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R-wave detection is a prerequisite for the extraction and recognition of ECG signal feature parameters. In the analysis and
diagnosis of exercise electrocardiograms, accurate and real-time detection of QRS complexes is very important for the prevention
and monitoring of heart disease. (is paper proposes a lightweight R-wave real-time detection method for exercise ECG signals.
After real-time denoising of the exercise ECG signal, the median line is used to correct the baseline, and the first-order difference
processing is performed on the differential square signal. Max-Min(reshold (MMT) is used to realize real-time R-wave detection
of the exercise ECG signal.(e abovementionedmethod was verified by using themeasured data in theMIT-BIH ECG database of
the Massachusetts Institute of Technology and the exercise plate experiment.(e R-wave detection rates were 99.93% and 99.98%,
respectively. Experimental results show that this method has high accuracy and low computational complexity and is suitable for
wearable devices and motion process monitoring.

1. Introduction

ECG (Electrocardiogram) represents themyocardial electrical
activity of the heart. ECG signals play an important role in the
diagnosis of cardiovascular diseases, such as arrhythmia,
hypertension, or ischemic heart disease. ECG recording used
to be a time-consuming process that required an on-site
cardiologist to detect and diagnose various types of heart
disease. Today, ECG signals can be recorded using mobile
ECG sensors, such as Shimmer sensor or Alivecor sensor [1].
(ese sensors are not only easy to use but also economical and
efficient to obtain ECG signals. However, these sensors
mainly use only 1 or 2 leads (usually lead I or lead II) for
recording, rather than all standard 12-lead, resulting in a poor
detection performance of some QRS detection algorithms.
(erefore, real-time detection and anomaly analysis of the
QRS waveform is a challenging task [2].

QRS detection has become a research topic in the field of
intelligent ECG detection for more than 30 years. In the
meantime, researchers have developed a number of algo-
rithms, for example, based on the digital filter [3], wavelet

transform [4, 5], neural network [6–8], image segmentation
[9], and so on. Tang et al. proposed a parallel incremental
modulator architecture with local maximum point and local
minimum point algorithms to detect QRS and PT waves
[10]; Kalidas and Tamil proposed an online QRS detector
algorithm using stationary wavelet transform (SWT) for
real-time heartbeat detection from a single lead ECG signal
[4]; Muhammad et al. proposed the use of transient phasor
transformation to study the location of characteristic points
(reference points) of ECG signals [11]. However, most of the
studies are only applicable to the static ECG signal for a long
time, and the processing ability of motion interference is not
strong. Moreover, the abovementioned methods require
additional process steps, such as training, setting, and
predicting model parameters, when detecting R-waves,
which increases the complexity of calculation load and
computing cost [12].

(e R-wave in the QRS waveform plays an important
role in the diagnosis of arrhythmia and the recognition of
heart rate variability. Due to the rise of wearable devices, the
noninvasive exercise tablet experiment (stress test) and the

Hindawi
Journal of Healthcare Engineering
Volume 2020, Article ID 8868685, 7 pages
https://doi.org/10.1155/2020/8868685

mailto:lizy@cqupt.edu.cn
https://orcid.org/0000-0003-1576-759X
https://orcid.org/0000-0002-3918-069X
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8868685


high prediction of coronary heart disease and other diseases,
wearable devices, and exercise tablet experiment have
gradually become popular in the detection of the cardio-
vascular function. However, mobile devices are used to
detect the ECG activity of patients in their daily life, rather
than in the isolated hospital environment. As a result,
various electrical signal noises in the environment will se-
riously interfere with ECG signals. Exercise ECG detection
will cause the ECG signals of patients to be interfered by the
electrical signals generated by human muscle movements
during exercise, which will lead to a sharp increase in de-
tectionWindows, thus increasing the possibility of detecting
errors and detecting omissions by the traditional R-wave
detection algorithm [13].

Aiming at the characteristics of difficulty in real-time
detection and abnormal analysis of single lead of motion
electrocardiogram, large motion interference, and high
computing cost, this paper proposes a lightweight adaptive
Max-Min(reshold (MMT) algorithm for R-wave detection
of a motion ECG signal, which is an optimization of the
differential threshold method for R-wave detection. Com-
pared with the traditional R-wave detection algorithm, the
algorithm proposed in this paper has lower operation cost,
higher anti-environment interference and anti-motion in-
terference ability, and is suitable for the medium and long-
term exercise ECG detection on the mobile ECG sensor. In
order to determine the detection efficiency, the algorithm
performed the exercise ECG acquisition and real-time
R-wave detection on the exercise plate. Meanwhile, the ECG
data from the MIT-BIH arrhythmia database were used for
R-wave detection.

2. Lightweight R-Wave Detection Method

(e detection of R-waves in ECG signals presents many
challenges, such as EMG interference [14], power-frequency
interference, and baseline drift, which can affect signal
primitiveness. (ese noises are the difficulties in the auto-
matic detection of ECG signals. Due to the large body swing
and electrode friction caused by movement, the noise is
particularly prominent in the motion ECG signals.

(is paper proposes an adaptive MMT difference al-
gorithm to detect R-wave, which includes the following
steps: the whole algorithm process of preprocessing baseline
correction for R-wave detection is shown in Figure 1.

Firstly, in order to eliminate the noise embedded in the
ECG signal and enhance the ECG signal, digital filters with
appropriate parameters and adaptive filters are usually used
to eliminate the noise [15]. In this paper, an FIR filter and
Notch filter are used to eliminate EMG interference and
power-frequency interference in the ECG signal. (is pro-
cess has a large amount of ECG processing capacity and a lot
of detail processing, but it does not affect the detection of
R-wave. In addition, the calculation cost of the filtering
process is lower and the space occupancy is less.

Secondly, a baseline drift can greatly interfere with
overall R-wave detection, for which a sliding window is used
to overcome the baseline drift. (e ECG baseline was
extracted from the ECG through the sliding window, and the

difference between the original signal and the ECG baseline
was calculated to obtain the ECG signal after the baseline
was more positive.

Finally, the amplitude of the R-wave varies from person
to person, and the amplitude of the R-wave varies greatly
from person to person at different times. (erefore, it is very
important to find the appropriate threshold. In this paper,
through adaptive multithreshold to cope with different
scenarios, different populations, and different collection
patterns, the R-wave is accurately calculated.

2.1. Pretreatment. Based on the power-frequency interfer-
ence and myoelectric interference existing in the ECG ac-
quisition process, the R-wave detection is greatly affected, so
pretreatment is needed to eliminate the corresponding in-
terference. (is section will discuss the power-frequency

Adaptive thresholds

R-wave detection

Window difference

Baseline correction

Pretreatment

Signal input

Determine the R-wave range

Record whether
the time is

greater than 1s 

Whether the
R-wave is correct

Record whether
the time is

greater than 2s 

No

No

No

Yes

Yes

Yes

Figure 1: Algorithm flowchart.
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interference and myoelectric interference in the ECG ac-
quisition process and how to remove the noise.

2.1.1. Power-Frequency Interference. Frequency interference
at 50Hz is usually eliminated before further analysis and
processing of the signal [16]. In addition, the basic principle
of an adaptive Notch filter is a center frequency of an or-
thogonal signal as the reference signal, using the linear
combination of the orthogonal signal tracking the input
signal, and through every step of the residual, continuously
adjust the weights of linear combination, so as to make the
input signal related to the reference signal linear part of the
separation, to achieve the effect of a narrow-band filter.

In this paper, a Notch filter is used to filter the received
ECG signal, so as to eliminate the capacitance and electrode
lead loop distributed in the human body from 50Hz power-
frequency interference such as power-frequency electricity
and magnetic field. According to the Notch filter selected, its
filtering effect is shown in Figure 2.

2.1.2. EMG Interference. Because FIR and IIR filters show
maximum signal-to-noise ratio improvement when used to
eliminate interference, these simple filters are commonly
used for ECG signal noise reduction [17].

A finite impulse response (FIR) filter is to perform
weighted and average processing on N sampled data, in
which the input signal is temporal and changes with the
change of time. (e final output of the FIR filter is the input
at each moment multiplied by the corresponding weight
(coefficient), then superimposed, and finally, output. (e
difference equation can be expressed as follows:

y(n) � 􏽘
N−1

i�0
aix(n − i). (1)

(e low pass filter of an FIR is adopted to eliminate the
noise greater than 100Hz which does not belong to the range
of the ECG signal. (e filter is of order 40, with a sensitivity
factor of 40, a sampling frequency (FS) of 500Hz, a passband
frequency (Fpass) of 6, a stopband frequency (Fstop) of 100,
a passband waste (Wpass) of 3 db, and a stopband waste
(Wstop) of 1 db. According to the optimal approximation
method of FIR and other ripples selected, its filtering effect is
shown in Figure 3.

2.2. Baseline Correction. Baseline drift often occurs in the
motion ECG signal, especially when the subject swings too
much and the lead line wobbles more, resulting in a very
serious baseline drift. Because median filtering can effec-
tively discard outliers while retaining relevant information,
median filtering has been widely used as a postprocessing
operator in different fields [18] and is widely used in bio-
medical signal processing [19].

In this paper, the ECG signal end is wrapped by a large
sliding window, and the median amplitude of the ECG data
in the window is calculated as the baseline drift value of the
middle position of the window. (e baseline correction can
be completed by subtracting the ECG amplitude from the

baseline drift value. (e algorithm of its window sizeW and
ECG amplitude Y after removing baseline drift is as follows:

W � fs∗ time (+1),

Y index −
W

2
􏼒 􏼓 � X index −

W

2
􏼒 􏼓 − X(m),

(2)

where fs is the ECG signal sampling rate, time is the time
length, index is the index value of the current real-time ECG
record, and m meets

P
count (x(i)≤x(m))

W
􏼠 􏼡 �

1
2
, (3)

where the value range of I is (index − W)≤ i≤ index.
Window size W is an odd-numbered window, and its

window should contain at least 0.6 s of sample data, which is
helpful to calculate the baseline of the ECG signal.

2.3. R-Wave Detection. (e detection process of the R-wave
mainly includes window difference, initial threshold cal-
culation, MMT detection of the R-wave, error correction,
and adaptive threshold.

2.3.1. Window Difference. Signal differential algorithm is the
first step to detect the R-wave. In this paper, a sliding
window is used to wrap the differential data of the ECG
signal, which can effectively reduce the memory con-
sumption and improve the detection efficiency of real-time
ECG. (e difference amplitude Y algorithm is as follows:

Temp � X(n + 2) − X(n),

Y(n) �
−Temp2, Temp< 0,

Temp2, Temp> 0,

⎧⎨

⎩

(4)

where X represents the ECG signal processed by using a
Notch filter (Section 2.1.1) and FIR filter (Section 2.1.2).

In this paper, a window of size 3 is set up to record the
difference amplitude, which is represented by Y(n − 1),
Y(n), and Y(n + 1) in the follow-up, where Y(n + 1) rep-
resents the largest difference amplitude that can be obtained.

2.3.2. Calculation of Initial 1reshold. In this paper, three
thresholds are adopted to determine the position of the
R-wave: the maximum threshold Tmax of first-order dif-
ference, the minimum threshold Tmin of first-order differ-
ence, and the threshold TR of ECG amplitude. (e initial
process of the three thresholds is as follows:

TR � Xmax ∗ coef1,

Tmax � Ymax ∗ coef2,

Tmin � Ymin ∗ coef2,

(5)

where Xmax is the maximum value of ECG after processing
and Ymax and Ymin are the maximum and minimum values
of differential signals, respectively.

Due to the characteristics of the finite unit impulse
response (FIR) filter and adaptive Notch filter (Notch), the
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ECG signal 1s before recording should not be considered
when calculating the threshold value.

2.3.3. MMT Detects R-Waves. According to the maximum
and minimum difference thresholds Tmax and Tmin obtained
in Section 2.3.2, the maximum point in the range of
Y(n)>Tmax amplitude of differential signals in a continuous
period of time was calculated through the continuously
input ECG signals, and the index S1 of this point was
recorded. (e minimum point in the range of differential
signal amplitude Y(n)<Tmin in a continuous period of time
is calculated, and the index S2 of this point is recorded.
When S1 < S2 and the (S1, S2) range is within 0.2ms, the
maximum value X(n)max of ECG after processing is

calculated in the index range of point S1 and S2. When
X(n)max >TR, this point is considered to be point R.

Y n1 − 1( 􏼁<Y n1( 􏼁

Y n1( 􏼁>Y n1 + 1( 􏼁

Y n1( 􏼁>Tmax

⎧⎪⎪⎨

⎪⎪⎩
⟶ S1 � n1,

Y n2 − 1( 􏼁<Y n2( 􏼁

Y n2( 􏼁>Y n2 + 1( 􏼁

Y n2( 􏼁<Tmin

⎧⎪⎪⎨

⎪⎪⎩
⟶ S2 � n2,

X(n − 1)<X(n)

X(n)>X(n − 1)

X(n)>TR

⎧⎪⎪⎨

⎪⎪⎩
⟶ Rpos � n.

(6)

(a)

(b)

Figure 2: Notch filter effect. (a) Before the filtering. (b) After the filtering.

(a)

(b)

Figure 3: FIR filter effect. (a) Before the filtering. (b) After the filtering.
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2.3.4. Error Correction. In the detection of R-wave, some
interference may lead to multiple detection and missed
detection of the R-wave. In this paper, the error correction of
the R-wave is carried out by the following methods. (e
index difference between the R-wave position and the
previous R-wave position Dif is recorded, and it is compared
with the previous index difference Last_Dif .

If Dif > 1.66∗Last_Dif , there may be a missed judgment
between this R-wave and the previous R-wave. At this time,
the threshold value of reduction amplitude is 90% of the
original threshold value for redetection. If Dif < 0.6
∗Last_Dif , the gap between the point and the previous
R-wave is too small, which is considered as a misjudgment.

2.3.5. Adaptive 1reshold. According to the amplitude DS1
and DS2

corresponding to the index S1 and the index S2, as
well as the amplitude RR of point R, the three thresholds TR,
Tmax, and Tmin are updated adaptively according to the
following formula:

TR � TR ∗Rate + RR ∗ coef ∗(1 − Rate),

Tmax � Tmax ∗Rate + DS1
∗ coef ∗(1 − Rate),

Tmin � Tmin ∗Rate + DS2
∗ coef ∗(1 − Rate).

(7)

Due to the difference in the amplitude of the R-wave in
time, it is necessary to judge the amplitude of the current
measured R-wave once in the abovementioned formula. If
the amplitude of the R-wave is in the state of increasing (or
decreasing) for two consecutive times, the adaptive updating
of the threshold needs to be stopped.

3. Results and Discussion

3.1. Exercise ECGData. A panel exercise test was performed
on 10 test subjects using disposable button electrodes. (e
heart rate of the subject was increased through exercise, the
V1 and V2 leads of the subject are recorded, and the R-wave
of the ECGwaveform of the subject is detected and displayed
in real-time, as shown in Figure 4.

It can be seen from Table 1 that this algorithm has a good
performance in 10 subjects of different genders, and it can
effectively monitor and recognize the R-waves of a total of
8619 ECG waveforms of 10 subjects. When the maximum
heart rate was reached (195-age) [20], the body swing am-
plitude of the subjects reached the maximum, and the ECG
signal received the maximum interference. (is algorithm
also had a good performance, and the R-wave detection
results were accurate. At the same time, the memory uti-
lization is low in the detection process.

3.2. MIT-BIH Public Database. (e MIT-BIH arrhythmia
database contains 48 1/2 hours of excerpts from two-channel
dynamic ECG recordings. (e records are digitized with 360
samples per second per channel, with an 11-bit resolution in
the 10mV range [21].(e ANSI/AAMI/ISO EC57 :1998/(R)
2008 standard states that the QRS detection algorithm must
provide statistical reports from the MIT-BIH arrhythmia
database [22].

In order to evaluate the performance of the proposed
algorithm, common detector performance measurements
are applied and defined as follows [23].

Sensitivity (Se) represents the percentage of events
detected:

Se �
TP

TP + FN
× 100%. (8)

Positive prediction (+P) represents the score of the test,
that is, the event:

+P �
TP

TP + FP
× 100%, (9)

where TP is the number of true positive beats (correct
detection), FN is the number of false negative beats (false
detection), and FP is the number of false positive beats
(missed detection) [10].

As can be seen from Table 2, this algorithm successfully
detected 47,398 R-waveforms in 47,498 QRS-waveforms,
indicating that this algorithm can correctly detect the vast
majority of R-waveforms. In addition, Table 3 shows a

Figure 4: Exercise ECG real-time R-wave detection.

Table 1: Exercise test results.

Number of
samples

Total time of exercise
(s)

Maximum heart rate
(bmp)

(e total number of R-
waves

Number of leaks or
errors

Accuracy
(%)

10 3922 168± 2 8619 2 99.98
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quantitative comparison of the algorithms presented in this
paper with those proposed by Pandit and Lai. (e values of
Se and +P in this paper reach 99.70% and 99.93%, while
Pandit’s and Lai’s algorithms are 99.62% and 99.67% and
99.69% and 99.63%, respectively. (e algorithms of Pandit
and Lai are both R-wave recognition algorithms based on
differential thresholds. In the R-wave detection results, the
method of this paper has improved by 0.05% and 0.3% on
average.

4. Conclusions

(is paper presents a lightweight adaptive MMT ECG signal
R-wave detection algorithm. After denoising the ECG signal
and correcting the baseline, the algorithm performs first-
order difference processing, detects the R-wave through the
maximum and minimum difference threshold, and updates
the threshold according to the index information of the
R-wave.(e algorithm of R-wave detection in an athletic flat
test is in good condition, and in the MIT/BIH database of 21
ECG data detection, through comparing with Pandit algo-
rithm and Lai algorithm, the presented method of R-wave
identification not only is of high sensitivity (Se) and high

positive predictive (+P) but also has advantages in terms of
computing requirements.

In addition, it can be seen from Figure 5 that this al-
gorithm shows a strong anti-interference capability in the
detection of moving plate experiment and can effectively
reduce the ECG noise and baseline drift brought by
movement, so that it can effectively detect and monitor the
ECG in different motion states. At the same time, the op-
eration speed and resource share of the algorithm can
guarantee the real-time and durability of ECG monitoring.

It is important to note that the algorithm of R-wave
detection is faulty in some occasions, such as MIT-BIH
database in 203 and 205 of two groups of ECG data
waveform, the waveform memory is intermittent R-wave
inversion, the phenomenon of greater influence on the
sensitivity of the proposed algorithm, leads to recognition of
the R-wave in 203 and 205 groups of data, and the sensitivity
of 99.00% and 98.04%, as shown in Figure 5.

In summary, R-wave detection was evaluated on the
existing standard MIT-BIH database. (e algorithm has a
relatively high performance, with 99.70% sensitivity and
99.93% positive predictability, showing obvious advantages.
In addition, its low computational requirements and good
anti-interference capability make it easy to deploy and

(a)

(b)

Figure 5: Two groups of ECG diagrams (203 and 205). (a) MIT-BIH ECG data no. 203. (b) MIT-BIH ECG data no. 205.

Table 3: Comparison with other methods’ test results.

Method Se (%) +P(%)

Pandit et al. [2] 99.62 99.67
Lai et al. [24] 99.69 99.63
Method in this paper 99.70 99.93

Table 2: MIT-BIH detection R-wave results.

Number of samples (e total number of R-waves TP FN FP Se (%) +P (%)
21 47498 47398 143 31 99.70 99.93
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implement in portable monitoring and motion monitoring
applications. We will further study the limitations of the
current algorithm in order to develop a more complete and
practical algorithm.
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