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With the increasing emphasis on remote electrocardiogram (ECG) monitoring, a variety of wearable remote ECG monitoring
systems have been developed. However, most of these systems need improvement in terms of efficiency, stability, and accuracy. In
this study, the performance of an ECG monitoring system is optimized by improving various aspects of the system.-ese aspects
include the following: the judgment, marking, and annotation of ECG reports using artificial intelligence (AI) technology; the use
of Internet of -ings (IoT) to connect all the devices of the system and transmit data and information; and the use of a cloud
platform for the uploading, storage, calculation, and analysis of patient data.-e use of AI improves the accuracy and efficiency of
ECG reports and solves the problem of the shortage and uneven distribution of high-quality medical resources. IoT technology
ensures the good performance of remote ECGmonitoring systems in terms of instantaneity and rapidity and, thus, guarantees the
maximum utilization efficiency of high-quality medical resources. -rough the optimization of remote ECG monitoring systems
with AI and IoTtechnology, the operating efficiency, accuracy of signal detection, and system stability have been greatly improved,
thereby establishing an excellent health monitoring and auxiliary diagnostic platform for medical workers and patients.

1. Introduction

Estimations indicate that China has 290 million cardio-
vascular patients, including 13 million stroke, 11 million
coronary heart disease, 5 million pulmonary heart disease,
4.5 million heart failure, 2.5 million rheumatic heart disease,
2 million congenital heart disease, and 245 million hyper-
tension patients [1]. In the recent years, the death rate from
cardiovascular diseases has been the highest—greater than
that from tumor and other diseases. Two out of every five
deaths have been linked to cardiovascular diseases, and the
death rate in rural areas has been higher than that in urban
areas. In rural areas, the death rate from cardiovascular
diseases is 309.33/100000, including 151.18/100000 from
heart diseases. In urban areas, the death rate from

cardiovascular diseases is 265.11/100000, including 138.70/
100000 from heart diseases. In rural areas, the deaths from
cardiovascular diseases account for 45.50% of the total
deaths, whereas in urban areas, they account for 43.16% of
the total deaths. Because of the large number of patients,
long duration of diseases, complex etiology, high cumulative
cost of treatment, and frequent doctor-patient communi-
cation, not only is the medical system under great pressure
but the medical cost is also very high. Hence, it is difficult for
medical resources to be used for the benefit of all sections of
society [2, 3].

Current well-established electrocardiogram (ECG)
monitoring systems can be mainly divided into two types. In
the first type of system, only the ECG signal acquisition from
the patient side is considered. -e signals are directly
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transmitted to the doctor via GPRS or 3G/4G remote
communication or transmitted to the data relay node using
Bluetooth, ZigBee, or Wi-Fi; the relay node, then, sends the
ECG data to the doctor through the Internet. Research on
this type of system has been happening for a relatively long
period, and the technology is now well established. -is type
of system can be the foundation for the development of other
systems with similar communication architectures in the
future [4–6]. However, this type of system realizes only the
remote real-time recording of ECG data [7], and a doctor is
still needed to perform manual ECG diagnosis [8, 9]. In the
second type of system, after collecting the ECG signal from
the patient, the system transmits the ECG signal to a
smartphone using Bluetooth, ZigBee, or Wi-Fi, allowing the
mobile phone to display the ECG waveform in real time,
perform ECG analysis and diagnosis, and then, transmit the
relevant information to the doctor [10–12]. However, the
hardware performance of smartphones is currently limited,
and they are unable to support advanced ECG diagnostic
algorithms. -erefore, the ECG analysis and diagnosis re-
sults do not meet the needs of patients [13, 14]. At present,
these two types of ECG monitoring systems are subject to
technical limitations [15, 16]. Because of the limitations of
available facilities and technologies in terms of the electronic
collection, storage, and analysis of ECG data (followed by
automatic diagnosis), medical service centers cannot
monitor the health status of the heart in a timely and ef-
fective manner [17, 18]. Consequently, valuable opportu-
nities for diagnosis and treatment may be missed, and hence,
the needs of patients cannot be satisfied.

2. Optimal Design of the ECG
Monitoring System

In this study, artificial intelligence (AI) is used to automate
the diagnosis, annotation, and detection of ECG reports,
which are accurately and effectively judged and labeled. -e
user’s ECG signal is uploaded to the cloud in real time
through the Internet of -ings (IoT) and shared with the
corresponding medical staff, thereby reducing the burden on
the medical staff, improving the accuracy of diagnosis, and
reducing human interference and the influence of human
factors on the ECG report [19, 20]. By using AI, users can be
monitored remotely in a timely manner, more patients can
access the system, more functions can be added to the
system, and answers and treatment can be provided online
to specific patients [21, 22]. For patients who are not likely to
visit the hospital frequently, portable ECG monitoring
equipment can provide many advantages and the quality of
health monitoring can be guaranteed. Doctors can collect
remote real-time data, conduct health evaluations, and
undertake comprehensive monitoring of relevant physio-
logical parameters, daily living habits, and mental states of
family members. In this manner, patients can receive correct

and efficient treatment without leaving the home and can
save treatment cost. In particular, the system can track and
manage the elderly and provide medical advice and self-help
training. For general hospitals, heart disease experts at
different research levels can be efficiently utilized, the heavy
workload of doctors can be reduced, and the diagnosis and
treatment of ECG diseases can be divided into several stages
(prevention, treatment, or rehabilitation) to maximize the
utilization of hospital resources.

2.1.OptimizationofSystemHardware. -e self-adaption and
optimized wireless sensor equipment (Figure 1) can be used
by residents at home. -e equipment is used to detect ECG
data. -e wireless sensor equipment has two innovative
modes, which can meet the different needs of users.

According to the different needs of users, different de-
tection accuracies are required, and accordingly, different
lead methods can be selected. It is recommended that users
use the simple low-lead method (Figure 2) during routine
examinations or when they feel healthy. -e complex
multilead approach (Figure 3) can be applied if the user feels
sick.

-e materials used so far to attach various types of
sensors to the body do not meet the skin-friendly nature
required for long-term wear. Certain users such as patients
with acute diseases are likely to experience an episode at any
time, and hence, they need to be monitored without in-
terruption. -erefore, there is a demand to improve the
probematerial such that it is skin friendly and does not cause
damage to the body during long-term wear while simulta-
neously not affecting the data collection requirements.

2.2. Optimization of ECGDiagnostic Algorithm of the System.
Typical ECG diagnostic algorithms include three essential
steps [23]: signal data preprocessing, feature extraction from
data, and feature classification. Signal preprocessing is re-
lated to the ability to process information content such that
features can be extracted from the content, and feature
classification is closely related to the ability of represent data
features. Most ECG diagnostic algorithms still have not been
able to eliminate the artificial feature extraction and clas-
sification steps. Some algorithms incorporate machine
learning methods based on the abovementioned three steps,
and the classification ability of the algorithms is improved
through feature dimension reduction and feature selection
[24]. -e most important aspect to be noted is that the
characteristics of data are chosen subjectively. Many algo-
rithms have been proposed before, such as the probabilistic
neural network analysis method based on feature dimension
reduction, support vector machine method based on feature
selection, and convolution neural network based on adap-
tive. -ese diagnostic algorithms were based on the tradi-
tional algorithm and proposed that the doctor should
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Figure 1: Wireless sensor equipment. LA: left arm, LL: left leg, RA: right arm, and RL: right leg.

Figure 2: Simple low-lead method.

Figure 3: Complex multilead approach.
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participate in the diagnosis to offset the problem of the
robustness of the algorithm caused by feature selection
subjectivity and patient specificity. First, a general algorithm
is trained based on a general database, and then, the first
5min of the ECG signal of the patient is collected. Next, the
collected signal is provided to the algorithm as a new sample
after the doctor’s diagnosis to make the algorithm obtain the
specificity of the patient. Accordingly, the most ambiguous
part of the patient’s ECG signal, which is the most difficult to
determine, is extracted and handed to the doctor for di-
agnosis to reduce the burden on the doctor. Although this
type of algorithm effectively solves the problem of the ro-
bustness of the algorithm, it still needs the doctor’s par-
ticipation and cannot perform automatic ECG analysis. ECG
classification algorithms are usually based on artificial fea-
tures of the ECG, such as the Fourier transform and
morphology [25, 26], and the wavelet analysis indicators of
ECG signals. However, doctors analyze ECG signals based
on their personal experience about the features to be di-
agnosed. -erefore, the extraction of abstract features and
deep mining of the information in the signal can effectively
improve the accuracy and real-time performance of the
system while preventing the decrease in robustness due to
feature selection subjectivity and patient specificity [27].

However, these methods still include the step of artificial
feature extraction. -e disadvantage of this step is that when
a new sample, that is, the electroanalytical analysis infor-
mation of a new patient, is provided to a typical algorithm,
the robustness of the algorithm is reduced and the accuracy
of the algorithm cannot be guaranteed because of feature
selection subjectivity and patient specificity. -us, mis-
judgment may occur.

-e data are uploaded to the cloud. -e ECG report can
be issued to the user, and the ECG data can be used for ECG
trend prediction analysis. When the user’s ECG signal is
transmitted to the cloud, the correct signal is first identified,
the filtered wave is selected, the R peak position is detected,
the heartbeat is extracted by the R peak, and the heartbeat is
classified by the Bidirectional Long- and Short-Term
Memory network (Bilateral Long- and Short-Term Memory
network, BiLSTM) method. -en, the algorithm detects
ECG abnormalities, including Premature Ventricular
Contraction (PVC), Premature Atrial Complex (PAC), and
Atrial Fibrillation (AF). Finally, the labeled heartbeat data
are used to train various classification algorithms such as
neural networks, support vector machines, and logistic re-
gression. -e neural network with the best performance is
selected as the ECG algorithm classifier, which completes the
study of the ECG algorithm. According to the report, the
corresponding doctor will be asked to treat the patient. -e
entire ECG algorithm process flow is shown in Figure 4.

After the automatic monitoring of the ECG signal is
performed, the report is processed and distributed by the AI
method, and the ECG report is dispatched, which increases
the accuracy and timeliness of the report distribution while

simultaneously reducing the burden of the operator, plan-
ner, and doctor. Furthermore, the AI workload will be
gradually increased in the future to reduce manual opera-
tions. -e 24 h ECG report grading delivery mechanism is
shown in Figure 5. Finally, AI is expected to completely
replace manual operations.

3. Automatic ECG Algorithm Test

In this paper, fast Convolutional Neural Networks (fast-
CNNs) algorithm is used to process the one-dimensional
ECG signal in two-dimensional graphics, so that the signal
can be comprehensively grasped from a higher dimension.
-e algorithm uses a 32-layer convolution network structure
to extract different levels of features from the input ECG
graphic signals and can obtain useful features from the
whole and subdivision levels. To evaluate the accuracy of the
ECG algorithm and its various functional modules, two
algorithm evaluation tests are performed. -e first is based
on standard ECG databases such as MIT-BIH (Table 1). By
comparing the labeled information of each heartbeat,
according to the YY 0885-2013 standard analysis algorithm,
the sensitivity and true positive details are detected with
respect to QRS, Ventricular Ectopic Beat (VEB), and Sup-
raventricular Ectopic Beat (SVEB).

Next, data are collected from a real human body using a
dynamic wearable ECG device and verified using the doc-
tor’s Lenovo-SEU-DB dataset, and the accuracies of different
methods in each functional module are compared and
evaluated. -e details are shown in Table 2.

Although the classification accuracy of ECG algorithm in
this paper may not be the best, it does not need to extract the
complex signal features manually, and the algorithm itself
can extract the ECG signal. Features are classified and
recognized to achieve acceptable classification accuracy.
Even if some cases are obviously disturbed by noise, the
classification accuracy is acceptable.

-rough the abovementioned two examples, we can see
that the fast-CNN algorithm used in this paper can guar-
antee the high accuracy of the CNN for QRS wave detection
and the real-time detection.-is algorithm has the following
advantages:

(1) After using this algorithm, it has higher detection
sensitivity and accuracy for QRS detection and has
better adaptability for worse Signal Noise Ratio
(SNR) level: the algorithm adopts a 32-layer con-
volution network structure. In this way, compared
with the traditional ECG detection algorithm, it has
stronger robustness and adaptability to noise signals
and higher detection accuracy.

(2) Although some existing algorithms, such as Regions
with CNN features (R-CNN) and sppnet, make the
deep neural network have some new technical
breakthroughs in the field of target detection in ECG,
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Table 1: Algorithm test results based on MIT-BIH ECG databases

Database Record Total beats QRS Se (%) QRS P+ (%)
mitdb 100 2273 99.78 100.00
mitdb 101 1865 99.89 99.89
mitdb 102 2187 98.63 100.00
mitdb 103 2084 99.62 100.00
mitdb 104 2229 97.76 99.41
mitdb 105 2572 99.92 99.65
mitdb 106 2027 95.56 100.00
mitdb 107 2137 99.58 100.00
mitdb 108 1763 99.43 99.72
mitdb 109 2532 99.64 100.00
mitdb 111 2124 99.72 100.00
mitdb 112 2539 99.80 100.00
mitdb 113 1795 99.78 100.00
mitdb 114 1879 99.73 100.00
mitdb 115 1953 99.80 100.00
mitdb 116 2412 98.92 100.00
mitdb 117 1535 99.80 100.00
mitdb 118 2278 99.87 100.00
mitdb 119 1987 90.59 100.00
mitdb 121 1863 99.73 100.00
mitdb 122 2476 99.80 100.00
mitdb 123 1518 99.60 100.00
mitdb 124 1619 98.95 100.00
mitdb 200 2601 99.58 100.00
mitdb 201 1963 95.67 100.00
mitdb 202 2136 98.92 100.00
mitdb 203 2980 96.31 100.00
mitdb 205 2656 99.62 100.00
mitdb 207 2332 87.61 100.00
mitdb 208 2955 75.84 100.00
mitdb 209 3005 99.83 100.00
mitdb 210 2650 97.09 100.00
mitdb 212 2748 99.82 100.00
mitdb 213 3251 98.83 100.00
mitdb 214 2262 99.69 100.00
mitdb 215 3363 99.58 100.00
mitdb 217 2208 99.46 100.00
mitdb 219 2154 99.49 100.00
mitdb 220 2048 99.76 100.00
mitdb 221 2427 96.79 100.00
mitdb 222 2483 98.23 100.00
mitdb 223 2605 94.89 100.00
mitdb 228 2053 95.91 100.00
mitdb 230 2256 99.78 100.00
mitdb 231 1571 99.81 100.00
mitdb 232 1780 99.89 99.94
mitdb 233 3079 99.32 100.00
mitdb 234 2753 99.71 100.00

Average 98.07 99.97

Table 2: Accuracy of different methods in each functional module.

Index
Fast-CNN QRS based by P&T

Se PPV Acc F1 Se PPV Acc F1
1 0.9953 0.9908 0.9863 0.9931 0.9958 0.9922 0.9881 0.994
2 0.9716 0.9941 0.966 0.9845 0.9857 0.9834 0.9695 0.9827
3 0.9752 0.9857 0.9616 0.9804 0.9079 0.9128 0.8354 0.9103
4 0.9953 0.9995 0.9948 0.9974 0.9995 0.9991 0.9986 0.9993
5 0.986 0.9754 0.9621 0.9807 0.9808 0.9586 0.941 0.9696
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it is far from the true real-time detection and end-to-
end results. In this paper, fast-CNN is applied to the
one-dimensional signal of ECG from the creative
graph detection to ensure the real-time detection.

4. Conclusions

-rough the requirements of remote ECG monitoring, a set
of remote ECG monitoring schemes is put forward, and the
requirements analysis and system design, the design of re-
mote ECG monitoring system, and the design of ECG di-
agnosis algorithm are carried out. Finally, the remote ECG
monitoring system is tested.

-e main work of this paper is as follows:

(1) A three-layer structure of “acquisition end server end
user end” of the remote ECG monitoring system is
proposed, and a set of hardware platforms with
signal acquisition and transmission function is built
by using the existing hardware equipment to realize
the acquisition and upload function of ECG signal
-e collection end realizes the collection and upload
function of the ECG signal, the server end realizes
the storage management of data, the execution of
diagnosis algorithm, and the response to the request
of the user end, and the user end realizes the
functions of user interface design, ECG drawing, and
signal data acquisition. According to the principle of
compatibility and expansibility, the software devel-
opment platform of the system is built, which lays a
solid foundation for the follow-up development and
research.

(2) -e ECG diagnosis algorithm and system of remote
ECGmonitoring system are tested. -e performance
of ECG diagnosis algorithm is tested and compared
with the latest algorithm in feature engineering
design and classification accuracy. -e function of

the system is tested, and the functions of the system
are tested from the perspective of users. -e test
results show that each module of the remote mon-
itoring system works normally and has a certain
accuracy rate of arrhythmia diagnosis, which meets
the expected requirements.

(3) Signal feature extraction needs further optimization.
In the follow-up study, a variety of different network
layers can be used for testing to achieve the best
feature extraction effect.
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