
Review Article
Nuclear Alarmin Cytokines in Inflammation
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Pathogen-associated molecular patterns (PAMPs) are some nonspecific and highly conserved molecular structures of exogenous
specific microbial pathogens, whose products can be recognized by pattern recognition receptor (PRR) on innate immune cells
and induce an inflammatory response. Under physiological stress, activated or damaged cells might release some endogenous
proteins that can also bind to PRR and cause a harmful aseptic inflammatory response. These endogenous proteins were named
damage-associated molecular patterns (DAMPs) or alarmins. Indeed, alarmins can also play a beneficial role in the tissue repair
in certain environments. Besides, some alarmin cytokines have been reported to have both nuclear and extracellular effects. This
group of proteins includes high-mobility group box-1 protein (HMGB1), interleukin (IL)-33, IL-1α, IL-1F7b, and IL-16. In this
article, we review the involvement of nuclear alarmins such as HMGB1, IL-33, and IL-1α under physiological state or stress state
and suggest a novel activity of these molecules as central initiators in the development of sterile inflammation.

1. Introduction

The mechanism of the immune system sensing exogenous
pathogens and internal tissue damage has attracted increas-
ing attention. There are two main modes to activate the
body’s immune defense system when confronted with
damage caused by various factors: one is ectogenic
Pathogen-associated molecular patterns (PAMPs), and the
other one is endogenic damage-associated molecular pat-
terns (DAMPs) or alarmins. Pathogen-associated molecular
patterns (PAMPs) are some nonspecific and highly con-
served molecular structures that are necessary for the survival
and pathogenicity of a class or a group of specific microbial
pathogens [1]. Pattern recognition receptors (PRRs) are
germline-encoded receptors that can recognize PAMP, thus
triggers innate and adaptive immunity through activating a
series of signaling pathways. One of the most important
responses is to induce the synthesis of proinflammatory cyto-
kines and the activation of inflammasomes downstream [2].
DAMPs or alarmins are endogenous proteins or peptides
released by leukocytes and epithelial cells when stimulated

by danger signals. They strengthen the innate and adap-
tive immunity by recruiting and activating the antigen-
presenting cells (APCs) [3]. These DAMPs include high-
mobility group box-1 (HMGB1), defensins, antimicrobial
peptides, eosinophilic neurotoxins, heat shock proteins, and
some cytokines like IL-1α and IL-33. It was thought that
the biological effects of cytokines were only to transmit
signals through specific receptors on the cell membrane,
but increasing studies suggest that certain cytokines also
play a role in the nucleus, such as IL-33, HMGB1, and IL-
1α [4–6]. Here, we review the involvement of three represen-
tative nuclear alarmins, HMGB1, IL-33, and IL-1α, in the
development of inflammation.

2. Members of Nuclear Alarmins
Involved in Inflammation

2.1. HMGB1. HMGB1 was named due to its low molecular
weight and fast swimming in electrophoresis and was first
recognized as an intranuclear protein [7]. It is present in
almost all eukaryotic cells and is highly conserved between
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species [8]). Structurally, it is divided into three regions: Box
A, Box B, and C-terminal domain. Both Box A and Box B are
capable of binding to DNA; C-terminal is a residual terminal
with a negative charge (Figure 1) [9]. Structure and function
analysis showed that Box B had the biological activity of
HMGB1, while Box A is an antagonist of HMGB1 and Box
B, which can block the inflammatory effect of HMGB1
[10]. HMGB1 is a widely expressed nuclear protein and
affects transcription regulation. It binds to the DNA grooves
and loosens the DNA wrapped in the nucleosome, thus pro-
moting chromatin remodeling [11]. HMGB1 can also bend
the DNA significantly and promote the combination of
DNA and relevant transcription factors, such as p53, NF-
κB, and steroid receptor [12, 13]. HMGB1-deficient mice
die soon after birth suggesting the key role of HMGB1 in
the nucleus in maintaining life [14]. HMGB1 stays very short
at specific DNA binding sites and moves quickly in the
nucleus. The stimulation of inflammation can lead to the
acetylation of lysine residues in HMGB1 and prevent it from
moving into the nucleus [15].

2.2. IL-33. Interleukin-33 (IL-33), also known as NF-HEV
(nuclear factor from high endothelial venules), IL-1F11, is a
new member of the IL-1 family originally reported by
Schmitz et al. in 2005 [16]. It is widely expressed in the whole
body, especially in the central nervous system and gastroin-
testinal [16]. It is composed of 270 amino acids, with an IL-
1-like cytokine folding region at the C-terminal and a nuclear
localization signal peptide and chromatin binding region at
the N-terminal (Figure 2) [17]. IL-33 is synthesized at 30
KD in cellular and then cut into 18 KD by hydrolase as a
mature form while secreted to extracellular [18]. Recent stud-

ies indicate that human IL-33 is processed at Asp178, not
Asp112 as previously claimed [19, 20], and IL-33 is processed
into bioactive forms and secreted to extracellular by neutro-
phil elastase and cathepsin G [21]. Recently, it has been
reported that IL-33 is expressed in the nucleus, such as the
human endothelial cells [22, 23]. The function of IL-33 in
the nucleus is associated with the attachment to heterochro-
matin [24, 25].

IL-33 is derived from a wide range of tissues, but there are
relatively few researches on which cell secreted IL-33 and its
role in the disease. It has been reported that vascular endo-
thelial cells (VECs) are the main source of IL-33. IL-33 are
released from the nucleus when VECs are stimulated by
inflammatory cytokines [26]. IL-33 is also expressed in the
epithelial cells of the mucosa and the keratinocytes of skin
[27–29], as well as some immune cells such as macrophages
[30]. The secretory pathway of IL-33 is still unclear. It has
been reported that it may be affected by the proteolytic
enzyme, similar to that of IL-1β [31]. Researches also showed
that cardiac fibroblasts stimulated by PMA and monocytes
stimulated by LPS can secrete mature IL-33 [32, 33]. Recent
studies suggested that the precursor IL-33 has biological
activity, and its biological activity is reduced after proteolytic
enzyme cleavage [19, 20, 30, 34].

2.3. IL-1α. IL-1α is also an important member of the IL-1
family. IL-1α lacks secretory protein as a signal peptide, so
it can only be transformed from its precursor molecule.
When the cell is stimulated, proteases (calpain, Granzyme
B, etc.) cut pro-IL-1α into the 17 kDa mature form of IL-
1α, both of which have biological activities [35, 36]. Pro-IL-
1α is a 31KD protein, which can be expressed in most
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dormant nonhematopoietic cells of humans, such as the epi-
thelial cells of the gastrointestinal tract, liver, kidney, and skin
[37, 38]. It consists of the N-terminal domain (NTD), nuclear
localization signal (NLS), and C-terminal domain (CTD)
(Figure 3) [39]. NLS induced pro-IL-1α to migrate to the
nucleus as an intranuclear transcription factor and partici-
pates in gene regulation [40, 41]. Mature IL-1α plays a bio-
logical role by binding to IL-1R [42].

3. Alarmin Receptors

Studies have shown that alarmins play a role in chemotaxis
and activation of immune cells through G protein-coupled
receptors (GPCRs) and non-G protein-coupled receptors
(non-G PCR s) (Table 1).

3.1. Receptors for HMGB1. The Receptor for Advanced Gly-
cation End Products (RAGE) is considered to be the receptor
of HMGB1 [43]. RAGE is expressed on antigen-presenting
cells (APC) [44–46], as well as endothelial cells and smooth
muscle cells (SMCs) [47–51]. RAGE deficiency can signifi-
cantly prolong the survival time of endotoxin mice. However,
the deletion of RAGE does not completely prevent HMGB1
from stimulating macrophages to secrete inflammatory fac-
tors [52]. Other studies suggested that TLR2 and TLR4 are
HMGB1’s receptors as well [53]. However, there is no differ-
ence in the response of macrophages to HMGB1, whether the
macrophages comes from TLR2-deficient mice or wild-type
mice [54]. This suggests that TLR2, TLR4, and RAGE can
bind to HMGB1, but RAGE may play a more important role
for HMGB1.

Recent studies suggested that HMGB1 combined with
other immune-stimulators, such as LPS, IL-1β, and DNA,
can enhance its biological effect. This suggests that HMGB1
can simultaneously promote the activation of two receptors
and produce biological effects. For example, HMGB1/DNA
complex is easier to bind to RAGE than HMGB1, because
the anchoring of DNA and TLR9 strengthens the combina-
tion of HMGB1 and RAGE [55, 56].

3.2. Receptors for IL-33. As the only specific receptor of ILl-
33, ST2L is mainly expressed in Th2 lymphocytes [57], mast
cells, and NKT, but not in Th1 lymphocytes [58]. IL-1 recep-
tor accessory protein (IL-1RAcP) is essential for IL-33/ST2L
to activate downstream signal pathways; IL-1RAcP-deficient

mast cells cannot be stimulated to secrete IL-6 by IL-33 [59,
60]. IL-33 activates downstream signal pathways through
ERK1/2, p38MAPK, and JNKs [16]; the TRAF6 pathway
plays a key role in activating NF-κB and inducing Th2 cyto-
kines by IL-33 [61]. However, the relationship between ST2L
and NF-κB activation is controversial. It has been reported
that the activation of ST2L has an anti-NF-κB effect, as in
cardiomyocytes; IL-33-activated NF-κB inhibits angioten-
sion II-induced NF-κB activation, thus alleviating the cardiac
hypertrophy [62–64]. Soluble ST2 (sST2) is the extracellular
segment of ST2L, which acts as a decoy receptor and binds
to IL-33 competitively, thus blocking the effect of IL-33
[65]. In animal experiments, injection of sST2 or ST2 block-
ing antibody can alleviate asthma mediated by IL-33 and
block the proinflammatory effect of IL-33 on rheumatoid
arthritis [66–68].

4. Alarmins in Inflammation

4.1. HMGB1 in Inflammation. HMGB1 shows a strong pro-
inflammatory effect when released into the extracellular envi-
ronment, mainly through the following two mechanisms.
First, necrotic cells release HMGB1 and activate the immune
system [69, 70]. Recent studies indicated that apoptotic cells
can also release HMGB1, but the reactive oxygen species pro-
duced by the activation of intracellular hydrolase can inacti-
vate HGMB1 and block its proinflammatory activity [71].
Second, monocytes or macrophages can secret HMGB1
when activated by LPS, proinflammatory factors, or NO
[72]. In endotoxemia, HMGB1 is considered a lethal factor
in the late stage of endotoxic shock [73–75]. Increasing
inflammatory factors, such as LPS, TNF-α, and IL-1, induce
macrophages or DCs secrete HMGB1, which further stimu-
lates macrophages or DCs to secrete inflammatory factors,
thus forming a vicious circle [76].

4.2. IL-33 in Inflammation. Recent studies suggested that IL-
33 is involved in the occurrence and progress of various dis-
eases, and its mechanism is complex. It can promote the
pathophysiological progress of asthma [77, 78], rheumatoid
arthritis [79], and systemic lupus erythematosus [80], while
in atherosclerosis, allogeneic transplantation, endotoxic
shock, and parasitic infection, it inhibits the occurrence and
development of diseases [81].

The dual function of IL-33 is mainly due to the different
types of immune responses on different cells. IL-33 induce
Th2 cells [82], mast cells [83], and basophils to secrete large
amounts of IL-4, IL-5, IL-13, IgE, and IgA [83], which induce
the pathological changes related to Th2 immune response. In
vivo administration of recombinant IL-33 can cause histolog-
ical changes in the lung and gastrointestinal tract, such as
increased mucus secretion, epithelial hyperplasia, and

1 82 89 103 113 271
N-terminal domain C-terminal domainNuclear localization signal

Figure 3: Molecular structure of IL-1α.

Table 1: Alarmins and relative receptors.

Alarmin Relative receptors

HMGB1 RAGE, TLR2, TLR4

IL-33 ST2L

IL-1α IL-1R
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overgrowth, which were considered to be related to Th2
immune response induced by IL-33 [16]. Previous studies
also reported that IL-33 can induce the tolerance of allografts,
which may be related to the differentiation of Th2 cells,
MDSCs, and Treg cells induced by IL-33 [84–86]. The spe-
cific role of IL-33 in the cell nucleus is still not very clear,
but studies have suggested that it can regulate gene expres-
sion. First, IL-33 would be lost when stimulated by inflam-
mation in the resting vascular endothelial cell (VEC)
nucleus [22]; second, when binding to NF-κB, IL-33 can
block the related gene transcription induced by it [87]; and
third, a short sequence of IL-33 precursor is involved in the
formation of histone dimer, which is the components of
higher-order chromatin structure [24].

4.3. IL-1α in Inflammation. IL-1α is an important alarmin
that mediates aseptic inflammation. Studies have shown that
the IL-1α expression can be upregulated in cells in the hyp-
oxic environment, which activates aseptic inflammation.
This is mainly due to the fact that hypoxia-inducible factor
(HIF) induced by hypoxia can regulate the IL-1α transcrip-
tion, thus affects the IL-1α-related inflammation by regu-
lating the expression of IL-1α [88]. The expression and
nuclear localization of IL-1α depend on the redox reaction.
Overexpression of manganese superoxide dismutase leads
to a corresponding increase of H2O2; meanwhile, a signifi-
cant elevation of IL-1α is observed, in both mRNA and pro-
tein levels, as well as an increased localization of IL-1α in the
nucleus [89].

5. Alarmins and Inflammatory Diseases

5.1. HMGB1 and Inflammatory Diseases. As a natural alar-
min, HMGB1 is involved in the inflammatory response of
acute local organ injury, as well as Th17-mediated autoim-
mune diseases, such as rheumatoid arthritis (RA), multiple
sclerosis (MS), and its animal model-experimental autoim-
mune encephalomyelitis (EAE). HMGB1 is highly expressed
in lesions of MS patients and EAE, and its three receptors
RAGE, TLR2, and TLR4 are upregulated in macrophages or
microglia. Besides, there is a positive feedback effect between
HMGB1 and microglia, which promotes disease progression
[90–92]. In the allograft rejection model, the expression of
HMGB1 gradually increased over time. Notably, there was
an ischemia-reperfusion injury in the process of obtaining
the graft from the donor and during the surgery [93–96],
which leads to the HMGB1 release from necrotic cells. These
HMGB1 may be immediately involved in early and late graft
rejection. The overexpression of HMGB1 is observed in
colon cancer, breast cancer, and prostate cancer. With RAGE
or HMGB1 blocked, tumor growth and metastasis are inhib-
ited in animal models [97–99].

5.2. IL-33 and Inflammatory Diseases. In TNBS-induced
enteritis, IL-33 upregulates CD103+IDO+ DCs through intes-
tinal epithelial cells (IECs) and produces inhibitory Tregs to
alleviate pathological changes mediated by Th1/Th17 [100].
IL-33 inhibits cardiac hypertrophy caused by AngII through
activating NF-κB, and as a decoy receptor of IL-33, the serum

expression of sST2 increases in patients with myocardial
hypertrophy and heart failure caused by it [62], and the
expression was correlated with the grade of heart failure.

5.3. IL-1α and Inflammatory Diseases. IL-1α is an important
dual inflammatory factor, mainly involved in a variety of
autoimmune diseases, as well as in anti-infection, anti-
tumor, and other processes [101]. By inducing the release
of TNF-α, G-CSF, and other inflammatory factors and
recruiting concentrated granulocytes [102, 103], IL-1α can
promote the progress of acute lung injury [104, 105], DSS-
induced intestinal inflammation, and psoriasis. In addition,
IL-1α can also be used as a prognostic indicator for distant
metastasis of head and neck squamous cell carcinoma and
promote the growth of melanoma, pancreatic ductal adeno-
carcinoma, and other tumors [105, 106].

6. Conclusions

DAMP or alarmin is actively released by cells or directly
released by necrotic tissues when the tissue is stimulated or
damaged, then produce certain biological effects by binding
to relative receptors. Alarmins may play different roles in dif-
ferent locations of cells or in the microenvironment of differ-
ent diseases. Researchers hope to achieve the goal of curing
diseases by regulating alarmins and their relative signal path-
ways. However, before achieving this goal, the mechanism of
these cytokines still needs further research. Does DAMP
affect each other? How is DAMP released from intracellular
to extracellular? Is there any difference in the function
between DAMP that is actively released or passively released?
Are there any differences between DAMP that is released by
apoptotic cells or necrotic cells? All in all, there is still a long
way to go to clarify the biological effects and related mecha-
nisms of DAMP.
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