Hindawi

Journal of Optimization

Volume 2018, Article ID 9328103, 10 pages
https://doi.org/10.1155/2018/9328103

Research Article

Hindawi

HybridHAM: A Novel Hybrid Heuristic for

Finding Hamiltonian Cycle

K. R. Seeja

Department of Computer Science & Engineering, Indira Gandhi Delhi Technical University for Women, Kashmere Gate,

Delhi 110006, India

Correspondence should be addressed to K. R. Seeja; krseeja@gmail.com

Received 9 May 2018; Revised 7 September 2018; Accepted 25 September 2018; Published 16 October 2018

Academic Editor: Jun He

Copyright © 2018 K. R. Seeja. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Hamiltonian Cycle Problem is one of the most explored combinatorial problems. Being an NP-complete problem, heuristic
approaches are found to be more powerful than exponential time exact algorithms. This paper presents an efficient hybrid heuristic
that sits in between the complex reliable approaches and simple faster approaches. The proposed algorithm is a combination of
greedy, rotational transformation and unreachable vertex heuristics that works in three phases. In the first phase, an initial path
is created by using greedy depth first search. This initial path is then extended to a Hamiltonian path in second phase by using
rotational transformation and greedy depth first search. Third phase converts the Hamiltonian path into a Hamiltonian cycle by
using rotational transformation. The proposed approach could find Hamiltonian cycles from a set of hard graphs collected from
the literature, all the Hamiltonian instances (1000 to 5000 vertices) given in TSPLIB, and some instances of FHCP Challenge Set.
Moreover, the algorithm has O(n®) worst case time complexity. The performance of the algorithm has been compared with the

state-of-the-art algorithms and it was found that HybridHAM outperforms others in terms of running time.

1. Introduction

The Hamiltonian Cycle Problem (HCP) is to identify a cycle
in an undirected graph connecting all the vertices in the
graph. It is considered as a subproblem of the most popular
NP-complete problem, the Travelling Salesman Problem
(TSP), where the problem is to find the minimum weighted
Hamiltonian cycle. Hamiltonian cycles have many applica-
tions like reconstructing genome sequences, solving games
like Icosian game, finding a knight's tour on a chessboard, and
finding circular embeddings for regular graphs. There is no
single efficient algorithm for this problem till date. The state-
of-the-art algorithms are mainly classified into two: expo-
nential time exhaustive search algorithms and polynomial
time heuristic algorithms. While the first category guarantees
giving solution, the latter does not. The latter gives solution
in sufficiently less time in most of the cases compared to
the first. The algorithms in the first category generally find
some efficient pruning rules for reducing the search space
and thus improving the running time, while those in the
second category find some general thump rules for finding

the solution in as many problem instances as possible, in less
time. The objective of this research is to design a heuristic
which is quicker than the established sophisticated heuristics,
but which is more reliable than the very fast techniques.
Many theorems can be found in literature, giving the
necessary and suflicient conditions [1-4] for Hamiltonian
cycle. These conditions are used for checking whether the
graph is Hamiltonian or not. A good study [5] on these
theorems and algorithms for solving HCP is given by Van-
degriend & Basil. Rubin & Frank [6] proposed an exhaustive
search method for finding all Hamiltonian paths or cycles
in a directed or undirected graph. Christophides [7] pro-
posed a multipath algorithm that was again an intelligent
search algorithm with exponential complexity. Christophides
algorithm has been improved by Kocay & William [8] by
proposing two operations for pruning the search space.
Martello [9] proposed a backtrack search algorithm that uses
low degree first heuristic for selecting the next vertex. Ejov
et al [10] solved HCP by solving equations drawn from the
adjacent matrix of the graph. Even though they could find
long cycles in case of non-Hamiltonian graphs, they could

http://orcid.org/0000-0001-6618-6758
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2018/9328103

not reduce the exponential time complexity. Posa’s algorithm
[11] is considered as the base algorithm for the heuristic
algorithms for HCP. Posa’s idea of rotational transformation
and its variants formed the basis of almost all heuristic
algorithms proposed later. Angluin and Valiant [12] proposed
a much more complicated transformation for directed graph,
as the rotational transformation is not suitable for directed
graph. Bollobas et al. [I13] proposed a Hamiltonian cycle
algorithm called HAM that uses rotational transformation
and cycle extension. Various versions of HAM algorithm
like SparseHam [14] and HideHam [15] are also proposed
for different kinds of graphs. Brunacci [16] proposed two
algorithms DB2 and DB2A, which consider the HCP as a
version of TSP and the nonedges as highly weighted edges.
DB2A algorithm is a modification of DBA algorithm for
directed graphs where directed graph is transformed into
undirected graph. Many TSP heuristics like the famous Lin-
Kernighan heuristic [17, 18] use a technique called “k-opt”
transformation [19, 20], which is an exchange of k edges.
Baniasadi et al. [21] proposed a “snakes and ladders” heuristic
for solving HCP inspired from k-opt transformations. There
are very few published HCP heuristics that sit in the “mid-
dle” area between sophisticated reliable heuristics and very
simplistic (usually linear or quadratic time) approaches.

The proposed heuristic is a combination of greedy depth
first search, unreachable vertex, and rotational transforma-
tion heuristics. The greedy depth first search reduces the
running time considerably. The search is greedy since it
always selects the unvisited low degree vertex for extending
the path. While the unreachable vertex heuristic reduces the
chances of reaching dead end, the rotational transformation
helps to come out of the dead end condition. Thus the
proposed method is faster than the complex exact algorithms
and more reliable than the faster heuristics.

2. Materials and Methods

2.1. Hamiltonian Cycle Problem. Hamiltonian cycle is a cycle
connecting all the vertices in a given graph only once. A graph
containing at least one Hamiltonian cycle is called Hamil-
tonian graph. This optimization problem can be formally
defined as follows:

Given a graph G=(E,V), where E is the set of edges of the
graph, V is the set of vertices of the graph and |V| = n.

The problem is to find a cycle, HC=(v,,v5,......... Vi)
where all (v;,v,,;) and (v,,v,) are elements of E.

It is a hard problem that attracted both mathematicians
and computer scientists. It is considered as one of the strong
representatives of the NP-complete problem.

2.2. Greedy Depth First Search. The large search space of the
HCP can be explored either breadth wise or depth wise.
In depth first search, search is performed in depth wise
manner starting from a given vertex till the point where the
search cannot proceed further or a dead end is reached. The
proposed heuristic uses greedy depth first search to create
a Hamiltonian path. The path construction starts from the
highest degree vertex because it increases the probability
of returning to the starting vertex. Degree of a vertex is

Journal of Optimization

F1GURE 1: Unreachable vertex.

the number of edges connected to that vertex. The other
vertices of the path are selected greedily by selecting the
smallest degree neighbour among the unvisited neighbours.
The lowest degree vertices are added first into the path
since they may become unreachable with the selection of
its neighbours. For example, if the degree of a vertex is two
then both the edges of that vertex must be present in the
Hamiltonian path/cycle and these edges are added to the path
first. The vertices that are part of the path constructed so
far are considered as “visited.” Since in Hamiltonian cycle
a vertex appears only once, only the unvisited neighbours
of the current vertex need to be considered. In order to
guide the greedy depth first search further to longer paths, an
unreachable vertex heuristic is proposed. According to this
heuristic, before adding a vertex to the path, an unreachable
condition is checked for each of its neighbours. This heuristic
is explained in Section 2.3.

2.3. Unreachable Vertex Heuristic. This research proposes a
new heuristic, namely, unreachable vertex heuristic, to reduce
the chance of reaching a dead end while constructing the
Hamiltonian path.

Definition 1. Let P be the partial path and x be the end vertex
on partial path. Select the next vertex yeAdj(x) in the path
such that the number of unvisited adjacent vertices of all
Adj(y) vertices is greater than one.

A vertex is said to be unreachable if all its neighbours are
already a part of the path constructed so far. In this case, there
is no way to reach the vertex and it becomes unreachable. In
this proposed heuristic, if the selection of a vertex is making
any of its unvisited neighbours unreachable then that vertex
will not be added to path.

For example, consider the graph shown in Figure 1.

Let the partial path identified so far be A—C—D. In the
given graph Adj(D) = {B, E}. Let the next vertex selected be E.
Adj(E) = {B, G, F}. Number of unvisited neighbours of B, G
and Fare 1, 2 and 2 respectively. According to the unreachable
vertex heuristic, E will not be selected as next vertex in the
path since the number of unvisited neighbours of B is one.

2.4. Rotational Transformation. Rotational transformation
[11] and its variations are found to be powerful heuristics for
finding Hamiltonian cycle. It is used to change a path to get a
new end vertex as shown in Figure 2. In the figure, e is the end

Journal of Optimization

ﬂ Rotational Transformation

FIGURE 2: Rotational transformation.

on which rotational transformation is applied to get a new
end vertex.

The procedure of rotational transformation is summa-
rized below.

(1) Find a vertex adjacent to e in the input graph, in path
P. Let it be vertex b.

(2) Create a new path P,

(a) by connecting b to e
(b) by reversing the path fromctoe

In the proposed algorithm, rotational transformation is used
for two purposes.

(1) To come out of the dead end during the construction
of Hamiltonian path.

(2) To convert the Hamiltonian path into Hamiltonian
cycle.

In the first case highest degree end of the path is selected for
rotational transformation since it increases the probability of
getting a new end. Similarly for converting path into cycle, the
lowest degree end vertex of the path is selected for rotational
transformation since it increases the probability of returning
to the higher degree end to make the cycle.

3. Proposed Hybrid Heuristic

3.1. HybridHAM Algorithm. The proposed HybridHAM
algorithm works in three steps:

(1) Create an initial path

(2) Convert the initial path to Hamiltonian path.

(3) Convert the Hamiltonian path to Hamiltonian cycle.

3.11 Initial Path Creation. The path creation starts from
the highest degree vertex and then adds the smallest degree
vertices greedily in order to construct an initial path as long
as possible. The selection of highest degree initial vertex and
then the smallest degree vertices is meant for constructing

a longer initial path and is given in Table 1. The algorithm
checks the unreachable condition before adding a vertex in
the path. This is to reduce the probability of reaching a dead
end during the path construction. If there are more than one
highest degree vertices then repeat this procedure of creating
initial path by selecting each one of them as the starting vertex
and select the path with maximum number of vertices as the
initial path. By following this procedure, we may get an initial
path which is Hamiltonian or near Hamiltonian.

3.1.2. Conversion of Initial Path into Hamiltonian Path. If the
initial path created is not Hamiltonian (less number of ver-
tices than the total number of vertices), then select the highest
degree end of the initial path for rotational transformation.
This is to increase the probability for getting a new end vertex
for extending the path further to create a Hamiltonian path.
Extend the path from the new end vertex by following the
greedy procedure in Section 3.1.1. The rotational transforma-
tion and greedy path extension are continued until we are
getting a Hamiltonian path. At any time during this process,
rotational transformation could not be applied means that
either the graph is not having Hamiltonian path or the
algorithm fails to identify the Hamiltonian path.

3.1.3. Conversion of Hamiltonian Path into Hamiltonian Cycle.
If there is an edge connecting the two ends of the Hamiltonian
path in the graph then add that edge to the path to get the
Hamiltonian cycle. Otherwise, apply rotational transforma-
tion to the smallest degree vertex repeatedly until getting a
new end vertex which can be connected to the other end
vertex to form the Hamiltonian cycle. At any time during
this process, rotational transformation could not be applied,
means that either the graph is not having Hamiltonian cycle
or the algorithm fails to identify the Hamiltonian cycle.

The vertex selection criteria used in various steps are
summarized in Table 1.

3.2. Example. Consider the undirected graph in Figure 3.

3.2.1. Initial Path Identified in Step 1

0123 4567 8 12 13
18 15

Here the length of the initial path is 18, which is less than
the total number of vertices in the graph. Since the identified
path is not Hamiltonian, go to step 2.

14 22 21 20 19

3.2.2. Hamiltonian Path Identified in Step 2

0 7 8 12 14 13 15 17 16 9 1
11 23 22 21 20 18 19 10

Here the length of the path is 24 and hence it is Hamil-
tonian path. Since there is no edge in Figure 3, connecting
the end vertices of the path (i.e., edge connecting vertex 1 and
vertex 11), go to step 3 and apply rotational transformation to
find the new end vertices that are connected in the graph in
Figure 3

2 3 4 5 6

Journal of Optimization

TABLE 1: Vertex selection criteria.

Vertex Selection Rule Step Reason
Selection of Highest d initial vert Step 1 It increases the probability of getting a path to reach
clection of Highest degree mihial vertex. °p back to this vertex to form the cycle.
Giving preference to smaller degree vertices increases
the probability of longer paths. For example, if the
Greedy selection of smallest degree Step 1 degree of a vertex adjacent to the current end vertex of
vertices during path construction. p the path is two, then it should be included first in the
path, as it is the only possible position of the vertex in
the Hamiltonian path.
Selection of the highest degree end of the It increases the probability for getting a new en.d vertex
o . . Step 2 for extending the path further to create a Hamiltonian
initial path for rotational transformation path
This is done to keep the highest degree end vertex, since
Selection of the smallest degree end Step 3 the probability of getting an edge connecting a higher
vertex for rotational transformation P degree vertex is more compared to a smaller degree
vertex.
0] 0
@ o
@ @
® o ® o o
® ®
o
o
® 10
L5/ o
FIGURE 3: Input undirected graph. -
FIGURE 4: Hamiltonian cycle.
3.2.3. Hamiltonian Cycle Identified in Step 3
From the input adjacency matrix, create two arrays V, and
0 7 8 12 14 13 15 16 17 18 19 20 21 22

23 11 6 5 4 10 3 2 9 1

Here the end vertices 1 and 2 are connected in the initial
graph shown in Figure 3 and hence form the Hamiltonian
cycle. It is shown in Figure 4.

3.3. Pseudocode. The input to the algorithm is the adjacency
matrix representation of the graph and the output is the set
of vertices corresponding to the Hamiltonian cycle. Let # be
the number of vertices in the graph. The proposed algorithm
contains three phases and is outlined as follows:

HybridHAM()

V, of vertices sorted in the increasing and decreasing order of
their degrees, respectively.

//Phase 1
//Create an initial path

(1) Start from one of the highest degree vertex (first
vertex in the array V). Let it be v,.

(2) Add it to the initial path P,.

(3) Repeat

(a) Select the next smallest degree neighbour of v,
(from the array V). Let it be v;.

Journal of Optimization

(b) If the selection of v; is not making any of its
unvisited neighbours unreachable then

(i) add it to the initial path P,
(ii) make v; as v,

Until v, becomes a dead end.

//End of Phase 1
(4) If |P,| = nthen go to Phase 3.
Else

Repeat Phase 1 for each of the highest degree vertex of
the graph and select the

longest P; as initial path.

End if

//Phase 2
//Convert the initial path into Hamiltonian path

(5) Repeat

(a) Select the highest degree end of the path P, for
rotational transformation

(b) Reverse P, if the first vertex in P, is having degree
higher than the last vertex to make the highest
degree vertex as the end vertex of the path. Let
itbev,.

(c) Apply rotational transformation to P; using v,
to get a new path.

(d) If rotational transformation could not be
applied then either the graph is not having
Hamiltonian path or the algorithm fails to
identify the Hamiltonian path and so exit.

(e) Extend this new path by using the greedy depth
first search as in Phase 1.

Until |P| = n.
(6) Now P, is the Hamiltonian Path P,. Assign P, = P,.
//End of Phase 2
(7) If there is an edge connecting the first and last vertices
of P, in the graph then
P, is the Hamiltonian cycle and return P,
else
go to Phase 3
End if

//Phase 3
//Convert Hamiltonian path into Hamiltonian cycle

(8) Repeat

(a) Select the smallest degree end of the path P, for
rotational transformation

(b) Reverse P, if the first vertex in P, is having
degree higher than the last vertex to make the
smallest degree vertex as the end vertex of the
path. Letitbev,.

(c) Apply rotational transformation to P, using v,,
to get a new path.

(d) If rotational transformation could not be
applied then either the graph is not having
Hamiltonian Cycle or the algorithm fails to
identify the Hamiltonian path and so exit.

Until there is an edge connecting the first and last
vertices of the path P,

(9) Now P, is the Hamiltonian cycle and return P,.

//End of Phase 3
}// End of HybridHAM algorithm

3.4. Worst Case Complexity

(1) Creation of sorted arrays
T(n) = O(n*)
(2) Phasel

Greedy depth first search goes through the adjacency
matrix once in the worst case and hence its complexity

is O(n?).
This search is repeated for each of the highest degree
vertex. The worst case is all the n vertices are of the
same degree.
Therefore, T(n) = O(n?)
(3) Phase 2
Complexity of rotational transformation at the most
is O(n)
Complexity of greedy depth first search is O(n?)
Total of these two = O(n?)
These two operations are repeated at most # times.
Therefore, T(n) = O(n?)
(4) Phase 3
Complexity of rotational transformation at the most
is O(n)
This operation is repeated at most n times.
Therefore, T(n) = O(n?)
Total worst case complexity of HybridHam, T(n) = om?) +
O(n’)+ O(n*)+ O(n’) =0(r’).

4. Experiments

The performance evaluation experiments of the proposed
algorithm are conducted in a system with 4GB RAM and Intel
Core i5 processor. The algorithm is implemented in MATLAB
13RA. The experiments were carried out on a set of graphs
collected from the literature as well as from the TSPLIB.

4.1. Sample Hamiltonian Cycle Graphs. The Hamiltonian
cycles returned by the proposed algorithm on the collected
set of sample graphs are shown in Figure 5.

The running time of the algorithm to solve these sample
instances is given in Table 2.

Journal of Optimization

e e o
4 24

Example 1 Example 2 Example 3 Example 4
Example 5 Example 6 Example 7 Example 8
Example 9 Example 10 Example 11 Example 12

Example 15

Example 16

Example 17

Example 19

Example 21

Example 22

Example 23

FIGURE 5: Sample Hamiltonian graphs.

Journal of Optimization

TABLE 2: Running time on sample instances.

SL.No Name No. of Vertices Running time in Sec.
L Example 1 16 0.051
2. Example 2 20 0.056
3. Example 3 1 0.051
4. Example 4 12 0.054
5. Example 5 1 0.051
6. Example 6 20 0.049
7. Example 7 12 0.052
8. Example 8 24 0.083
9. Example 9 24 0.063
10. Example 10 12 0.051
11. Example 11 6 0.049
12. Example 12 12 0.031
13. Example 13 8 0.029
14. Example 14 12 0.034
15. Example 15 19 0.030
16. Example 16 12 0.032
17. Example 17 13 0.030
18. Example 18 16 0.038
19. Example 19 60 0.043
20. Example 20 20 0.042
21 Example 21 25 0.031
22. Example 22 32 0.032
23. Example 23 64 0.078
TaBLE 3: Running time on TSPLIB instances.
Running time in sec.
S1.No Name No. of vertices Snake and
Concorde HCP Solver Ladder Hybrid Ham
Heuristic
L AlIb1000 1000 4.95 0.72 0.1 0.2656
2. Alb2000 2000 7.30 3.29 0.8 1.4375
3. Alb3000a 3000 9.56 8.36 3.44 2.7656
4. Alb3000b 3000 9.94 8.02 3.64 1.5781
5. Alb3000c 3000 9.95 8.43 4.31 1.8438
6. Alb3000d 3000 10.14 8.48 4.03 1.6406
7. Alb3000e 3000 10.44 8.03 4.29 1.6719
8. Alb4000 4000 13.45 17.84 13.89 3.0625
9. Alb5000 5000 17.24 30.85 14.12 8.9844

4.2. TSPLIB Instances. The TSPLIB library [22] contains
seven Hamiltonian cycle instances of 1000, 2000, 3000, and
5000 vertices. The proposed algorithm could solve all these
problem instances in a few seconds. The running time of the
proposed algorithm is compared with that of HCP Solver [23],
Concorde TSP Solver [24], and the latest Snake and Ladder
Heuristic [21]. Table 3 gives the time taken by these algorithms
to solve each of the HCP instances.

4.3. FHCP Challenge Set. The FHCP Challenge Set [25] is
a collection of 1001 Hamiltonian Cycle Problem instances.

This dataset is specifically designed to resist the heuristic
approaches. HybridHAM is tested on 250 instances of the
FHCP Challenge Set. Out of these 250 instances, the pro-
posed heuristic could find 75 Hamiltonian paths and 6 Hamil-
tonian cycles. The complete results are shown in Table 4. The
graphs are too sparse so that the rotation transformation
could not convert the Hamiltonian path into Hamiltonian
cycle in Phase 3 of the algorithm. Phase 1 and Phase 2 of the
algorithm perform comparatively well with the highly dif-
ficult instances of the Challenge Set and hence the Hamil-
tonian path. It is also found that the proposed highest degree

8 Journal of Optimization

TABLE 4: Result on FHCP Challenge Set.

Running Time

S1.No Name No. of Vertices No. of Edges Output in Sec.
1. Graph 1 66 99 HP 0.0625
2. Graph 2 70 106 HC 0.0469
3. Graph 3 78 117 HP 0.0625
4. Graph 4 84 127 HP 0.0625
5. Graph5 90 135 HP 0.0625
6. Graph 6 94 142 HC 0.0625
7. Graph 7 102 153 HP 0.0781
8. Graph8 108 162 HP 0.0625
9. Graph 9 114 171 HP 0.0938
10. Graph 11 126 189 HP 0.1094
11. Graph 12 132 199 HP 0.1094
12. Graph 14 142 214 HP 0.0938
13. Graph 15 150 225 HP 0.1250
14. Graph 16 156 235 HP 0.0938
15. Graph 17 162 243 HP 0.1875
16. Graph 18 166 250 HP 0.1094
17. Graph 20 174 261 HP 0.2344
18. Graph 21 180 271 HP 0.1406
19. Graph 22 186 279 HP 0.2188
20. Graph 23 190 286 HP 0.1563
21. Graph 25 204 307 HP 0.1719
22. Graph 26 210 315 HP 0.3750
23. Graph 27 214 322 HP 0.2031
24, Graph 29 228 343 HP 0.2500
25. Graph32 246 369 HP 0.4063
26. Graph 33 252 379 HP 0.3281
27. Graph34 258 387 HP 0.4688
28. Graph 35 262 394 HP 0.5781
29. Graph 36 270 405 HP 0.7031
30. Graph 37 276 415 HP 0.3750
31. Graph 40 294 441 HP 1.0469
32. Graph 41 300 451 HP 0.4844
33. Graph 43 310 466 HP 0.7031
34. Graph 44 312 477 HP 0.9844
35. Graph 45 324 487 HP 0.6094
36. Graph 50 348 523 HP 0.9063
37. Graph 53 366 549 HP 1.6875
38. Graph 54 372 559 HP 0.9219
39. Graph 58 396 595 HP 1.7031
40. Graph 59 400 40001 HC 0.2656
41. Graph 64 416 625 HP 1.0938
42. Graph 65 419 631 HP 1.4375
43. Graph 68 438 657 HP 2.9219
44, Graph69 444 667 HP 2.9063
45. Graph 72 460 52901 HC 0.4375
46. Graph 79 480 57601 HC 0.4844
47. Graph 82 496 745 HP 1.7031

Journal of Optimization

TaBLE 4: Continued.

Running Time

S1.No Name No. of Vertices No. of Edges Output in Sec.
48. Graph 84 500 62501 HC 0.5313
49. Graph 90 510 65026 HC 0.5625
50. Graph 91 516 775 HP 3.5156
51. Graph 95 540 811 HP 3.0469
52. Graph 96 540 72901 HC 0.7031
53. Graph 99 550 826 HP 5.6719
54. Graph 104 576 865 HP 2.8594
55. Graph 118 636 955 HP 6.8594
56. Graph 122 656 985 HP 4.1563
57. Graph 124 660 991 HP 8.2813
58. Graph 128 677 114583 HC 1.3594
59. Graph 134 724 131045 HC 1.5313
60. Graph 137 736 1105 HP 12.9531
61. Graph 148 816 1225 HP 7.9531
62. Graph 150 823 169333 HC 2.7500
63. Graph 151 828 1243 HP 11.5625
64. Graph 160 896 1345 HP 14
65. Graph 162 909 206571 HC 4.0625
66. Graph 168 972 1459 HP 33.0938
67. Graph 169 976 1465 HP 28.6406
68. Graph 176 1020 1531 HP 29.4375
69. Graph 182 1056 1585 HP 22.6719
70. Graph 188 1123 315283 HC 9.6406
71. Graph 190 1136 1705 HP 14.4844
72. Graph 203 1216 1825 HP 40.2813
73. Graph 211 1296 1945 HP 40.1406
74. Graph 233 1456 2185 HP 85.4688
75. Graph 246 1536 2305 HP 111.8438

and smallest degree vertex selection criteria suit more graphs
having vertices of different degrees. However, the algorithm
could find Hamiltonian cycle from medium sparse graphs
in very less time (e.g., Graphs 72, 79, 84, 90, etc. in Table 4).
Even the winners [26] of the challenge could not solve the
complete set and they used different algorithms for different
types of graphs as their objective was to find solutions rather
than developing algorithms.

It would be worth pointing out that the difficult
instances of FHCP challenge dataset are very rare and
difficult to construct, let alone encounter “naturally” Also
even discovering a Hamiltonian path is a difficult (NP-
complete) problem and the proposed heuristic succeeded
in doing so for many instances of the FHCP Challenge
Set.

5. Conclusion

This paper proposes a hybrid heuristic for finding Hamil-
tonian cycle from undirected graphs. The proposed three-
stage algorithm uses a combination of three heuristics:

greedy depth first search, unreachable vertex, and rotational
transformation. From the various experiments conducted
on different graphs of variable sizes and complexity, it is
found that the highest degree heuristic used for selecting
the initial vertex for the creation of longest initial path as
well as Hamiltonian path and the smallest degree heuristic
used for the conversion of Hamiltonian path to Hamiltonian
cycle are the reasons for getting the solution in a single run.
The experimental evaluation also shows that the proposed
heuristic is much faster and succeeds in obtaining good
results in the majority of cases. It should be worth noting that
the increase in speed comes without sacrificing the heuristic's
reliability on “easy” instances of various sizes (including
the quite large TSPLIB instances) and that it still performs
reasonably well on more difficult instances.

Data Availability

The data supporting this research are from previously
reported studies and datasets, which have been cited. The
processed data are available in [22, 25].

10

Conflicts of Interest

The author declares that there is no conflict of interest.

Acknowledgments

The research presented in this manuscript is supported by
University Grants Commission Major Project Grant F.No.42-
136/2013(SR).

References

[1] G. A.Dirac, “Some theorems on abstract graphs,” Proceedings of
the London Mathematical Society. Third Series, vol. 2, pp. 69-81,
1952.

[2] O. Ore, “Note on Hamilton circuits,” The American Mathemati-
cal Monthly, vol. 67, 55 pages, 1960.

[3] G. Fan, “New sufficient conditions for cycles in graphs,” Journal
of Combinatorial Theory, Series B, vol. 37, no. 3, pp. 221-227,1984.

[4] R.J. Gould, “Advances on the Hamiltonian problem—a survey,”
Graphs and Combinatorics, vol. 19, no. 1, pp. 7-52, 2003.

[5] Vandergriend, Basil (1998), Finding Hamiltonian Cycles: Algo-
rithms, graphs and performance [M.sc. Thesis], Faculty of Grad-
uate Studies and Research, University of Alberta, 1998.

[6] E Rubin, “A search procedure for Hamilton paths and circuits,”
Journal of the ACM, vol. 21, pp. 576-580, 1974.

[7] N. Christofides, Graph Theory: An Algorithmic Approach, Com-
puter Science and Applied Mathematics, Academic Press, New
York, NY, USA, 1975.

[8] W.Kocay, “An extension of the multi-path algorithm for finding

Hamilton cycles,” Discrete Mathematics, vol. 101, no. 1-3, pp. 171-

188, 1992.

S. Martello, “Algorithm 595: An Enumerative Algorithm for

Finding Hamiltonian Circuits in a Directed Graph,” ACM Tran-

sactions on Mathematical Software, vol. 9, no. 1, pp. 131-138,1983.

[10] V. Ejov, J. A. Filar, S. K. Lucas, and J. L. Nelson, “Solving
the Hamiltonian Cycle problem using symbolic determinants,”
Taiwanese Journal of Mathematics, vol. 10, no. 2, pp. 327-338,
2006.

[11] L. Pésa, “Hamiltonian circuits in random graphs,” Discrete
Mathematics, vol. 14, no. 4, pp. 359-364, 1976.

[12] D. Angluin and L. G. Valiant, “Fast probabilistic algorithms for

Hamiltonian circuits and matchings,” in Proceedings of the ninth

annual ACM symposium on Theory of computing, pp. 30-41,

ACM, 1977.

B. Bollobds, T. I. Fenner, and A. M. Frieze, “An algorithm

for finding hamilton paths and cycles in random graphs,

Combinatorics, Probability and Computing, vol. 7, no. 4, pp. 327-

341, 1987.

[14] A. M. Frieze, “An algorithm for finding Hamilton cycles in
random directed graphs,” Journal of Algorithms, vol. 9, no. 2, pp.
181-204, 1988.

[15] A. Z. Broder, A. M. Frieze, and E. Shamir, “Finding hidden
hamiltonian cycles,” Random Structures & Algorithms, vol. 5, no.
3, pp- 395-410, 1994.

[16] E A.Brunacci, “DB2 and DB2A: Two useful tools for construct-
ing Hamiltonian circuits,” European Journal of Operational
Research, vol. 34, no. 2, pp. 231-236, 1988.

[17] S. Lin and B. W. Kernighan, “An effective heuristic algorithm
for the traveling-salesman problem,” Operations Research, vol.
21, pp. 498-516, 1973.

=

[13

Journal of Optimization

[18] K. Helsgaun, “An effective implementation of the Lin-Ker-
nighan traveling salesman heuristic,” European Journal of Oper-
ational Research, vol. 126, no. 1, pp. 106-130, 2000.

[19] S.Lin, “Computer solutions of the traveling salesman problem,”
Bell Labs Technical Journal, vol. 44, pp. 2245-2269, 1965.

[20] M. M. Flood, “The traveling-salesman problem,” Operations
Research, vol. 4, pp. 61-75, 1956.

[21] P. Baniasadi, V. Ejov, J. A. Filar, M. Haythorpe, and S. Rosso-
makhine, “Deterministic “snakes and Ladders” Heuristic for
the Hamiltonian cycle problem,” Mathematical Programming
Computation, vol. 6, no. 1, pp. 55-75, 2014.

[22] TSPLIB-Hamiltonian cycle problem (HCP), accessed on June
2013, http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95.

[23] PCGRATE, accessed on September 2014, http://www.pcgrate
.com/about/npcomprb/hcp.

[24] CONCORDE, accessed on September 2014, http://www3.cs
.stonybrook.edu/~algorith/implement/concorde/implement.shtml.

[25] M. Haythorpe, “FHCP challenge set: the first set of structurally
difficult instances of the hamiltonian cycle problem,” Bulletin of
the Institute of Combinatorics and Its Applications, vol. 83, pp.
98-107, 2018.

[26] A.Schneider, “When researchers play to solve 1001 instances of
the Hamiltonian Cycle Problem,” 2016, https://www.inria.fr/en/
centre/sophia/news/when-researchers-play-to-solve-1001-instan-
ces-of-the-hamiltonian-cycle-problem.

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95
http://www.pcgrate.com/about/npcomprb/hcp
http://www.pcgrate.com/about/npcomprb/hcp
http://www3.cs.stonybrook.edu/~algorith/implement/concorde/implement.shtml
http://www3.cs.stonybrook.edu/~algorith/implement/concorde/implement.shtml
https://www.inria.fr/en/centre/sophia/news/when-researchers-play-to-solve-1001-instances-of-the-hamiltonian-cycle-problem
https://www.inria.fr/en/centre/sophia/news/when-researchers-play-to-solve-1001-instances-of-the-hamiltonian-cycle-problem
https://www.inria.fr/en/centre/sophia/news/when-researchers-play-to-solve-1001-instances-of-the-hamiltonian-cycle-problem

Advances in Advances in . Journal of The Scientific Journal of
Operations Research Decision Sciences Applied Mathematics World Journal Probability and Statistics

|nternational
Journal of
Mathematics and
Mathematical
Sciences

Journal of

Optimization

Hindawi

Submit your manuscripts at
www.hindawi.com

International Journal of
Engineering
Mathematics

International Journal of

Analysis

Journal of : Advances in] Mathematical Problems International Journal of Discrete Dynamics in
Complex Analysis Numerical Analysis in Engineering Differential Equations Nature and Society

International Journa!

of
Stochastic Analysis Mathematics Function Spaces Applied Analysis Mathematical Physics

Journal of Journal of Abstract and ; Advances in

https://www.hindawi.com/journals/jmath/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/jam/
https://www.hindawi.com/journals/jps/
https://www.hindawi.com/journals/amp/
https://www.hindawi.com/journals/jca/
https://www.hindawi.com/journals/jopti/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/aor/
https://www.hindawi.com/journals/jfs/
https://www.hindawi.com/journals/aaa/
https://www.hindawi.com/journals/ijmms/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ana/
https://www.hindawi.com/journals/ddns/
https://www.hindawi.com/journals/ijde/
https://www.hindawi.com/journals/ads/
https://www.hindawi.com/journals/ijanal/
https://www.hindawi.com/journals/ijsa/
https://www.hindawi.com/
https://www.hindawi.com/

