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Following genotoxic stress, the histone H2AX becomes phosphorylated at serine 139 by the ATM/ATR family of kinases. The tumor
suppressor BRCA1, also phosphorylated by ATM/ATR kinases, is one of several proteins that colocalize with phospho-H2AX (γ-
H2AX) at sites of active DNA repair. Both the precise mechanism and the purpose of BRCA1 recruitment to sites of DNA damage
are unknown. Here we show that BRCA1 and γ-H2AX form an acid-stable biochemical complex on chromatin after DNA damage.
Maximal association of BRCA1 with γ-H2AX correlates with reduced global γ-H2AX levels on chromatin late in the repair process.
Since BRCA1 is known to have E3 ubiquitin ligase activity in vitro, we examined H2AX for evidence of ubiquitination. We found
that H2AX is ubiquitinated at lysines 119 and 119 in vivo and that blockage of 26S proteasome function stabilizes γ-H2AX levels
within cells. When BRCA1 levels were reduced, ubiquitination of H2AX was also reduced, and the cells retained higher levels of
phosphorylated H2AX. These results indicate that BRCA1 is recruited into stable complexes with γ-H2AX and that the complex is
involved in attenuation of the γ-H2AX repair signal after DNA damage.

1. Introduction

One of the first observable responses to DNA damage is
activation of DNA-PK family kinases and resulting phospho-
rylation of the histone variant H2AX on S139 [1]. Due to
the availability of excellent antibodies to S139-phosphorylated
H2AX (a form of the protein called γ-H2AX), this modifica-
tion is a widely recognized early marker of both genotoxic
stress and normal DNA replication [2]. The tail region
of H2AX includes a conserved SQ motif (S139Q140) that
is recognized as the core target motif of DNA-PK family
serine/threonine kinases (ATM [3], ATR [4], and DNA-PK
[3, 5]).

Within minutes after DNA damage, γ-H2AX becomes
identifiable and is localized to discrete nuclear foci [6].
The foci actually include large areas of chromatin flanking
points of DNA damage [6]. After DNA damage, several

proteins are recruited to regions of γ-H2AX staining. These
include the breast cancer susceptibility gene BRCA1, RAD51
[7], the NBS1/RAD50/MRE11 complex [1, 8], 53BP1 [9,
10], and MDC1 [11, 12]. Recruitment of most proteins to
radiation-induced foci is dependent on ATM/ATR activity
and formation of γ-H2AX, indicating that H2AX phos-
phorylation plays a key role in maintenance of irradiation-
induced foci [13]. ATM is the major H2AX kinase in response
to γ-irradiation [3] while ATR plays a larger role during
DNA synthesis [4]. S139 phosphorylation of H2AX is greatly
reduced in ATM/ATR knockout cells and is completely
blocked by treatment with wortmannin [3], an inhibitor of
DNA-PK kinases.

Genetic and biochemical experiments support roles for
BRCA1 in homologous recombination [7, 14], nonhomolo-
gous end joining [15, 16], and transcription-coupled repair
[17]. BRCA1 null cells are extremely sensitive to γ-irradiation
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and other types of genotoxic stress [18, 19]. Although the
role of BRCA1 in DNA repair is not known, the N-terminal
ring finger of BRCA1 interacts with the ring finger of
BARD1 [20], and the complex has been shown to possess
E3 ubiquitin ligase activity in vitro [21]. The E2 ubiquitin-
conjugating enzyme (UbcH5c) has been shown to associate
with this complex [21, 22], and several in vitro substrates
have been identified, including monoubiquitinated histones
H2AX, H2A, H2B, H3, and H4 (but not H1) [22]. So
far, in vivo targets of the complex have been less clearly
defined.

BRCA1 association with chromatin is properly consid-
ered an intermediate or late event in chromatin repair
[1, 23]. Here we demonstrate by differential fractionation
of chromatin bound BRCA1 complexes that BRCA1 and
γ-H2AX form a biochemical complex in the chromatin
fraction of cells as a late event following DNA damage.
The complex is resistant to nonionic detergent extraction
and is dependent on wortmannin-sensitive kinases, features
that are distinct from BRCA1 prior to genomic stress. We
show that a phosphomimetic of H2AX (H2AX-E139) is
ubiquitinated in vivo, and the major site of ubiquitination
is on K118 and/or K119. When BRCA1 levels were reduced
using an antisense morpholino knockdown strategy, we
observed substantially reduction in H2AX ubiquitination
and increased amounts of H2AX S139 phosphorylation.
These results are consistent with the hypothesis that BRCA1
is present in non-chromatin-associated complexes (includ-
ing processive RNA polymerase II) prior to genotoxic
stress; it becomes phosphorylated, moves into a stable
chromatin-associated complex containing γ-H2AX, and
then targets γ-H2AX for turnover as a late phase of DNA
repair.

2. Materials and Methods

2.1. Plasmids. H2AX, H2AX-A139, and H2AX-E139, were
generated by RT-PCR from human RNA using primers,
described in the supplemental data (see Table 1 in Sup-
plementary Material available online at doi: 10.4061/2011/
801594), and cloned into pcDNA3.1D-V5-H6 (Invitrogen)
to generate epitope-tagged variants. PCR-mediated muta-
genesis was performed [24] using primers described in the
supplementary data to generate additional mutations. pMT-
HA-Ub (hemagglutinin tagged- ubiquitin) was the generous
gift of Dr. Dirk Bohmann (University of Rochester).

2.2. Cell Culture. 293T, MCF-7, and HBL100 were main-
tained as described in [25].

2.3. DNA Damage and Wortmannin. Damage—randomly
cycling HBL100 cells were treated with 4 μM adriamycin or
were exposed to 10 Gy ionizing radiation using a 137Cs source
(Mark 1 irradiator, Shepherd and Associates). Following
treatments, cells were returned to a 5% CO2 incubator for
the indicated amount of time. Cells treated with wortmannin
were first pretreated with 100 μM wortmannin for 15 min-
utes [3].

2.4. Immunoprecipitations and Immunoblotting. Nuclei were
prepared by extracting cells in EBC buffer (50 mM Tris pH
8.0, 120 mM NaCl, and 0.5% NP-40) as described in [25].
Nuclei were then treated with 0.1 M HCl for 30 minutes and
neutralized with 0.1 M NaOH. This acid soluble “chromatin
fraction” was centrifuged for 5 minutes at 14,000 RPM to
remove insoluble material. Lysates were precleared with
protein A or G beads and then incubated overnight with
primary antibodies to γ-H2AX (Upstate Biotechnology) or
BRCA1 (Ab-4, EMD Biosciences). Extracts were run on a
5% or 14% SDS-PAGE gel. Proteins were then transferred
to nitrocellulose membranes, blocked in 5% nonfat dry
milk, and incubated with a primary antibody generated
against BRCA1 (Ab-4, EMD Biosciences), γ-H2AX (Upstate
Biotechnology), H2A (H-124, Santa Cruz Biotechnology),
RNA polymerase II (N-20, Santa Cruz Biotechnology or
8WG16 (provided by Dr. Michael Carey (UCLA)), FCP1
(provided by Dr. Michael E. Dahmus (UC Davis)), or
β-actin (Sigma), followed by a goat antirabbit (or anti-
mouse) horseradish peroxidase-conjugated secondary anti-
body (Pierce). Blots were developed with a chemilumines-
cence detection substrate (SuperSignal, Pierce).

2.5. Immunocytochemistry. Cells were fixed in 4% par-
aformaldehyde (PFA) for 30 minutes on ice. γ-H2AX
was detected with an antibody from Upstate Biotechnol-
ogy. Alexa-488-conjugated secondary antibodies (Molecular
Probes) were used to visualize immune complexes, and
photomicrographs were prepared as described in [25].
Quantitation of fluorescent γ-H2AX foci was accomplished
using a Laser Scanning Cytometer (LSC, CompuCyte).
Potential autofluorescence was carefully gated by tuning the
lasers to optimize signal.

2.6. Proteasome and Phosphatase Inhibitors. Human MCF-7
or 293T cells were treated with 5 μM adriamycin for
1 hour. Following adriamycin treatment, the cells were
washed then treated with or without lactacystin (Sigma)
or a serine/threonine phosphatase inhibitor cocktail [(-)-
p-Bromotetramisole Oxalate, Cantharidin and Microcystin-
LR] (EMD Biosciences) for 4 hours, after which the cells
were fixed in 4% PFA. γ-H2AX was immunostained as
described above. Quantitation of fluorescent γ-H2AX foci
was accomplished using a Laser Scanning Cytometer (LSC,
CompuCyte).

2.7. Antisense Morpholino Oligos. Two antisense morpholino
oligos (Gene Tools, Inc.) were designed against BRCA1 (AS1
5
′
-GCGAAGAGCAGATAAATCCATTTCT-3

′
and AS2 5

′
-

TGTGCTGACTTACCAGATGGGACAC-3
′
). 20 μL of each

of the two 500 μM morpholino antisense oligos were deliv-
ered into the cells using the EPEI delivery solution according
to the manufacturer’s protocol. The remaining cells were
treated with a serum-free media control, EPEI delivery
solution (Gene Tools, Inc.), or 40 μL of a 500 μM scrambled
control oligo (5

′
-CCTCTTACCTCAGTTACAATTTATA-

3
′
). After a two-hour treatment, the media were replaced

with serum-containing media. The cells were allowed to
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Figure 1: BRCA1 moves into a chromatin complex containing S139 phosphorylated H2AX (γ-H2AX) after DNA damage in vivo. HBL100
cells were exposed to 10 Gy γ-irradiation (IR) or 4 μM adriamycin then allowed to recover for the indicated time before isolation of
protein complexes. (a) Nonchromatin (soluble) nuclear proteins from panel (a) were immunoprecipitated (IP) with antisera to BRCA1.
Immunoprecipitates were treated with phosphatase (CIP) and immunoblotted (WB) using antibodies to RNA polymerase II (Pol II,
8WG16), FCP1, or BRCA1. 10% of the lysate was immunoblotted directly and probed for β-actin. (b) Total γ-H2AX and BRCA1-associated
γ-H2AX were immunoprecipitated from the chromatin fraction of cells following IR. 10% of the chromatin fraction was blotted directly
and probed for total H2B. (c) BRCA1 complexes identified in (a) and (b) were quantified and graphed as a function of time. (d) Chromatin-
associated protein complexes were extracted (chromatin fraction) of cells exposed to IR as indicated. BRCA1 was immunoprecipitated (IP)
from 90% of the chromatin extract, and immunoblots (WB) were probed with an antibody to γ-H2AX (S139 phosphorylated H2AX). 10%
of the chromatin fraction was blotted directly and probed for total H2A. (e) Cells were pretreated with wortmannin for 15 minutes prior to
treatment with 4 μM adriamycin for 1 hr. 90% of the chromatin fraction was immunoprecipitated (IP) with antibodies to either BRCA1 or
γ-H2AX and blotted (WB) with an antibody to γ-H2AX. 10% of the chromatin fraction was blotted directly and probed for total H2A.

recover for 24 hours at which time they were lysed with EBC
buffer. Data related to dose and effectiveness are provided
(see supplementary data)

3. Results

3.1. BRCA1 Interacts with γ-H2AX. BRCA1 and γ-H2AX
form a physical complex on chromatin following DNA

damage. Before DNA damage, small amounts of BRCA1
are present in the chromatin fraction, consistent with the
percentage of S-phase nuclei in this population of cells
[4, 7, 26]. After treatment with the DNA-damaging agent
adriamycin, there is a substantial increase in acid-stable
nuclear BRCA1: γ-H2AX complexes (Figure 1(a)). Stable
interaction is minimal at early times following DNA damage
then increases to the maximum at about 60 minutes. The
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association is blocked by the ATM/ATR inhibitor wortman-
nin (Figure 1(b)). This data supports the hypothesis that
interaction of BRCA1 and H2AX occurs well after DNA
damage, requires phosphorylation by ATM or ATR [3, 27],
and provides evidence that the interaction requires the
formation of a stable complex.

3.2. Time Course of the BRCA1 Complex Formation. In order
to analyze the kinetics of BRCA1 interactions, we examined
BRCA1 complexes present in undamaged cells and in
cells responding to DNA damage. In undamaged cells, we
had previously demonstrated that BRCA1 interacts with
the phosphorylated, transcriptionally active form of RNA
polymerase II (RNA pol II) [25]. Following γ-irradiation,
we found that the BRCA1: γ-H2AX complex was enhanced
(Figure 1(a)) whereas the BRCA1:RNA pol II interaction
is disrupted (Figure 1(c)). This shift accompanies the
movement of BRCA1 from an easily extractable form in
undamaged cells to a chromatin-associated form in dam-
aged cells. The association between BRCA1 and γ-H2AX
peaks about 30–60 minutes after DNA damage whereas the
association between BRCA1 and RNA polymerase II is at
the lowest 30–60 minutes after DNA damage (Figure 1(d)).
FCP1, a protein that is part of the elongating pol II complex,
has a similar pattern of association with BRCA1 as that of
pol II (Figure 1(c)), illustrating the reciprocal functionality
between BRCA1: γ-H2AX complex and the BRCA1:RNA pol
II complex.

Further analysis of the timing of the BRCA1: γ-H2AX
complex shows that this complex coincides with a decreased
level of cellular γ-H2AX. When the BRCA1: γ-H2AX com-
plex is at its highest level (about 60 minutes after DNA
damage), the level of γ-H2AX has begun to decrease, as
demonstrated by immunoblot of the total chromatin extract
(Figure 1(e)).

3.3. H2AX Is Ubiquitinated In Vivo. Because BRCA1 is an
E3 ubiquitin ligase, we hypothesized that the reduction of
γ-H2AX seen following association with BRCA1 could be
the result of ubiquitin-mediated proteasomal degradation.
If this were true, then proteasome inhibitors should result
in stabilized levels of γ-H2AX. BRCA1 has been shown to
ubiquitinate H2AX in vitro [22]; therefore, we wanted to
determine if γ-H2AX turnover was proteasome mediated. To
test whether γ-H2AX was degraded by the 26S proteasome,
MCF-7 mammary epithelial cells were treated with the DNA-
damaging agent adriamycin then treated with or without
the proteasome inhibitor lactacystin for an additional hour
before fixation. Cells were fixed and immunostained to
identify γ-H2AX high and γ-H2AX low cells. As shown
in Figure 2(a), lactacystin increased the percentage of γ-
H2AX high cells in the population of cells recovering from
adriamycin treatment.

By this γ-H2AX immunofluorescence assay, 20% of
untreated cells were found to be positive for high levels
of γ-H2AX (Figure 2(b)). When cells were treated with
adriamycin for 1 hour followed by 1 hour recovery, γ-
H2AX immunofluorescence showed a 2-fold increase over

control cells, consistent with the view that H2AX was
dynamically phosphorylated in response to DNA dam-
age. The proteasome inhibitor lactacystin had a similar
effect as adriamycin, when added alone, consistent with
the hypothesis that γ-H2AX formation in normal cycling
cells could be stabilized by proteasome inhibitors. When
adriamycin-induced damage was followed by lactacystin
treatment, there was a fourfold increase in the amount
of γ-H2AX over control, resulting in over 80% of cells
containing high levels of γ-H2AX by two hours. Addition of
a phosphatase inhibitor cocktail also stabilized γ-H2AX level,
suggesting that there may be additional ways to attenuate
H2AX phosphorylation in cells. However, the phosphatase
inhibitors alone did not cause stabilization or activation of
γ-H2AX, indicating that proteasome-mediated turnover was
a general mechanism to be addressed in further detail. These
results provide evidence that γ-H2AX is degraded by the
proteasome and potentially by other mechanisms requiring
dephosphorylation of one or more components after DNA
damage.

3.4. H2AX Is Ubiquitinated at Lysine 118 and/or 119.
Previous reports have shown that histone H2A is polyu-
biquitinated on K119, and H2B had shown evidence of
ubiquitination on K120 [28]. To examine the role of ubiquitin
modifications in γ-H2AX turnover we created a series of
modifications intended to model phosphorylation at S139

and the roles of various lysine (K) residues in the C terminus
(Figure 3(a) and supplementary Figure 1). H2AX-V5-H6 was
first mutagenized to replace S139 with alanine (A) or glutamic
acid (E), to mimic the negative charge of phosphorylation at
S139. As predicted, H2AX-S139-V5-H6 localized to chromatin
but was moderately less stable than the wild-type H2AX-V5-
H6 or A139 mutation products (not shown). Cotransfection
of H2AX-S139-V5-H6 with a cytosolic form of BRCA1
lacking a nuclear localization sequence (BRCA1-Δ11-GFP)
resulted in nuclear localization of both proteins and rapid
turnover (not shown). For these reasons, we hypothesized
that H2AX-S139 was mimicking S139 phosphorylation and
recruiting binding of BRCA1.

We then replaced each lysine (K) residue found in the
conserved C-terminus of H2AX-E139 with arginine (R)
and tested for ubiquitination in vivo (Figure 3). K118 and
K119 (which align with K119 and K120 of H2A) were
mutated individually (Figure 3(c), lanes 6 and 7) and in
combination (lane 8). K133 and K134 were also mutated
individually (Figure 3(c), lanes 9 and 10) and in combination
(lane 11) to arginine. Mutation of K128 to R128 was also
prepared as part of this series but had no effect (data
not shown). 293T cells were transfected with wild-type or
mutagenized pcDNA3-H2AX-V5-H6 in addition to HA-
tagged ubiquitin. H6-tagged complexes were purified using
nickel-chelated beads, and bound proteins were analyzed
by immunoblotting for the presence of HA-tagged H2AX
(Ub-H2AX). As shown, V5 immunoblotting identified mod-
ified and ubiquitinated H2AX only when extracts from
cotransfected cells were purified and blotted (Figure 3(b)).
Reprobing these blots with anti-HA antisera revealed that
the upper band contained ubiquitin (Figure 3(b)). While the
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Figure 2: H2AX is dephosphorylated following DNA damage. MCF-7 cells were treated with adriamycin for 1 hour then treated with
lactacystin or a phosphatase inhibitor (P’tase inh.) cocktail, as indicated. Cells were fixed and stained for γ-H2AX and quantitated using a
Laser Scanning Cytometer.

major band migrated in a fashion consistent with that of
monoubiquitinated H2AX, there were additional bands of
immunoreactivity at higher molecular weights that suggested
polyubiquitination as well (Figure 3(b) arrowheads). H2AX
mutated at both K118 and K119 showed no ubiquitination
(lane 8), indicating that H2AX is ubiquitinated at either K118

or K119, whereas other point mutations showed levels of
ubiquitination similar to wild type. These results show that
H2AX-E139 is ubiquitinated at either K118 or K119.

3.5. BRCA1 Knockdown Increases Steady State Levels of γ-
H2AX Buy Reduction of Ubiquitination in Cells Undergoing
Replicative Stress. To functionally examine the interaction
between BRCA1 and γ-H2AX, we used antisense mor-
pholino oligonucleotides to knockdown BRCA1 expression.
Treatment of cells with BRCA1 antisense oligonucleotides
reduced the amount of BRCA1 to under 3% of normal
levels (Figure 4(a), and supplemental data). Reduction of

BRCA1 protein resulted in increased levels of γ-H2AX
expression by both immunofluorescence (Figure 4(a)) and
immunoblotting (Figure 4(b)).

Cells treated with antisense oligos directed at BRCA1
mRNA were transfected with H2AX-V5-H6 and HA-
tagged ubiquitin. The epitope-tagged H2AX product was
then isolated using nickel-chelated beads and analyzed by
immunoblotting for the presence of HA-tagged ubiquitin.
Cells treated with BRCA1 antisense oligos had a reduction
in the global amount of H2AX ubiquitination detected
(Figure 4(c)). Efforts to examine the role of double-strand
break repair on this process are underway but are compli-
cated by the extreme sensitivity of BRCA1 deficient cells to
genotoxic agents.

It has been shown previously that BRCA1 deficiency is
associated with G2/M checkpoint and other defects [29–32].
To examine the relationship between BRCA1 and genotoxic
stress more carefully, we examined cells treated with BRCA1
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Figure 3: H2AX-E139 is ubiquitinated at K118 or K119. (a) Critical
amino acids within the C-terminus are shown. (b) HA-tagged
ubiquitin (HA-Ub) was transfected into cells with or without
H2AX-V5-H6. His-tagged (H6) proteins were purified from chro-
matin fractions then probed sequentially for the presence of HA-
ubiquitin and V5 epitopes (WB). 10% of the unfractionated extract
was blotted directly and probed for β-actin. (c) H2AX variants
containing E139 (to mimic S139 phosphorylation) and various lysine
(K) to arginine (R) Substitutions were transfected with HA-tagged
ubiquitin. Histidine-tagged proteins were purified from chromatin
fractions then probed sequentially for the presence of HA-ubiquitin
and V5 epitopes. 10% of the unfractionated extract was blotted
directly and probed for β-actin. The star (lane 8) indicates the
absence of HA-tagged ubiquitin. Arrows indicate unmodified and
ubiquitinated H2AX.

antisense oligos for evidence that γ-H2AX stabilization
correlated with replicative defects. We found that early in
the response to BRCA1 knockdown, γ-H2AX expression was
confined to cells in G2/M or late S-phase of the cell cycle
(Figure 4(d)). Most cells with 2N DNA, as measured by DAPI
fluorescence, had normal γ-H2AX staining patterns

4. Discussion

These results suggest that BRCA1 deficiency is associated
with defective clearance of γ-H2AX from cells following
replication and other types of genotoxic stress (Figure 5).
We propose that BRCA1 interacts with processive RNA pol
II in undamaged cells as part of a role in genomic surveil-
lance (Figure 5(a)) [25, 33]. Following genotoxic stress,
phosphorylation of BRCA1 by ATM/ATR and potentially
by chk1 results in its dissociation from stalled RNA pol II
complexes. We propose that an early repair complex forms
on DNA as a consequence of ATM/ATR phosphorylation.
Early targets for ATM/ATR include phosphorylation of
H2AX to form γ-H2AX [34, 35]. γ-H2AX then serves
as a template to aid in the recruitment of early and
late components of the repair machinery, including 53BP1
(Figure 5(b)) [36]. We propose that BRCA1 is recruited at
later times, potentially after break repair has been affected.
One target for BRCA1 recruitment is γ-H2AX, which is
directly or indirectly ubiquitinated on K118 or K119 and
degraded through the actions of the 26S proteasome (Fig-
ure 5(c)).

We have shown that BRCA1 is in a biochemical com-
plex with γ-H2AX after DNA damage. This interaction
is dependent on the DNA-PK family of kinases (ATM
and/or ATR), as the interaction is disrupted by the inhibitor
wortmannin. This data agrees with previous data that
BRCA1 colocalizes with repair proteins and suggests a
function for BRCA1 in the chromatin fraction of nuclei.
BRCA1 becomes part of the BRCA1-associated surveil-
lance complex (BASC), which includes many proteins
involved in DNA repair, including MSH2, MSH6, MLH1,
ATM, BLM, and the RAD50-MRE11-NBS1 protein com-
plex [37]. BRCA1 and the BASC complex are localized
at the site of DNA damage (nuclear foci). The repair
factors are thus at the site of damage where they can
perform their particular enzymatic activities and repair the
DNA.

Using a mutant from of H2AX (H2AX-E139) designed to
mimic phosphorylation at S139 in γ-H2AX, we performed
mutagenesis of several conserved lysine residues in the C-
terminal end of H2AX. Results from these experiments
suggest that ubiquitination is suppressed following muta-
tion of both K118 and K119, but not by mutation of
other lysines either alone or in combination. Previously
reports also showed that BRCA1 was capable of sup-
porting ubiquitination of H2AX, but those studies were
carried out in cell-free reactions in vitro [22]. Ubiquiti-
nation of K118 and K119 agrees with tryptic peptide data
[38] that showed ubiquitination between residues 118 and
127.

We propose that a major function of BRCA1 is to
decrease the levels of γ-H2AX in cells as a mechanism for
signaling an end to early events in DNA repair. BRCA1
activity is then critical for timely attenuation of active repair
phase. Defective production of BRCA1 in tumor cells would
be expected to result in less ordered diminution of the repair
signal and lead to problems in progression though G2/M
phases of the cell cycle.
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were lysed and separated by SDS-PAGE and probed (WB) for BRCA1, γ-H2AX, β-actin, or β-tubulin. (c) 293T cells were treated with control
(scrambled antisense (scrAS) or BRCA1 antisense morpholino oligos (AS1/2) and then transfected with control vector, HA-ubiquitin alone,
and/or H2AX-E139-V5-H6. Histidine- (H6-) tagged H2AX was purified from chromatin fractions then probed for HA-ubiquitin. The blot
was stripped and reprobed for V5-tag on H2AX. (d) Cells treated with a scrambled antisense morpholino (scrAS) or anti-BRCA1 morpholino
oligos (AS1/2) were stained with DAPI (i–iv) or immunostained for γ-H2AX (i’–iv’). Micrographs were captured with either 10x (i–iii) or
60x (iv) objectives. Final magnification was 100x or 600x.
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