
Research Article
Topology-Aware Strategy for MPI-IO Operations in Clusters

Weifeng Liu ,1 Jie Zhou,2 andMeng Guo 3

1 Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
2State Grid Shandong Electric Power Company, Information and Communication Company, China
3Shandong Computer Science Center (National Supercomputer Center in Jinan), Shandong Provincial Key Laboratory of
Computer Networks, Qilu University of Technology (Shandong Academy of Sciences), China

Correspondence should be addressed to Meng Guo; guomeng@sdas.org

Received 2 March 2018; Revised 30 August 2018; Accepted 16 October 2018; Published 19 November 2018

Academic Editor: Wlodzimierz Ogryczak

Copyright © 2018 Weifeng Liu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper presents the topology-aware two-phase I/O (TATP), which optimizes the most popular collective MPI-IO implementa-
tion of ROMIO. In order to improve the hop-bytes metric during the file access, topology-aware two-phase I/O employs the Linear
Assignment Problem (LAP) for finding an optimal assignment of file domain to aggregators, an aspect which is not considered in
most two-phase I/O implementations. The distribution is based on the local data stored by each process, and its main purpose is
to reduce the total hop-bytes of the I/O collective operation. Therefore, the global execution time can be improved. In most of the
considered scenarios, topology-aware two-phase I/O obtains important improvementswhen comparedwith the original two-phase
I/O implementations.

1. Introduction

A large class of scientific applications access a high volume
of data frequently during their execution. Scalable solutions
for efficient and concurrent access to storage are offered
by parallel file systems such as Lustre, PVFS, and GPFS.
The scientific applications access these parallel file systems
through interfaces such as POSIX and MPI-IO [1] or high-
level libraries which are based on MPI-IO. In this paper we
target optimizing the implementation of MPI-IO interface
inside ROMIO, which is the most popular MPI-IO distribu-
tion.

Most parallel applications do the computation and I/O
alternatively. During the I/O phase, each process often issues
a large amount of small noncontiguous I/O requests to access
a common data set. These requests usually cause severe
overall I/O performance degradation. In order to optimize
the performance of the I/O system, the two-phase I/O algo-
rithm is used to merge small individual requests into larger
continuous requests. In thisworkwe focus on improving two-
phase I/O technique. We have designed and evaluated the
topology-aware two-phase I/O technique in which file data
access is not only dependent on the data distribution of each

process but also dependent on the mapping of processes to
computing resources. The comparison with other version of
two-phase I/O shows that an important reduction of the run
time can be obtained through our technique.

Cluster systems now are moving towards exascale with
the high performance interconnection network and many-
core architectures. Such systems are getting more and more
hierarchical in their interconnection network and node
architecture. Processes have different performance levels
when communicating at various hierarchies. It is therefore
critical for the MPI-IO libraries to reasonably handle the
communication demands during the I/O procedure of high
performance computing (HPC) applications on such hier-
archical systems. MPI-IO is the predominant I/O standard
for HPC applications in clusters. During the collective I/O
procedure defined in MPI-IO,multiple aggregators exchange
data with specific processes. However current MPI-IO opti-
mization strategies do not take the communication pattern
and network topology into consideration. In this work, we
have designed the topology-aware two-phase I/O, which
can improve the shuffle phase of collective I/O operations
by carefully placing the aggregators on proper nodes. We
have integrated the node physical architecture with network

Hindawi
Journal of Optimization
Volume 2018, Article ID 2068490, 13 pages
https://doi.org/10.1155/2018/2068490

http://orcid.org/0000-0002-2801-7862
http://orcid.org/0000-0003-1180-8104
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2018/2068490

2 Journal of Optimization

topology and used graph theory inside MPI-IO library to
override the current trivial implementation.

On massively parallel clusters, parallel jobs typically
acquire a fraction of the available nodes, which are dis-
continuous and do not correspond to any regular topol-
ogy, even when the cluster does. On the other hand for
modern machines, contention on specific links limits the
communication performance. By suitably assigning processes
on proper nodes of clusters, substantial communication and
performance improvements on large parallel machines can
be achieved. Recently the hop-bytes metric [2, 3], defined
as the sum over all the messages of the product of number
of hops the message has to traverse and the message size,
has attracted much attention. For cluster, this equals the total
communication volume. The reason of using the hop-bytes
metric is that if the total communication volume is high,
then the contention for specific links is also muchmore likely
to increase, and the links would then become communi-
cation bottlenecks. During MPI-IO procedure, selection of
aggregators and assignment of file domains that taking hop-
bytes into account can significantly reduce communication
overhead. Although the communication bottleneck caused
by link contention is not directly measured by this metric,
low values of this metric mean smaller communication over-
heads. When using this metric, we only have to measure the
machine topology; the routing information is not necessary.

This paper is structured as follows. Section 2 introduces
the related work.The implementation detail of two-phase I/O
is described in Section 3. Section 4 gives the description of
the topology-aware two-phase I/O. Section 5 overviews the
evaluated application, in addition to the evaluation results
that compare the topology-aware two-phase I/O with the
original version of two-phase I/O.

2. Related Work

Due to the increasing requirements of applications for data
movement to memory or storage, parallel I/O is an active
research topic now. From the perspective of file system,
highly scalable parallel file systems such as GPFS [4] or
Lustre [5] are widely used. At the application level, parallel
I/O libraries MPI-IO, which is part of the MPI-2 standard,
is commonly deployed. With MPI-IO, collective I/O allows
achieving improved performance. Various collective I/O
write algorithms are evaluated by Chaarawi et al. [6]. Some
researches try to optimize collective I/Owith techniques such
as automatic collective I/O tuning with machine learning [7]
and process placement based on the I/O pattern [8]. Two-
phase I/O is the de facto collective I/O algorithm [9]. It adds a
shuffle phase in collective I/O phases by aggregating data on
a subset of processes (aggregators) before writing it onto the
parallel file system. ROMIO [10] is a popular implementation
of MPI I/O using two-phase I/O and it has been included
in MPICH, Open MPI, IBM MPI, NEC MPI, SGI MPI, and
HP MPI. Some researches try to improve the two-phase I/O
algorithm [11]. Approaches based on double buffers using
multithreading to overlap shuffle phase and I/O phase have
been studied in [12, 13]. Properly setting the buffer size and
the aggregator number is still an important topic [14]. Finally,

placing the aggregators on proper cores is a well-known
problem. Certain approaches focus on discovering data local-
ity and using a polynomial-time file domain to aggregator
assignment algorithm to minimize communication between
computing processes and aggregators [15]. Other researchers
try to take the routing mechanism into consideration when
issuing sparse data access on BG/Q [16]. Previous IBM super-
computers BG/P adopt a generalmethod designed to increase
the I/O bandwidth of collective I/O [17]. Tessier et al. [18] use
a different approach which combines an optimized buffering
system and a topology-aware aggregators mapping strategy
targeting any kind of architecture and being extensible to
address new tiers of storage.However their approach does not
take link contention into consideration and also does not try
to minimize the execution time of all aggregators.

3. Internal Structure of Two-Phase I/O

After reviewing the related work on MPI-IO optimization,
we introduce two-phase I/O in detail. As the name indicates,
two-phase collective I/O consists of an I/O phase and a shuffle
phase. In the I/O phase, contiguous data block transfers are
performed from or to the parallel file system. In the shuffle
phase, by interprocess communication, small file requests of
different processes are grouped in larger ones. Before the
two phases, the file region which is contained between the
minimum and maximum offsets of all file requests is divided
into a configurable number of file domains (FD), and each FD
is assigned to a chosen process which is called aggregator. All
the data that locates inside an FD is aggregated by the related
aggregator which is responsible for transferring the FD from
or to the parallel file system.

In summary, the procedure of two-phase I/O can be
divided into the following stages. Offsets and lengths cal-
culation stage (st1): In this stage each process calculates the
offsets and lengths of its access requests and communicates
its start and end offsets to other processes. In the end of
this stage, all processes have global file access information
and the involved file interval can be calculated. File domain
assignment stage (st2): In this stage the involved file interval
is divided into file domains (FDs) among aggregators. In
this way, each aggregator only accesses the data associated
with its FD in the following stages. Access request calculation
(st3): The portions of the access request of each process
are analyzed and which file domains they locate can be
calculated. Other processes’ requests which lie in the file
region of each aggregator are also calculated. Buffer writing
(st4): Processes send their data to appropriate aggregators,
and the data are stored in the buffer of each aggregator. Disk
accessing (st5): For collective write, aggregators collect data
from other processes and write them to the file domain; for
collective read, aggregators read data from its file domain and
send them to other processes. This stage is made as many
times as the following calculus indicates: the file domain size
of each aggregator divided by size of the collective buffer size.

In the previous implementation of two-phase I-O, the
assignment of FD to each aggregator in st2 does not take the
network topology and the distribution of data into consid-
eration. Our technique tries to modify the FD assignment

Journal of Optimization 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 5 6 14 4 12 13 15 1 2 3 7 16 17 20 21 8 9 10 11 18 19 22 23

16 17 18 19 20 21 22 23

proc0 proc1 proc2 proc3 proc4 proc5

file
(a) Data access pattern

R R R R

R R R R R R R R

R R R R R R R R

proc3

proc0

proc1

proc2

proc5

proc4

FD0 FD1 FD2

(b) Two-phase I/O

Figure 1: Two-phase I/O. Optimizing collective MPI-IO writes.

strategy, so that the initial distribution of data in the cluster
is considered. By means of this strategy it is possible to
improve the communication overhead and, therefore, reduce
the overall I/O time. Figure 1 details the two-phase I/O
technique by an example of 6 processes that write a vector of
24 elements to a file in parallel. In this example, each process
writes 4 noncontiguous data blocks. P0, P2, andP4 are chosen
as aggregators, and the accessed file region is divided into
3 FDs, which are assigned to them. For this example, in the
shuffle phase each aggregator receives 8 data blocks from the
target processes and writes them to the file in the I/O phase.

Parallel file systems usually partition a large file into
blocks which are striped across many I/O servers. A client
should exclusively access a file region to guarantee the cache
coherence. A locking mechanism is used by Lustre and GPFS
to implement the exclusive access. The lock granularity of
these parallel file system is set to their block size. If the
involved file region is divided into equal size file domains,
a block may expand over two file domains. So when two
aggregators simultaneously modify that block, the access
requests must be serially served. Liao et al. [19] improved
ROMIO and proposed some methods which align each file
domain to a lock boundary to prevent lock contention. Some
strategies are also designed to avoid lock conflicts inROMIO’s

Lustre-specific code. As Figure 2 shows, the minimum and
maximum offsets of the accessed file region are aligned to
the lock boundaries. The optimization strategy requires that
the aggregator number should be a value that can divide the
OST number exactly. In Figure 2, the stripes to be read are
allocated round robin among aggregators P0 and P1, and a
file domain consists of the assigned stripes of an aggregator.
The collective buffer size is set to the stripe size. In the I/O
phase each aggregator reads a stripe into its collective buffer,
and they distribute the cached data to other processes in the
shuffle phase.

4. Topology-Aware Strategy for MPI-IO
Implementation

In previous implementations, the assignment of the FDs to
each process does not take the I/O pattern and network
topology into consideration. With the topology-aware two-
phase I/O, the assignment of the FDs is dependent on the
initial data distribution and the locations of the processes in
the cluster. The new strategy tries to minimize the commu-
nication workload or latency during the shuffle phase, and it
solves the problem based on the Linear Assignment Problem.
In this section, we present details about the topology-aware

4 Journal of Optimization

Lock Boundaries

align align

P0 P1 P0 P1 P0 P1 P0 P1

Aggregate Access Region
File

Lock
Granularity

FD0
FD1

P0 Pn−1Pn

Intermediate
Buffer

P1

Figure 2: The implementation of two-phase I/O on supercomputers with Lustre installed.

two-phase I/O. At first we show how we get the virtual and
the physical topologies. These topologies are constructed as
matrices whose elements represent the interprocess commu-
nication volume and the network distances between any two
cores, respectively.

4.1. Collecting the Applications Communication Pattern Data.
To optimize the communication performance, the vital piece
of information that we need to get is the target application’s
communication pattern in the shuffle phase. In this case,
the communication pattern is stored in a 𝑝 × 𝑎 matrix
(p is the process number and a is the aggregator number)
which consists of the volume of data exchanged between each
aggregator and their target processes. Fortunately, for two-
phase I/O, we can get its communication pattern during the
shuffle phase in st3 and we do not need to preliminary run
the application.

𝐶 =(((((
(

3 1 01 3 04 0 00 0 40 4 00 0 4

)))))
)

(1)

In order to explain this, we use the example with the
same data size and access pattern as shown in Figure 1. The
number of intervals in which the file can be divided is set
to be equal to the aggregator number, and the FDs can be
calculated. The next step is constructing the communication

matrix 𝐶, which is with so many rows as processes, and
so many columns as FDs. Each matrix entry indicates the
number of elements of a FD that will be accessed by a
process. Matrix 𝐶 shows the result for our example. Each
single FD is assigned to one aggregator, and all processes
communicate with the aggregators during the shuffle phase;
thus the matrix gives the communication pattern. Figure 3
shows how to calculate the communication matrix. In matrix𝐶, the rows indicate different processes and the columns
indicate different aggregators.

4.2. Gathering the Computing Resources Topology. The node
architecture and network architecture constitute the com-
puting resource’s physical topology. Higher communication
performance can be expected between the cores with shorter
network distance. The hardware locality (hwloc) library [20]
can provide the underlying machine architecture abstraction.
It detects the nodes’ architectural components such as caches,
cores, processor sockets, memory, NUMA, and SMT archi-
tecture and represents them as a tree with cores at the leaves
and nodes at the top. We need a network discovery module
to get a view of the computing resources’ physical topology.
InfiniBand subnet manager tools such as ibtracert [21] can
help us discover the network distance between computing
nodes interconnected by InfiniBand network. The module
should get the distance information with the tools and
merge the result with the nodes’ architectural information
got by hwloc. The result distance matrix will be used to
make FDs assignment. For MPI applications running in a
homogeneous cluster, the process with the minimum rank in
the communicator will extract the distance between any two
nodes using ibtracert. The process then scatters the distance

Journal of Optimization 5

proc3

proc0

proc1

proc2

proc5

proc4

FD0 FD1 FD2 FD0 FD1 FD2

P0 3

P1 1

P2 4

P3 0

P4 0

P5 0

1

3

0

0

4

0

0

0

0

4

0

4

Figure 3:The communication between aggregators and their target processes.

P0 P1 P2 P3 P4 P5

L2 L2

L1

Figure 4: 4 nodes (here, 2-way 1-core) are connected through
switches in a network with tree switches.

information to other processes which will integrate it into
the node architecture to get the computing resources’ full
architecture.

𝐷 =(((((
(

0 1 2 2 4 41 0 2 2 4 42 2 0 1 4 42 2 1 0 4 44 4 4 4 0 14 4 4 4 1 0

)))))
)

(2)

Topology matrix element represents the number of hops
(length of the communication path) between two nodes. The
farthest nodes get a value of themaximumnetwork hop count
for their topology matrix element. The intranode matrix
elements are assigned a value that is always smaller than or
equal to 1, indicating the fact that intranode communication
is faster than internode communication which requires more
than 1 network hop.Matrix𝐷 shows how the various distance
values of Figure 4 are assigned based on the network topology
and system architecture. 4 nodes (here, 2-way 1-core) are
connected through 3 switches in a network. We assign the
minimum distance value for cores on the same node. The

next minimum distance value is 2: for instance P0 is able to
communicate with P2 with 2 hops. We can assign distance
values for other node pairs in the same way.

For classical two-phase I/O, the 3 FDs will be assigned
to 3 aggregators running on 3 nodes; in this example they
are P0, P2, and P4. The resulting network communication is
shown in Figure 5. In this case the maximum link congestion
is 15, and the overall I/O performance is affected by the over
congested link.

4.3. Topology-Aware Two-Phase I/O. As shown in Figure 5,
if the FDs are not properly assigned to the aggregators,
the resulting network communication will cause high link
congestion; some new mechanisms are needed to reduce
the link congestion during the shuffle phase. Our technique
is based on minimizing the communication workload and
latency. The assignment of the FD to each aggregator in the
proposed technique is different from the original version.
Now each FD is assigned based on the total hop-bytes of the
interprocess communication during the shuffle phase. The
number of FDs into which the file can be divided is set by
the hints, and the topologymatrix𝐷 and the communication
matrix 𝐶 have already been calculated out. The next step
consists in assigning each interval to each process efficiently.

𝑊 = 𝐶 ∗ 𝐷 =(((((
(

9 16 2411 17 248 24 2012 24 1632 16 2032 20 16

)))))
)

(3)

We use the hop-bytes metric to estimate the communica-
tion workload. To minimize the workload, we first calculate
the work load matrix 𝑊 with so many rows as processes
and so many columns as FDs. When the 𝑗th FD is assigned
to process 𝑖, entry 𝑒𝑖𝑗 of the work load matrix indicates the
total hop-bytes of the related interprocess communications
aiming to collect or scatter the data of the 𝑗th FD to or from

6 Journal of Optimization

R R R R

R R R R R R R R

R R R R R R R R

proc3

proc0

proc1

proc2

proc5

proc4

FD0 FD1 FD2

(a) Classical two phases

P0 P1 P2 P3 P4 P5

L2 L2

L1

1−>0:1

1−>2:31−>2:3

2−>0:32−>0:3 4−>2:4

4−>2:4

0−>2:1 0−>2:1

4−>2:4

4−>2:4
3−>4:4

3−>4:4 3−>4:4

3−>4:4

5−>4:3

(b) Classical two-phase flow

Figure 5: The classical two-phase I/O and the resulting network communication.

process 𝑖; thus 𝑒𝑖𝑗 is the inner product of the 𝑖th row of the
topologymatrix D and the 𝑗th column of the communication
matrix 𝐶, respectively, so 𝑊 = 𝐶 ∗ 𝐷. Figure 6(a) shows
the result for our example. If the second FD is assigned to
P2, all processes will communicate with P2 during the shuffle
phase to send the data of the second FD stored by them. The
message sizes are indicated by the second column of matrix𝐶
and the third row of matrix 𝐷 indicates the distance between
the processes. In this example, 𝑒21 equals 24.We can calculate
all the other elements of matrix𝑊 in the same way as shown
in Figure 6(b).

After getting theworkloadmatrix𝑊, we need to assign all
the FDs to proper aggregators. The FD assignment strategy
in our work is a Linear Assignment Problem (LAP) which
has been well studied in combinatorial optimization and
linear programming. LAP is about how to assign 𝑛 items
to 𝑛 elements given a cost matrix in the best way. In our
research, the cost matrix has been got through multiplying
two matrices that record the interprocess communication
volume and the interprocess distance, respectively. We have
to reduce the contention on specific links, and the hop-bytes
metric should be minimized. Each of the file domains can
be assigned to only one aggregator, and one aggregator can

access only one file domain during the I/O phase. In other
words, we need to select 𝑛 elements from the cost matrix, so
that in each row and each column there is exactly one selected
element, and the sum of them is minimum.

A large number of algorithms have been developed for
LAP.Theproblem of finding the best FDs assignment to some
particular processes can be based on the existing solutions of
LAP.We have selected for our work the following algorithms,
considered to be the most representative ones:

(i) Hungarian algorithm [22]: This is the first poly-
nomial-time primal-dual algorithm solving the as-
signment problem. It was invented and published by
Harold Kuhn in 1955 and has a O(𝑛4) complexity.

(ii) Jonker and Volgenant algorithm [23]: A shortest aug-
menting path algorithm was developed to solve the
Linear Assignment Problem. This algorithm contains
new initialization routines and an implementation
of Dijkstra’s shortest path method. This algorithm
is shown to be uniformly faster than the best algo-
rithms from the literature for both dense and sparse
problems computational experiments. It has a O(𝑛3)
complexity.

Journal of Optimization 7

Comm FD0 FD1 FD2

P0 3 1 0

P1 1 3 0

P2 4 0 0

P3 0 0 4

P4 0 4 0

P5 0 0 4

Dist P0 P1 P2 P3 P4 P5

P0 0 1 2 2 4 4

P1 1 0 2 2 4 4

P2 2 2 0 1 4 4

P3 2 2 1 0 4 4

P4 4 4 4 4 0 1

P5 4 4 4 4 1 0

HB FD0 FD1 FD2

P0

P1

P2 24

P3

P4

P5

(a) Single hop-byte element calculation

Comm FD0 FD1 FD2

P0 3 1 0

P1 1 3 0

P2 4 0 0

P3 0 0 4

P4 0 4 0

P5 0 0 4

Dist P0 P1 P2 P3 P4 P5

P0 0 1 2 2 4 4

P1 1 0 2 2 4 4

P2 2 2 0 1 4 4

P3 2 2 1 0 4 4

P4 4 4 4 4 0 1

P5 4 4 4 4 1 0

HB FD0 FD1 FD2

P0 9 16 24

P1 11 17 24

P2 8 24 20

P3 12 24 16

P4 32 16 20

P5 32 20 16

(b) All hop-byte elements calculation

Figure 6: Calculate the hop-bytes when different FDs are assigned to different processes.

(iii) APC and APS algorithms [24]: These algorithms
implement the LawlerO(𝑛3) version of theHungarian
algorithm by Carpenato, Martello, and Toth. APC
works on a complete cost matrix, while APS works on
a sparse one.

Previous evaluation [15] shows that the fastest algorithm
is the Jonker and Volgenant one, and for this reason we
have chosen to apply it in our topology-aware two-phase I/O.
As shown in Figure 6(b), for our topology-aware two-phase
I/O, the three file domains are assigned to P2, P0, and P3,
respectively. Each process selected as aggregator writes to file
a consecutive data set. As shown in Figure 7, in this case the
maximum link congestion decreases to 9, and the overall I/O
performance is significantly improved.

5. Performance Evaluation

The evaluations in this paper were performed by using two
I/O benchmarks. We have compared topology-aware two-
phase (TATP) I/O with the original version of two-phase
(OTP) I/O implemented in MPICH and locality-aware two-
phase (LATP) I/O implemented by Filgueira [15].

5.1. The Experimental Platforms. The tests have been made
in our Inspur cluster and Sunway BlueLight running in
National Supercomputer Center in Jinan. The Inspur cluster
is organized with tree topology; it consists of 4 racks,
each of which is composed of 20 Inspur computing nodes

interconnected by a 40 Gb/sec InfiniBand switch. All the
4 racks are connected together by a 20 Gb/sec InfiniBand
switch. Each computing node runs Red Hat 5.0 with a kernel
of 2.6.18 and has two six-core processors and 8 GB memory.
The parallel file system installed on the Inspur cluster is
Lustre. Sunway BlueLight is organized with fat-tree topology,
the water-cooled 9-rack system has 8704 ShenWei SW1600
(16 cores, 140GFLOPS) processors organized as 34 super
nodes (each consisting of 256 compute nodes), 150 TB main
memory, and 2 PB external storage. The system runs on its
own operating system, Sunway RaiseOS, which is based on
Linux. The parallel file system installed on Sunway BlueLight
is also Lustre. All the computing nodes have the samedistance
to the I/O server of Lustre file system, so they have almost the
same I/O performance in the I/O phase and improving the
shuffle phase of two-phase I/O can significantly improve the
overall I/O performance.

5.2. The I/O Benchmarks. We have run some benchmarks in
our previous work [14], and we test those benchmarks with
our new topology-aware two-phase I/O.The first benchmark
has collective write/read operations. It reads/writes a three-
dimensional double array from/to a file which stores the
global array in row-major order. Its access pattern is shown
in Figure 8(a). The 2000×2000×2000 double array is chosen
and the total file size is about 60GB. Different number of
processes are started to run the first parallel I/O benchmark,
respectively. The data set is divided into cubes, each of which

8 Journal of Optimization

R R R R R R

R R R R

3

0

1

2

R

5

4

R R R R

FD0 FD1 FD2

(a) Topology-aware two phases

P0 P1 P2 P3 P4 P5

L2 L2

L1

1−>0:3

1−>2:21−>2:2

0−>2:30−>2:3 4−>0:4

44−>0:44−>0:4

5−>3:4

5−>3:45−>35−>3:4

5−>3:4

(b) Topology-aware two-phase flow

Figure 7:The topology-aware two-phase I/O and the resulting network communication.

8

6

4

2

0

8

6

4

2

0

1
2
3
4
5
6 7

8

(a) Cube I/O

slice 0 slice 1 slice 2

file view
z

x

y

(b) BTIO

Figure 8: The tested benchmarks’ access pattern.

Journal of Optimization 9

0

0.2

0.4

0.6

0.8

1

Original Two-Phase LATP TATP

The Reduction of the Total Hop-Bytes
(Inspur Cluster)

Cube
BTIO

(a) The reduction of the total hop-bytes on Inspur cluster

0

0.2

0.4

0.6

0.8

1

Original Two-Phase LATP TATP

The Reduction of the Total
Hop-Bytes (Sunway Bluelight)

Cube
BTIO

(b) The reduction of the total hop-bytes on Sunway BlueLight

Figure 9: The reduction of the total hop-bytes.

is assigned to one process, and a process needs to access
plenty of discontinuous data pieces in the file. File view is
created to describe the access pattern and application accesses
the file by collective MPI-IO operations. This benchmark
represents the I/O patterns of many applications such as
volume visualization which displays a 2D projection of a 3D
discretely sampled data set.

In the second benchmark we implement the file access
of BTIO [25] with MPI-IO functions. In this benchmark, a
three-dimensional array is partitioned in a block-tridiagonal
pattern and assigned across a square number of processes.
Each process is responsible for many (the square root of the
number of participating processors) subsets of the entire data
set. When the process number is nine, Figure 8(b) illustrates
how the data set is partitioned. Take process 6 as example,
the cube in row 2 and column 0 of slice 0 is assigned to it, in
the next slice the cube in row 1 ((2 − 1)mod 3) and column
1 ((0 + 1)mod 3) is assigned to it, and so on. Every process
sets the file view and writes or reads all data subsets with one
collective MPI-IO operation. We started different number of
processes to run the test, respectively, and set the size of the
global double array to 2000×2000×2000.

5.3. Performance Evaluation of Topology-Aware Two-Phase
I/O. During the test, the aggregator number and collective
buffer size were set to the default value, so on each node
the process with the minimum process id will be chosen as
aggregator. Firstly we started 512 and 625 processes to run
cube and BTIO, respectively. Figure 9 shows the reduction of
the total hop-bytes for topology-aware two-phase (TATP) I/O
over original two-phase (OTP) I/O and locality-aware two-
phase (LATP) I/O for the two benchmarks. We can see that
when topology-aware two-phase I/O is applied, the volume
of the total hop-bytes is considerably reduced. As we can
see in Figures 9(a) and 9(b), for the two benchmarks, the
topology-aware two-phase I/O and LATP I/O reduce more
hop-bytes on Bluelight than on Inspur cluster.This condition
can be explained.TheBluelight has larger scale and runsmore
jobs than the Inspur cluster. So its jobs usually run on very
discrete nodes. With this case, the topology-aware two-phase
I/O can obviously reduce the total hop-bytes and improve the
collective communication during the I/O procedure.

We have represented the different phases of two-phase
I/O as metadata calculation, metadata transformation, data
shuffle, and data I/O. We tested the time ratio of data shuffle

10 Journal of Optimization

0
0.1
0.2
0.3
0.4
0.5

OTP (Inspur) LATP
(Inspur)

TATP
(Inspur)

OTP
(Bluelight)

LATP
(Bluelight)

TATP
(Bluelight)

The time ration of shuffle phase for
Cube in different scale

64 processes
512 processes

(a) The time ratio of shuffle phase when cube runs in different scales

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

OTP (Inspur) LATP
(Inspur)

TATP
(Inspur)

OTP
(Bluelight)

LATP
(Bluelight)

TATP
(Bluelight)

The time ration of shuffle phase for
BTIO in different scale

100 processes
625 processes

(b) The time ratio of shuffle phase when BTIO runs in different scales

Figure 10: The time ratio of shuffle phase when the two benchmarks run in different scales.

phase when the two benchmarks run in different scale. As
we can see in Figures 10(a) and 10(b), the cost of the shuffle
stage increases with the process number. Figure 11 represents
the time ratios of different two-phase I/O stages when the
two benchmarks run in the scale of 512 and 625 processes,
respectively. As we can see in Figures 11(a) and 11(b), the
slowest stages are data shuffle and data I/O. Based on this, we
conclude that the shuffle stage is a bottleneck in two-phase
I/O. For this reason, the TATP I/O technique with the aim
of reducing the communication cost is necessary. This tech-
nique reduces the global hop-bytes of two-phase I/O, so the
congestion is reduced and the I/O performance is improved.

We also tested how the process number affects the
execution of the benchmarks. 64, 125, or 512 processes
were, respectively, started to run the cube, and 100, 625, or
900 processes were, respectively, started to execute BTIO.
Figure 12 shows the aggregated I/O speed when different
number of processes did the collective I/O operations with
different two-phase I/O implementations. We can see that
the I/O performance is significantly affected by the process
number. As we can see in Figure 12, topology-aware two-
phase I/Ohas the best I/Operformance.Note thatwhenusing
topology-aware two-phase I/O, the total hop-bytes is also
the minimum. The I/O speed increases with the decreasing
of hop-bytes. These figures show the relevance of the I/O
performance and the total hop-bytes. With this technique we
can significantly increase the global I/O speed.

We also tested how the aggregator number affects the
benchmarks’ execution. With the default configuration, on
each node, there is only one aggregator. To do the test,
512 processes were started to run cube and 625 processes
were started to run BTIO. During the test, the number of
aggregators on each node is set to 1, 2, and 4, respectively,
and TATP I/O is used. The aggregated I/O speed is shown
in Figure 13(a) and the comparison of the resulting hop-
bytes is shown in Figure 13(b). Note that the I/O speed
increases with the decreasing of hop-bytes. These figures
show the relevance of the aggregator number and the total
hop-bytes. Based on the design principle of two-phase I/O,
once the aggregator number is set, no matter how we set the
collective buffer size, the total hop-bytes during the shuffle
phase remain unchanged. So properly setting the aggregator
number is important for reducing the total hop-bytes. In
our previous work we study how to automatically set the
aggregator number and collective buffer size [14]. With this
technique we can significantly increase the global I/O speed.

6. Conclusion

In this paper we have presented the topology-aware two-
phase I/O (TATP), which optimizes the most popular collec-
tive MPI-IO implementation of ROMIO. With the topology-
aware two-phase I/O (TATP), the assignment of the FDs
depends on the initial data distribution and the locations

Journal of Optimization 11

0%

20%

40%

60%

80%

100%

OTP (Inspur) LATP
(Inspur)

TATP
(Inspur)

OTP
(Bluelight)

LATP
(Bluelight)

TATP
(Bluelight)

Time Ratios of Different Stages When
Cube Runs in the Scale of 512

Metadata Calculation
Metadata Transformation

Data Shuffle
Data I/O

(a) Stages of different two-phase I/O implementations for Cube

0%

20%

40%

60%

80%

100%

OTP (Inspur) LATP
(Inspur)

TATP
(Inspur)

OTP
(Bluelight)

LATP
(Bluelight)

TATP
(Bluelight)

Time Ratios of Different Stages When
BTIO Runs in the Scale of 625

Metadata Calculation
Metadata Transformation

Data Shuffle
Data I/O

(b) Stages of different two-phase I/O implementations for BTIO

Figure 11: Stages of different two-phase I/O implementations for the two benchmarks.

0

500

1000

1500

2000

OTP (Inspur) LATP (Inspur) TATP (Inspur) OTP (Bluelight) LATP
(Bluelight)

TATP
(Bluelight)

Th
e a

gg
re

ga
te

d
I/

O
 sp

ee
d

(M
B/

s)

The I/O Performance of Cube

64 processes
125 processes
512 processes

(a) The I/O performance of cube with different two-phase I/O implemen-
tation

0

500

1000

1500

2000

2500

OTP
(Inspur)

LATP
(Inspur)

TATP
(Inspur)

OTP
(Bluelight)

LATP
(Bluelight)

TATP
(Bluelight)

Th
e a

gg
re

ga
te

d
I/

O
 sp

ee
d

(M
B/

s)

The I/O Performance of BTIO

100 processes
625 processes
1000 processes

(b) The I/O performance of BTIO with different two-phase I/O imple-
mentation

Figure 12: The I/O performance of the two benchmarks with different two-phase I/O implementation.

12 Journal of Optimization

0
500

1000
1500
2000
2500
3000

TATP (Cube Inspur) TATP (Cube
Bluelight)

TATP (BTIO Inspur) TATP (BTIO
Bluelight)

The I/O Performance with TATP I/O

1 aggregator per node
2 aggregators per node
3 aggregators per node

(a) The I/O performance of the two benchmarks with different aggrega-
tor number

0
0.2
0.4
0.6
0.8

1

TATP (Cube Inspur) TATP (Cube
Bluelight)

TATP (BTIO Inspur) TATP (BTIO
Bluelight)

The Comparison of the Total Hop-
Bytes

1 aggregator per node

2 aggregators per node
4 aggregators per node

(b) The comparison of the total hop-bytes of the two benchmarks with
different aggregator number

Figure 13: The relevance of the aggregator number and the total hop-bytes.

of the processes in the cluster. We use the hop-bytes met-
ric to estimate the communication workload. If the total
communication workload is low, then the contention for
specific links is also much more likely to decrease. The
Linear Assignment Problem (LAP) is employed to find an
optimal assignment which can minimize the communication
workload. As far as we know, this is the first work trying to
improve the performance of two-phase I/O through reducing
the total hop-bytes. Experiment results show that topology-
aware two-phase I/O obtains important improvements when
compared with the original two-phase I/O implementa-
tions.

Properly setting the aggregator number can significantly
reduce the total hop-bytes. In our previous work an auto-
tuning framework is used to automatically evaluate different
aggregator numbers, respectively, but this approach takes
long time to find the best configuration. In the future we
will design an algorithm to compute the best configuration
directly.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by grants from National Key
Research and Development Program (2018YFB0704002)
and Key Research and Development Program of Shandong
Province of China (2015GGX101028). We thank National
Supercomputer Center in Jinan (NSCCJN) and Shandong
Province High Performance Computing Center (SDHPCC)
for providing experiment environment.

References

[1] R. Buyya, T. Cortes, and H. Jin, “Overview of the mpiio parallel
i/o interface,” in Proceedings of the IPPS ’95 Workshop on
Input/Output in Parallel and Distributed Systems, pp. 476–487,
IEEE, 1995.

[2] C. D. Sudheer and A. Srinivasan, “Optimization of the hop-byte
metric for effective topology aware mapping,” in International
Conference on High Performance Computing, IEEE, 2012.

[3] A. Bhatele, I. Chung, and L. V. Kale, “Automated mapping of
structured communication graphs onto mesh interconnects,”
2010.

[4] F. B. Schmuck andR. L. Haskin, “Gpfs: A shared-disk file system
for large computing clusters,” in FAST ’02 Proceedings of the 1st
USENIX Conference on File and Storage Technologies, vol. 2, pp.
19–32, 2002.

[5] P. Schwan, “Lustre: Building a file system for 1000-node clus-
ters,” in Proceedings of the 2003 Linux Symposium, vol. 2003,
2003.

Journal of Optimization 13

[6] M. Chaarawi, S. Chandok, and E. Gabriel, “Performance evalu-
ation of collective write algorithms in mpi i/o,” in Proceedings of
the International Conference on Computational Science, pp. 185–
194, 2009.

[7] F. Isaila, P. Balaprakash, S. M.Wild et al., “Collective I/O Tuning
Using Analytical andMachineLearningModels,” in Proceedings
of the Ieee/rsj International Conference on Intelligent Robots and
Systems, vol. 3, pp. 2392–2397, 2015.

[8] V.Venkatesan, R. Anand, J. Subhlok, andE.Gabriel, “Optimized
process placement for collective I/O operations,” in Proceedings
of the EuropeanMpi Users’ Group Meeting, pp. 31–36, 2013.

[9] J. M. D. Rosario, R. Bordawekar, and A. Choudhary, “Improved
parallel I/O via a two-phase run-time access strategy,” ACM,
1993.

[10] R. Thakur, W. Gropp, and E. Lusk, “A Case for Using MPI’s
Derived Datatypes to Improve I/O Performance,” in Proceedings
of the 1998 ACM/IEEE Conference on Supercomputing, SC ’98,
pp. 1–10, 1998.

[11] R. Thakur, W. Gropp, and E. Lusk, “Optimizing noncontiguous
accesses in MPI-IO,” Parallel Computing, vol. 28, no. 1, pp. 83–
105, 2002.

[12] Y. Tsujita, H. Muguruma, K. Yoshinaga, A. Hori, M. Namiki,
and Y. Ishikawa, “Improving collective i/o performance using
pipelined two-phase i/o,” in Proceedings of the 2012 Symposium
on High Performance Computing, 2012.

[13] Y. Tsujita, K. Yoshinaga, A. Hori, M. Sato, M. Namiki, and Y.
Ishikawa, “Multithreaded two-phase I/O: Improving collective
MPI-IO performance on a lustre file system,” in Proceedings of
the Euromicro International Conference on Parallel, Distributed,
and Network-Based Processing, pp. 232–235, 2014.

[14] W. Liu, M. Gerndt, and B. Gong, Model-Based MPI-IO Tuning
with Periscope Tuning Framework, John Wiley and Sons Ltd,
2016.

[15] R. Filgueira, D. E. Singh, J. C. Pichel, F. Isaila, and J. Carretero,
“Data locality aware strategy for two-phase collective,” in Pro-
ceedings of the High Performance Computing for Computational
Science-VECPAR 2008, pp. 137–149, 2008.

[16] H. Bui, J. Leigh, E. Jungy, V. Vishwanathy, and M. E. Papka,
“Improving Data Movement Performance for Sparse Data
Patterns on the Blue Gene/Q Supercomputer,” in Proceedings of
the International Conference on Parallel Processing Workshops,
pp. 302–311, 2015.

[17] V. Vishwanath, M. Hereld, V. Morozov, and M. E. Papka,
“Topology-aware data movement and staging for I/O acceler-
ation on Blue Gene/P supercomputing systems,” in Proceedings
of the High PERFORMANCE Computing, Networking, Storage
and Analysis, 2011.

[18] F. Tessier, V. Vishwanath, and E. Jeannot, “TAPIOCA: An
I/O Library for Optimized Topology-Aware Data Aggregation
on Large-Scale Supercomputers,” in Proceedings of the IEEE
International Conference on CLUSTER Computing, pp. 70–80,
2017.

[19] W. keng Liao and A. Choudhary, “Dynamically Adapting File
Domain Partitioning Methods for Collective I/O Based on
Underlying Parallel File System Locking Protocols,” in Proceed-
ings of the ACM/IEEE Conference on Supercomputing, pp. 313–
344, 2008.

[20] F. Broquedis, J. Clet-Ortega, S. Moreaud et al., “Hwloc: a
generic framework for managing hardware affinities in HPC
applications,” in Proceedings of the 18th Euromicro Conference
on Parallel,Distributed andNetwork-Based Processing (PDP ’10),
pp. 180–186, 2010.

[21] A. Bermúdez, R. Casado, F. J. Quiles, T. M. Pinkston, and J.
Duato, “Evaluation of a subnet management mechanism for
InfiniBand networks,” in Proceedings of the 2003 International
Conference on Parallel Processing, ICPP 2003, pp. 117–124, 2003.

[22] S. S. Blackman, “Multiple target tracking with radar applica-
tions,”DedhamMaArtechHouse Inc P, vol. 1, pp. 204-205, 1986.

[23] R. Jonker and A. Volgenant, “A shortest augmenting path
algorithm for dense and sparse linear assignment problems,”
Computing, vol. 38, no. 4, pp. 325–340, 1987.

[24] G. Carpaneto, S. Martello, and P. Toth, “Algorithms and codes
for the assignment problem,”Annals ofOperations Research, vol.
13, no. 1-4, pp. 193–223, 1988.

[25] P. Wong and R. F. V. der Wijngaart, “NAS Parallel Benchmarks
I/O Version 2.4,” 2003.

Hindawi
www.hindawi.com Volume 2018

Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Problems
in Engineering

Applied Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Probability and Statistics
Hindawi
www.hindawi.com Volume 2018

Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi
www.hindawi.com Volume 2018

Optimization
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Engineering
 Mathematics

International Journal of

Hindawi
www.hindawi.com Volume 2018

Operations Research
Advances in

Journal of

Hindawi
www.hindawi.com Volume 2018

Function Spaces
Abstract and
Applied Analysis
Hindawi
www.hindawi.com Volume 2018

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi
www.hindawi.com Volume 2018

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific
World Journal

Volume 2018

Hindawi
www.hindawi.com Volume 2018Volume 2018

Numerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical Analysis
Advances inAdvances in Discrete Dynamics in

Nature and Society
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

Di�erential Equations
International Journal of

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Decision Sciences
Advances in

Hindawi
www.hindawi.com Volume 2018

Analysis
International Journal of

Hindawi
www.hindawi.com Volume 2018

Stochastic Analysis
International Journal of

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/jmath/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/jam/
https://www.hindawi.com/journals/jps/
https://www.hindawi.com/journals/amp/
https://www.hindawi.com/journals/jca/
https://www.hindawi.com/journals/jopti/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/aor/
https://www.hindawi.com/journals/jfs/
https://www.hindawi.com/journals/aaa/
https://www.hindawi.com/journals/ijmms/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ana/
https://www.hindawi.com/journals/ddns/
https://www.hindawi.com/journals/ijde/
https://www.hindawi.com/journals/ads/
https://www.hindawi.com/journals/ijanal/
https://www.hindawi.com/journals/ijsa/
https://www.hindawi.com/
https://www.hindawi.com/

