hybrid Model Structure for Diabetic Retinopathy Classification

Hao Liu, Keqiang Yue , Siyi Cheng, Chengming Pan, Jie Sun, and Wenjun Li

Key Laboratory of RF Circuits and Systems, Ministry of Education, Hangzhou Dianzi University, Hangzhou, Zhejiang, China

Correspondence should be addressed to Keqiang Yue; kqyue@hdu.edu.cn

Received 13 August 2020; Revised 12 September 2020; Accepted 29 September 2020; Published 13 October 2020

Academic Editor: Xiwei Huang

Copyright © 2020Hao Liu et al.+is is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Diabetic retinopathy (DR) is one of the most common complications of diabetes and the main cause of blindness.+e progression
of the disease can be prevented by early diagnosis of DR. Due to differences in the distribution of medical conditions and low labor
efficiency, the best time for diagnosis and treatment was missed, which results in impaired vision. Using neural network models to
classify and diagnose DR can improve efficiency and reduce costs. In this work, an improved loss function and three hybrid model
structures Hybrid-a, Hybrid-f, and Hybrid-c were proposed to improve the performance of DR classification models. Effi-
cientNetB4, EfficientNetB5, NASNetLarge, Xception, and InceptionResNetV2 CNNs were chosen as the basic models.+ese basic
models were trained using enhance cross-entropy loss and cross-entropy loss, respectively. +e output of the basic models was
used to train the hybrid model structures. Experiments showed that enhance cross-entropy loss can effectively accelerate the
training process of the basic models and improve the performance of the models under various evaluation metrics. +e proposed
hybrid model structures can also improve DR classification performance. Compared with the best-performing results in the basic
models, the accuracy of DR classification was improved from 85.44% to 86.34%, the sensitivity was improved from 98.48% to
98.77%, the specificity was improved from 71.82% to 74.76%, the precision was improved from 90.27% to 91.37%, and the F1 score
was improved from 93.62% to 93.9% by using hybrid model structures.

1. Introduction

Diabetic retinopathy (DR) is an ocular medical disease that
damages the retina caused by diabetes. People with diabetes
for a longer time are more likely to develop diabetic reti-
nopathy. According to the severity, DR can be divided into
the following five grades: no DR, mild, moderate, severe, and
proliferative DR. Mild, moderate, and severe are classified as
nonproliferative diabetic retinopathy (NPDR) stage. In the
NPDR stage, the patients have no obvious symptoms. +e
way to detect NPDR is to examine the fundus by a trained
ophthalmologist. As the condition worsens, DR will develop
to Proliferative DR (PDR) stage. In the PDR stage, abnormal
new blood vessels form at the back of the eye. +ese fragile
blood vessels can burst and bleed, which blur vision and
eventually lead to blindness. So far, the most effective
treatment period for DR is in the NPDR stage. +erefore,
regular screening of diabetic patients through fundus ex-
amination is the most effective method to detect early ab-
normal signs of DR. Early diagnosis and timely treatment are
helpful to prevent DR in patients [1].

However, the screening of diabetic retinopathy needs
professional clinical knowledge, experience, and diagnosis
time of ophthalmologists. Ophthalmologists generally need
to perform a direct examination of the patient’s fundus and
combine the fundus retinal images taken by special
equipment to diagnose the severity of the patient’s diabetic
retinopathy. +is process will take a lot of time. And the
number of professional ophthalmologists is far from enough
to meet the number of patients diagnosed. +erefore, the
automatic classification algorithm of diabetic retinopathy
severity plays an important role in improving the efficiency
of DR diagnosis. Fundus images, the main images to study
DR, are a current research hotspot [2,3]. Some research
[4–7] uses machine learning and algorithms for DR de-
tection and classification. However, as deep learning has
done well in many competitions, more and more research
uses deep learning methods for DR detection and classifi-
cation. +is research mainly focused on the end-to-end DR
severity classification of fundus images by using CNNs. In a
study, Li et al. [8] presented a novel cross-disease attention
network (CANet) to jointly grade DR and DME. +ey
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proposed a disease-specific attention module and a disease-
dependent attention module to extract useful features. +eir
network achieved AUC of 96.3% and accuracy of 92.6% for
DR classification on the Messidor database. Shanthi and
Sabeenian [9] proposed amodified AlexNet architecture [10]
for classification of DR fundus images according to the
severity of the disease with the application of suitable
Pooling, Softmax, and Rectified Linear Activation Unit
(ReLU) layers to obtain a high level of accuracy. And they
validated the performance of the proposed algorithm using
the Messidor database [11]. Finally, the proposed algorithm
achieved a classification accuracy of 96.6% on the Messidor
database. In a study, Hosseinzadeh et al. [12] presented a
new feature extraction method using a modified Xception
architecture for the diagnosis of DR disease. +e proposed
method is based on deep layer aggregation that combines
multilevel features from different convolutional layers of
Xception architecture. +e modified Xception architecture
that they proposed improved DR classification with a
classification accuracy of 83.09% versus 79.59%, sensitivity
of 88.24% versus 82.35%, and specificity of 87.00% versus
86.32% when compared with the original Xception archi-
tecture. Li et al. [13] extended a baseline network and created
four convolutional networks with multiscale inputs. +e
proposed method obtained a new state-of-the-art kappa
score in the task of diabetic retinopathy severity assessment
task on EyePACS dataset. In the study [14], Hajabdollahi
et al. modified original VGG16-Net [15] to reduce model’s
structural complexity for DR analysis by a hierarchical
pruning method. +e proposed method was evaluated using
the Messidor database and 35% of the feature maps of
VGG16-Net are pruned resulting in only 1.89% accuracy
drop. Finally, Jain et al. [16] used 3 different CNN archi-
tectures including VGG16, VGG19, and InceptionV3 [17]
and evaluated the CNN’s performance for 2 classes and 5
classes of DR classification. +ey found out that the per-
formance of the model was directly linked to the number of
convolutional and pooling layers in the CNN. +e best
accuracy for 2 classes of DR classification was 80.40%
achieved by VGG19.

+e main contributions of this work are as follows: an
improved loss function, enhance cross-entropy (E-CE) loss
function, is to improve the performance of basic DR clas-
sification models and three proposed hybrid model struc-
tures are to fuse multiple basic models for the better
performance of DR classification. In this work, pre-
processing on the fundus images was firstly performed.
During the training process of the basic models, data en-
hancement methods were used to expand the number of
samples and the diversity samples for the DR fundus dataset.
And different basic models were trained with E-CE loss and
cross-entropy (CE) loss, respectively. Results (see Table 1)
showed that our proposed E-CE loss can shorten the con-
vergence time of loss. Under various evaluation metrics, the
basic models trained with E-CE loss performed better than
the models trained with CE loss. +en, the final output
features of the better basic models in different ways were
combined to train the hybrid model structures. Results

showed that the performance of hybrid model structures is
further improved compared to the basic models.

2. Materials and Methods

+e proposed algorithm graph of this work is shown in
Figure 1. +e graph consists of three steps: fundus images
preprocessing, basic CNN models prediction, hybrid model
structures prediction, and DR grade output. First, the fundus
images would be preprocessed.+en, each basic CNNmodel
predicted the preprocessed fundus images. And the outputs
of each basic CNN model were input into the hybrid model
structures. Finally, the hybrid model structures output five
predicted values, corresponding to the probability of the five
DR grades, and the DR grade with the largest probability was
taken as the result of the fundus image.

2.1. Dataset. +e dataset for this work consists of three
different datasets which come from the Kaggle diabetic
retinopathy detection competition [18] provided by Eye-
PACS, APTOS 2019 Blindness Detection organized by the
4th Asia Pacific Tele-Ophthalmology Society [19], and
DeepDR Diabetic Retinopathy Image Dataset provided by
the IEEE International Symposium on Biomedical Imaging
(ISBI) 2020 [20]. EyePACS dataset contains 35,126 training
fundus images and 53,576 test fundus images. APTOS
dataset contains 3,662 training fundus images and 1,928 test
fundus images. DeepDR dataset contains 1,200 training
fundus images, 400 validation fundus images, and 400 test
fundus images. All fundus images from the three datasets
had been rated for the severity of diabetic retinopathy on a
scale of 0 to 4: 0 is no DR, 1 is mild DR, 2 is moderate DR, 3 is
severe DR, and 4 is proliferative DR. Examples of different
severity of DR fundus images are shown in Figure 2. Each
fundus image from the three datasets has a high resolution.
+e dataset for this work contains 39,988 fundus images
which come from the training fundus images with rate of the
three datasets because only the training fundus images from
the three datasets are rated. As shown in Table 2, the class
distribution of the dataset is highly imbalanced, and most of
the fundus images are no DR grade.

2.2.DataProcessing. +ere are two steps for data processing.
One is preprocessing for the fundus images before training
basic models; the other is the fundus images enhancement in
the training process. +e first step for data processing is
mainly to remove the black border of the fundus images
because the black border will bring useless information and
weaken the ability to extract features of the basic models and
resize the images to a suitable size for inputs of models. +e
details are as follows:

(1) Binary processing was performed on the fundus
images to find the border between the black area and
the fundus area and then cut the extra black border
for each fundus image. +e processes are shown in
Figure 3.
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Table 1: Classification results from the basic models and the hybrid model structures.

Loss Accuracy Sensitivity Specificity Precision F1 score

Basic models

EfficientNetB4 CE 0.8158 0.9442 0.7182 0.9027 0.9230
E-CE 0.8544 0.9736 0.7061 0.9017 0.9362

EfficientNetB5 CE 0.7932 0.9254 0.6782 0.8884 0.9065
E-CE 0.8488 0.9809 0.6549 0.8872 0.9317

NASNetLarge CE 0.7828 0.9151 0.7031 0.8951 0.9050
E-CE 0.8470 0.9845 0.6353 0.8820 0.9304

InceptionResNetV2 CE 0.7888 0.9657 0.5177 0.8471 0.9025
E-CE 0.8502 0.9739 0.6963 0.8987 0.9348

Xception CE 0.8100 0.9706 0.5742 0.8632 0.9138
E-CE 0.8476 0.9848 0.6217 0.8781 0.9284

Hybrid model
Hybrid-model-a CE 0.8584 0.9877 0.6481 0.8860 0.9341
Hybrid-model-f CE 0.8626 0.9652 0.7476 0.9137 0.9387
Hybrid-model-c CE 0.8634 0.9706 0.7325 0.9094 0.9390

CE indicates cross-entropy loss function; E-CE indicates enhance cross-entropy loss function; and the bold values indicate the best results.

Fundus images preprocessing

Basic CNN models

EfficientNetB4

EfficientNetB5

NASNetlarge

InceptionResNetV2

Xception

Hybrid model structures

Hybrid-f

Hybrid-a

Hybrid-c

DR grade

or

or

Figure 1: Graph of the proposed algorithm architecture.

(a) (b) (c)

(d) (e)

Figure 2: Examples of different severity of DR fundus images. (a) NoDR. (b)Mild DR. (c)Moderate DR. (d) Severe DR. (e) Proliferative DR.
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(2) Because each fundus image has a higher resolution,
which is not suitable for the input of the basic
models, all images were resized to 380× 380 pixels
for EfficientNetB4, 380× 380 pixels for Effi-
cientNetB4, 331× 331 pixels for NASNetLarge, and
299× 299 pixels for EfficientNetB5, Xception, and
Inception-ResNetV2.

In the training process, the following operations were
performed on the fundus images: rotation, width shift,
height shift, shear range, zoom, horizontal flip, and vertical
flip. +en, RandAugment was used for the images. Ran-
dAugment [21] is an improved data augmentation method
proposed by Cubuk et al. On the ImageNet dataset, Cubuk
et al. achieved 85.0% accuracy, 0.6% increase over the
previous state-of-the-art, and 1.0% increase over baseline
augmentation by using RandAugment.

2.3. Basic Model Structures. In this work, hybrid model
structures were proposed to improve the classification ability
of the basic models. EfficientNetB4, EfficientNetB5, NAS-
NetLarge, Xception, and InceptionResNetV2 CNNs were
chosen as the basic models. And then three methods to
implement the hybrid model structure were used. Finally,
the experiments to verify the performance of the basic
models and the basic models with the hybrid model
structures were done. +e results are shown in part 3. +e
structure of the basic models are as follows:

(1) EfficientNet: EfficientNet [22] is a family of models
designed by Tan et al. +ey proposed a scaling

method [23] that uniformly scales all dimensions of
depth/width/resolution of CNNs using a simple yet
highly effective compound coefficient. +en, they
used a neural architecture search to design a new
baseline network and used the scaling method to
scale it up to obtain EfficientNet, which achieve
much better accuracy and efficiency than previous
ConvNets. In this work, EfficientNetB4 and Effi-
cientNetB5 were chosen as basic models. +e input
size of EfficientNetB5 was changed to 299× 299
pixels and EfficientNetB4 kept the original input
resolution. Both of them were added a dropout layer
with 0.4 drop rate and a fully-connected layer with 5
units and the activation function of the fully-con-
nected layer was softmax function.

(2) NASNetLarge: the NASNet architecture, introduced by
Zoph et al. [24], is the best architecture found on
CIFAR-10 by the neural architecture search (NAS)
framework [25]. Different versions of NASNets with
different computational demands can be created by
simply varying the number of the convolutional cells
and the number of filters in the convolutional cells. +e
large NASNet-A which performed best on ImageNet
image classification was chosen as our basic model. A
dropout layer with 0.4 drop rate and a fully-connected
layer with 5 units by using softmax function were used
to replace the original model output.

(3) InceptionResNetV2: InceptionResNetV2 model [26]
was proposed by Szegedy et al. InceptionResNetV2 is
based on the inception network architecture [27] and

(a) (b)

Figure 3: +e process of removing the black border of fundus images. (a) +e unprocessed fundus image and (b) the processed fundus
image.

Table 2: +e DR grade distribution of the dataset.

Datasets
DR grade

0 1 2 3 4 Total number
DeepDR 540 140 234 214 72 1200
APTOS 1805 370 999 193 295 3662
EyePACS 25810 2443 5292 873 708 35126
Total number 28155 2953 6525 1280 1075 39988
Percentage (%) 70.41 7.38 16.32 3.2 2.69 —
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replaced the filter concatenation stage with residual
connections [28] introduced by He et al. Training with
residual connections accelerates the training of incep-
tion networks significantly. And residual inception
networks outperform similarly expensive inception
networkswithout residual connections by a thinmargin.
In this work, only the last fully-connected layer with
1000 units was replaced by a fully connected layer with 5
units by using softmax function.

(4) Xception: the Xception architecture, introduced by
Chollet [29], is a convolutional neural network ar-
chitecture based entirely on depthwise separable
convolution layers inspired by Inception. +e
Xception architecture has 36 depthwise separable
convolutional layers forming the feature extraction
base of the network, which makes the architecture
very easy to define and modify. +e 36 convolutional
layers are structured into 14 modules, all of which
have linear residual connections around them, ex-
cept for the first and last modules. In this work, the
fully-connected layers and the logistic regression
layer of the Xception architecture were replaced by a
dropout layer and a fully-connected layer with 5
units by using softmax function.

2.4. HybridModel Structures. +ree methods were proposed
to implement the hybrid model structure, called Hybrid-a,
Hybrid-f, and Hybrid-c. +e details are as follows:

Hybrid-a: in Hybrid-a, the average value of each DR
grade which the basic model outputs is calculated as the
final output of the hybrid model structure. +e formula
is

Ygrade �
1
N

􏽘

N

n�1
y
grade
n , (grade � 0, 1, 2, 3, 4) , (1)

where N denotes the number of the basic models. y
grade
n

denotes the DR grade output of the nth model, and Ygrade
denotes the DR grade of the final output of Hybrid-a.
Hybrid-f: Hybrid-f is a model mainly composed of
fully-connected layers in short.+e output of each basic
model, which is a 5×1 column vector, is stacked
vertically, and finally forms a 25×1 column vector as
the input of the Hybrid-f model structure. Figure 4
shows the structure of Hybrid-f. Hybrid-f consists of 2
fully-connected layers. +e hidden layer has 2048 units
and the output layer has 5 units with softmax activation
function.
Hybrid-c: Hybrid-c is mainly composed of 2D con-
volution layers. +e 5×1 column vector output of each
basic model is stacked horizontally and finally forms a
5× 5 matrix as the input of the Hybrid-c model
structure. +e structure of Hybrid-c is shown in Fig-
ure 5, and the details of Hybrid-c are shown in Table 3.
+ree 2D convolution layers as the feature extraction layers
make up the first half of the Hybrid-c structure, and then
the Hybrid-f structure makes up the last part of Hybrid-c.

2.5. Loss Function. Different loss functions have different
effects on the training process and results of networkmodels.
In this work, an improved loss function, E-CE loss function,
was proposed for the training process of the basic models.
And comparison experiments with CE loss function were
done. +e formula of CE loss function is

L(􏽢y, y) � −
1
N

􏽘

N

n�1
ynlog 􏽢yn + 1 − yn( 􏼁log 1 − 􏽢yn( 􏼁􏼂 􏼃 , (2)

where y denotes the true value, 􏽢y denotes the predicted value,
and N denotes the total number of DR grade. +e E-CE loss
function is based on CE loss function and shown as follows:

L(􏽢y,y) � −
1
N

􏽘

N

n�1
ynlog 􏽢yn + 1− yn( 􏼁log 1− 􏽢yn( 􏼁 +

Gy − G􏽢y

N − 1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼢 􏼣 ,

(3)

where Gy denotes the DR grade of truth and G􏽢y denotes the
DR grade of prediction. DR grade is an integer in the range of 0
to 4. In the formula, a part of the loss is added to measure the
impact of the misclassification of the basic models during the
training process. +e farther the output value of the model is
from the true value during the model training process, the
greater the excess loss will be. Experiments (see Part 3) showed
that the E-CE loss function will accelerate the training of the
basic models and improve the accuracy of the basic models.

3. Results and Discussion

3.1. Experiment Setup. Our experiment was carried out on a
workstation with 4 NVIDIA GEFORCE RTX-2080Ti GPUs.
+e memory of each GPU is 11GB. CPUs are Intel Xeon
Silver 4110 processors, 2.1 GHz, a total of 4. +e operating
system for trainingmodels is Ubuntu 16.4.+e deep learning
framework used in training models is Keras. +e backend of
Keras used Tensorflow GPU 1.13.1. For each basic training
model, the optimizer was RAdam [30] proposed by Liu et al.
RAdam, Rectified Adam, is a novel variant of Adam by
introducing a term to rectify the variance of the adaptive.
And the initial learning rate for eachmodel was set to 0.0008.
During the models training, the learning rate could be

Input layer ∈ R25

Hidden layer ∈ R2048

Output layer ∈ R5

Figure 4: +e structure of Hybrid-f.
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adjusted automatically. +e batch size of EfficientNetB4,
EfficientNetB5, NASNetLarge, Xception, and Inception-
ResNetV2 are 32, 40, 64, 64, and 32, respectively. CE loss
function and E-CE loss function were used to train each
basic model for the control experiment. +e epochs of for
training each model were 50. Also, the pretraining weights
on the ImageNet dataset were used to accelerate the training
process of each basic model. For training Hybrid-f and
Hybrid-c model structure, the optimizer was Adam. +e
initial learning rate was 0.001. And the loss function was
cross-entropy loss function. Training epochs were 100.

3.2. Performance Evaluation. +e performance of the basic
models and the hybrid models are evaluated by 5 evaluation
metrics which are accuracy, sensitivity, specificity, precision,
and F1 score. +e formulas are shown as follows, where TP
denotes the number of positive samples actually identified as
positive samples, TN denotes the number of negative
samples correctly identified as the negative samples, FP
denotes the number of negative samples falsely identified as
the positive samples, and FN denotes the number of positive
samples falsely identified as the negative samples:

accuracy �
TP + TN

TP + TN + FP + FN
,

sensitivity �
TP

TP + FN
,

specificity �
TN

TN + FP
,

precision �
TP

TP + FP
,

F1score � 2 ·
precision · sensitivity
precision + sensitivity

.

(4)

3.3. Results and Discussion. +e basic models were trained
on 34,988 fundus images which were selected according to
the DR grade ratio from the dataset consisting of EyePACS,
APTOS, and DeepDR dataset. +e remaining 5,000 images
of the dataset were used as test images to evaluate the
performance of the models.

In order to verify the performance of E-CE loss function,
each basic model was trained with E-CE loss function and
CE loss function, respectively. Figure 6 shows that the
convergence speed of the basic models trained with E-CE
loss function is faster than that trained with CE loss function.
+e accuracy of the basic models is also relatively improved
faster.

+e accuracy, sensitivity, specificity, precision, and F1
score of the obtained results are shown in Table 1. It can be
seen from Table 1 that our proposed E-CE loss function
improved the performance of the basic models under partial
classification metrics, especially the performance in terms of
accuracy and sensitivity. +e model trained with E-CE loss
function has an average performance improvement of about
5% on accuracy and 3.5% on sensitivity.+is may be because
an extra part of E-CE loss relative to CE loss increases the
influence of the basic models on the misclassification of DR
grade during the training process, which will optimize the
basic models towards the correct classification faster.

+e performance of our proposed hybrid model
structures outperforms all the basic models in all classi-
fication metrics. Referring to Table 1, Hybrid-c has the
highest accuracy which is 0.8634 and F1 score which is
0.939, Hybrid-a has the highest sensitivity which is 0.9877,
and Hybrid-f has the highest specificity which is 0.7476
and precision which is 0.9137. As shown in Table 1, in
terms of accuracy, Hybrid-c improves EfficientNetB4 by
0.9%, EfficientNetB5 by 1.46%, NASNetLarge by 1.64%,
InceptionResNetV2 by 1.32%, and Xception by 1.58%.
Results of the experiments prove that the hybrid model
structures compared with the single basic model can

Input layer Conv2d_1 Conv2d_2 Conv2d_3

Flatten Dense_1

Dense_2

Figure 5: +e structure of Hybrid-c.

Table 3: +e details of the Hybrid-c structure.

Layer Units Filters Kernel size Padding Output shape
Input — — — — 5× 5×1
Conv2d_1 — 256 3 1 5× 5× 256
Conv2d_2 — 256 3 1 5× 5× 256
Conv2d_3 — 256 3 0 3× 3× 256
Flatten — — — — 2304
Dense_1 2048 — — — 2048
Dense_2 5 — — — 5
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improve the classification performance in all aspects. +e
Hybrid-f and Hybrid-c with complex structures have
better overall performance than Hybrid-a with simple
structure. When the hybrid model structure is more
complex, the difference between Hybrid-f and Hybrid-c is
smaller. For the hybrid structure proposed in this work,
although the higher complexity of the hybrid structure
will not bring about a linear performance improvement,
the hybrid structure will improve the performance of a
single model performance in DR grade classification.

+e confusion matrix of Hybrid-c on the testing fundus
images is shown in Table 4. From Table 4, Hybrid-c performs
the best inDR grade 0 classification, with an accuracy of 0.9706.
+e performance of Hybrid-c on DR grade 2 classification is
better, which achieves 0.7181 score of accuracy. And Hybrid-c
has good performance in the classification ofDR grade 4, which
achieves 0.6698 score of accuracy. For DR grade 1 images,
Hybrid-c prefers to misclassify them to DR grade 0. For DR
grade 3 images, Hybrid-c prefers to misclassify them to DR
Grade 2. +e reason for this situation may be as follows:

(1) +e number of training fundus samples of DR grades
1 and 3 is relatively less compared to the number of

DR grades 0 and 2, which causes the poor classifi-
cation ability of the model for DR grades 1 and 3.

(2) +e hidden features of fundus images in DR grades 1
and 3 are closer to those of DR grades 0 and 2. We
found out the images of DR grades 1 and 3 which
were misclassified to DR grades 0 and 2. From the
observation of human eyes, the difference between
DR grade 1 and DR grade 0 is small, the same as DR
grades 3 and 2. For the model, some features
extracted by the convolutional layers of DR grade 1
and DR grade 0 may be relatively similar, which may
cause some images of DR grade 1 to be misclassified
to DR grade 0. +is can also explain that for DR
grade 4. Although the number of samples in DR
grade 4 is small, the features extracted by the model
are quite different from those of other DR grades. So,
the accuracy of DR grade 4 classification is better
than that of DR grades 1 and 3.

(3) Experts rating the fundus images may be affected by
their own subjective factors and DR grade judgment
rules, which may cause some errors in rating DR
grades 1 and 3 images. In addition, parts of some
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Figure 6: +e epochs of training the basic models using E-CE loss and CE loss. (a) Training accuracy varies with epochs for basic models
from EfficientNetB4 E-CE to Xception CE. (b) Training loss varies with epochs for basic models from EfficientNetB4 E-CE to Xception CE.

Table 4: +e confusion matrix of Hybrid-c.

Predicted DR grade
Actual DR grade 0 1 2 3 4

0 3565/97.06 36/0.98 68/1.85 1/0.03 3/0.08
1 204/58.96 87/25.14 54/15.61 0/0 1/0.29
2 140/18.62 47/6.25 540/71.81 15/1.99 10/1.33
3 7/5.69 0/0 55/44.72 54/43.9 7/5.69
4 4/3.78 1/0.94 18/16.98 12/11.32 71/66.98
+e first item in each grid cell is the number of fundus images. +e second item is the percentage of the images in the DR grade.
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fundus images, because of the camera, are dark,
blurred, or highlights, which can also affect the
judgment of experts.

In future work, we may improve the method of data
enhancement to improve the impact of the imbalance of
DR grade in the dataset and may extract the output of the
intermediate layers of the basic convolution models as the
input of the hybrid model structure to increase the richness
of the input feature maps of the hybrid model.

4. Conclusions

In this work, we proposed an improved loss function, E-CE
loss function, and proposed three hybrid model structures
Hybrid-a, Hybrid-f, and Hybrid-c to improve the perfor-
mance of a single model. +e results show that the E-CE loss
function can effectively accelerate the training process of a
single basic model and can improve the performance of a
single model compared with the CE loss function. +e three
different hybrid model structures can improve the perfor-
mance of the basic models in all aspects. Although the in-
crease in the complexity of the hybrid model does not bring a
linear improvement in model performance, the more
complex Hybrid-c and Hybrid-f perform better than the
simple Hybrid-a in some evaluation metrics. Finally, the
proposed algorithm achieved five classifications accuracy of
86.34%, sensitivity of 98.77%, specificity of 74.76%, precision
of 91.37%, and F1 score of 93.9% in this work.

Data Availability

Data used were from the following: Kaggle Diabetic Reti-
nopathy Detection Dataset, available at https://www.kaggle.
com/c/diabetic-retinopathy-detection/data; APTOS 2019
Blindness Detection Dataset, available at https://www.
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