
Hindawi Publishing Corporation
Journal of Probability and Statistics
Volume 2012, Article ID 317634, 18 pages
doi:10.1155/2012/317634

Research Article
Escalation with Overdose Control Using Ordinal
Toxicity Grades for Cancer Phase I Clinical Trials

Mourad Tighiouart, Galen Cook-Wiens, and André Rogatko
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We extend a Bayesian adaptive phase I clinical trial design known as escalation with overdose
control (EWOC) by introducing an intermediate grade 2 toxicity when assessing dose-limiting
toxicity (DLT). Under the proportional odds model assumption of dose-toxicity relationship, we
prove that in the absence of DLT, the dose allocated to the next patient given that the previously
treated patient had a maximum of grade 2 toxicity is lower than the dose given to the next patient
had the previously treated patient exhibited a grade 0 or 1 toxicity at the most. Further, we prove
that the coherence properties of EWOC are preserved. Simulation results show that the safety of
the trial is not compromised and the efficiency of the estimate of the maximum tolerated dose
(MTD) is maintained relative to EWOC treating DLT as a binary outcome and that fewer patients
are overdosed using this design when the true MTD is close to the minimum dose.

1. Introduction

Cancer phase I clinical trials are sequential designs enrolling late stage cancer patients who
have exhausted standard treatment therapies [1]. For cytotoxic agents or combinations of
biologic with cytotoxic drugs, the main objectives of these trials are to characterize treatment-
related toxicities and estimate a dose level that is associated with a predetermined level of
dose limiting toxicity (DLT). Such a dose is called maximum tolerated dose (MTD) or phase
II dose. Specifically, the MTD, γ , is defined as the dose that is expected to produce DLT after
one cycle of therapy in a specified proportion θ of patients:

P
(
DLT | Dose = γ

)
= θ. (1.1)

Although the definition of DLT depends on the cancer type and the agent under study, it
is typically defined as a grade 3 or 4 nonhematologic and grade 4 hematologic toxicity for
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cytotoxic agents, see the National Cancer Institute (NCI) common toxicity criteria [2]. The
value chosen for the target probability of DLT θ depends on the nature and severity of the
DLT; it is set relatively high when the DLT is a transient, reversible, and nonfatal condition
and low when it is lethal or life threatening.

Model-based designs for cancer phase I clinical trials have been studied extensively in
the last two decades; see O’Quigley et al. [3], Gatsonis and Greenhouse [4], Durham and
Flournoy [5], Korn et al. [6], Whitehead and Brunier [7], Whitehead [8], Babb et al. [9],
Gasparini and Eisele [10], Mukhopadhyay [11], and Haines et al. [12]. In particular, the con-
tinual reassessmentmethod (CRM) first proposed byO’Quigley et al. [3] is Bayesian outcome
adaptive, and has beenmodified and extended bymany authors; see, for example, Faries [13],
Moller [14], Goodman et al. [15], O’Quigley and Shen [16], Piantadosi et al. [17], Cheung
and Chappell [18], Storer [19], and Leung and Wang [20]. The attribute of the CRM is that at
each stage of the trial, we seek a dose for which a Bayes estimate of the probability of DLT is
closest to the target probability of DLT θ. Escalation with overdose control (EWOC) originally
proposed by Babb et al. [9] is another alternative Bayesian outcome adaptive design for dose
finding in early phase cancer trials. Unlike CRM, its main feature is that at each stage of the
trial, we seek a dose for which the posterior probability of exceeding the MTD γ is bounded
by a feasibility bound α. Statistical properties of EWOC have been studied by Zacks et al. [21],
Tighiouart et al. [22], and Tighiouart and Rogatko [23], and examples of phase I trials using
EWOC can be found in [24–33]. Further literature review of statistical methods for dose find-
ing in cancer phase I trials can be found in Ting [34] and Chevret [35].

The above methods allocate future doses based on a binary outcome of DLT of
previously treated patients. Such designs may not be efficient in the sense that the dose rec-
ommended for the next patient is the same regardless whether the previously treated patient
had no toxicity or had an intermediate grade 2 toxicity. The work we present in this
manuscript is motivated by the ethical concern raised by clinical colleagues regarding dose
escalation in the absence of DLT. Specifically, if the current patient experiences drug related
grade 2 toxicity at the most, then the dose to be allocated to the next patient should not be as
high as the one had the current patient experienced a maximum of grade 0 or 1 toxicity. We
present a Bayesian outcome adaptive design which is an extension of EWOC by accommo-
dating an intermediate grade 2 toxicity to the model. We use a proportional odds model
to describe the dose-toxicities relationship and the design is termed EWOC proportional
odds model, written as EWOC-POM. We show that the design satisfies the above ethical
consideration without compromising the safety and efficiency of the trial. Furthermore, we
show that the design maintains the coherence properties of EWOC.

Cancer phase I clinical trials designs taking into account all grades and types of toxici-
ties have been proposed bymany authors with the goal of improving the safety and efficiency
of the trial, see Gordon and Willson [36], Wang et al. [37], Bekele and Thall [38], Yuan et al.
[39], Potthoff and George [40], Bekele et al. [41], Van Meter et al. [42, 43], Iasonos et al.
[44], Lee et al. [45], and Chen et al. [46]. Some of these methods use multivariate models for
characterizing the different grades of toxicities as a function of dose while others summarize
the information from all toxicity grades into a continuous score. Depending on the underlying
scenarios, in general, addingmultiple toxicity grades information to themodel has little effect
on the safety of the trial with a modest gain in the precision of the estimate of the MTD. Our
contribution in this manuscript is motivated by the ethical constraint that dose escalation in
the absence of DLT should be mitigated by the occurrence of an intermediate grade 2 toxicity.
The model and design we propose is constructed in such a way as to maintain the main
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properties of EWOC while at the same time, satisfying those ethical considerations raised by
our clinical colleagues.

The manuscript is organized as follows. In Section 2, we give a detailed description
of the methodology and describe the trial design. In Section 3, we state and prove the ethical
considerations and coherence properties of EWOC-POM. The simulation results of the design
operating characteristics and comparison with EWOC design are included in Section 4.
Section 5 contains some final remarks and discussion of practical implementations.

2. Method

2.1. Model

Let G = 0, 1, . . . , 4 be the maximum grade of toxicity experienced by a patient by the end of
one cycle of therapy and define DLT as a maximum of grade 3 or 4 toxicity. Let

Y =

⎧
⎪⎪⎨

⎪⎪⎩

0 if G = 0 or 1
1 if G = 2
2 if G = 3 or 4.

(2.1)

We model the dose-toxicities relationship by assuming that

P
(
Y ≥ j | x) = F

(
αj + βx

)
, j = 1, 2, (2.2)

where F(·) is a known strictly increasing cdf. This implies that α2 ≤ α1. We assume that β > 0
so that the probability of DLT is an increasing function of dose. The MTD, γ , is defined as the
dose that is expected to produce DLT in a specified proportion θ of patients:

P
(
Y = 2 | x = γ

)
= F

(
α2 + βγ

)
= θ. (2.3)

The value chosen for the target probability θ depends on the nature and clinical manageabil-
ity of the DLT; it is set relatively high when the DLT is a transient, correctable, or nonfatal
condition and low when it is lethal or life threatening. Suppose that dose levels in the trial
are selected in the interval [Xmin, Xmax].

2.1.1. Likelihood

LetDn = {(xi, Yi), i = 1, . . . , n} be the data after enrolling n patients to the trial. The likelihood
function for the parameters α1, α2, and β is

L
(
α1, α2, β | Dn

)
=

n∏

i=1

[
1 − F

(
α1 + βxi

)]I(Yi=0) [
F
(
α1 + βxi

) − F
(
α2 + βxi

)]I(Yi=1)

× [
F(α2 + βxi)

]I(Yi=2),

(2.4)

where I(·) is the indicator function.
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We reparameterize model (2.2) in terms of ρ0 = P(Y = 2 | x = Xmin), the probability
that a DLT manifests within the first cycle of therapy for a patient given dose x = Xmin, ρ1 =
P(Y ≥ 1 | x = Xmin), the probability that a grade 2 or more toxicity manifests within the first
cycle of therapy for a patient given dose x = Xmin, and the MTD γ . This reparameterization
is convenient to clinicians since γ is the parameter of interest. Assuming that the dose is
standardized to be in the interval [0, 1], it can be shown that

α1 = F−1(ρ1
)
, α2 = F−1(ρ0

)
,

β =
1
γ

(
F−1(θ) − F−1(ρ0

))
.

(2.5)

The conditions α2 ≤ α1, β > 0, and (2.2) imply that 0 ≤ ρ0 ≤ ρ1 and 0 ≤ ρ0 ≤ θ. Define

F1
(
ρ0, ρ1, γ ;x

)
= F

(
F−1(ρ1

)
+
(
F−1(θ) − F−1(ρ0

))x
γ

)

F2
(
ρ0, ρ1, γ ;x

)
= F

(
F−1(ρ0

)
+
(
F−1(θ) − F−1(ρ0

))x
γ

)
.

(2.6)

Using (2.4), (2.5), and (2.6), the likelihood of the reparameterized model is

L
(
ρ0, ρ1, γ | Dn

)
=

n∏

i=1

[
1 − F1

(
ρ0, ρ1, γ ;xi

)]I(Yi=0)[
F1

(
ρ0, ρ1, γ ;xi

) − F2
(
ρ0, ρ1, γ ;xi

)]I(Yi=1)

× [
F2

(
ρ0, ρ1, γ ;xi

)]I(Yi=2).

(2.7)

2.1.2. Prior and Posterior Distributions

Let g(ρ0, ρ1, γ) be the prior distribution on Ω, where Ω = {(x, y, z) : 0 ≤ x ≤ θ, x ≤ y ≤
1, Xmin ≤ z ≤ Xmax}. Using Bayes rule, the posterior distribution of the model parameters is
proportional to the product of the likelihood and prior distribution

π
(
ρ0, ρ1, y | Dn

) ∝ L
(
ρ0, ρ1, γ | Dn

) × g
(
ρ0, ρ1, γ

)
. (2.8)

We designed an MCMC sampler based on the Metropolis-Hastings algorithm [47, 48] to
obtain model operating characteristics. We also used WinBUGS [49] to estimate features of
the posterior distribution of the MTD and design a trial. The WinBUGS code is included in
the Appendix section. In the absence of prior information about the MTD and probability of
DLT at Xmin, we specify vague priors for the model parameters as follows:

γ ∼ Unif[Xmin, Xmax]

ρ0 ∼ Unif[0, θ]

ρ1 | ρ0 ∼ Unif
[
ρ0, 1

]
.

(2.9)
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2.1.3. Trial Design

Dose levels in the trial are selected in the interval [Xmin, Xmax]. The adaptive design proceeds
as follows. The first patient receives a dose x1 > Xmin that is deemed to be safe by the clinician.
Denote by Πk(γ) = Π(γ | Dk) the marginal posterior cdf of the MTD, k = 1, . . . , n − 1. The
(k+1)−st patient receives the dose xk+1 = Π−1

k
(α) so that the posterior probability of exceeding

the MTD is equal to the feasibility bound α. This is the overdose protection property of
EWOC, where at each stage of the design, we seek a dose to allocate to the next patient
while controlling the posterior probability of exposing patients to toxic dose levels. The trial
proceeds until a predetermined number of n patients are enrolled to the trial. At the end of
the trial, we estimate the MTD as γ̂ = Π−1

n (α).

3. Properties of EWOC-POM

3.1. Characteristics of EWOC-POM

The proposed design EWOC-POM assigns dose levels to future patients by taking into
account the maximum observed toxicity grade during the first cycle of therapy according
to the following properties.

(i) At each stage of the design, we seek a dose to allocate to the next patient while
controlling the posterior probability of exposing patients to toxic dose levels.

(ii) If the maximum grade of toxicity experienced by patient k − 1 within one cycle of
therapy is grade 2, then the dose allocated to patient k is lower than the dose that
would have been given to patient k had themaximum grade of toxicity experienced
by patient k − 1 been grade 0 or 1.

Property (i) is the overdose protection defining characteristic of EWOCwhich is also satisfied
by EWOC-POM. Property (ii) is naturally appealing because when a patient experiences
grade 2 dose-related toxicity, then it is ethical not to increase the dose by the same amount
had this patient exhibited grade 0 or 1 toxicity at the most. Characteristic (ii) is summarized
in the following theorem.

Theorem 3.1. Let Dk = {(Y1, x1), . . . , (Yk, xk)} be the data on the first k patients generated by the
design described in Section 2.1.3, and, Πk(γ ;Yk) be the cdf of γ given the data Dk. Let xk+1 =
Π−1

k
(α;Yk) and x′

k+1=Π
−1
k
(α;Y ′

k
). Suppose that for all x ∈ [Xmin, Xmax] and all (ρ0, ρ1) such that 0≤

ρ0 ≤ ρ1 ≤ 1 and ρ0 ≤ θ, (F1 − F2)/(1 − F1) is a monotonically decreasing function in γ . Then,
x′

k+1 ≥ xk+1 whenever Yk
′ = 0 and Yk = 1.

The proof of Theorem 3.1 is given in the Appendix section. It is easy to verify that the
monotonicity condition of Theorem 3.1 holds for the logistic function F(w) = 1/(1 + e−w).
Using this link function and the uniform priors given in (2.9) with θ = 0.33, Figure 1 gives
all possible dose assignments for patients 1 and 2 and selected situations for patients 3 and
4 using the trial design described in Section 2.1.3. The dose has been standardized so that
Xmin = 0 and Xmax = 1, and the first patient is given dose 0.10. If this patient experiences
grade 0 or 1 toxicity at the most, the dose recommended for patient 2 is 0.36. On the other
hand, if patient 1 experiences grade 2 toxicity at themost, the dose recommended for patient 2
is 0.22, much lower than 0.36. This figure also illustrates some of the coherence properties
stated in Theorem 3.2 below.
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Dose: 0.1
G = 2

0.36

0.22

0.04

0.53

0.4

0.19

0.4
0.24
0.1

0.64

0.55

0.4

Patient: 1 2 3 4

G = 0, 1

G = 3, 4

Figure 1: Tree of possible dose allocations for patients 1 and 2 and selected situations for patients 3 and 4.
G = 0, 1 corresponds to Y = 0, G = 2 corresponds to Y = 1, and G = 3, 4 corresponds to Y = 2 or DLT.

3.2. Coherence of EWOC-POM

In cancer phase I clinical trials, it is ethical not to increase a dose of a cytotoxic agent for the
next patient if the previously treated patient exhibited DLT when given the same dose level.
Furthermore, it is desirable not to decrease the dose of an agent for the next patient if the pre-
viously treated patient did not experience DLT when given that same dose level. These two
properties are known as coherence in escalation and de-escalation, respectively, see Cheung
[50]. A design that satisfies both of these properties is said to be coherent. Tighiouart and
Rogatko [23] show that EWOC is coherent. The next theorem states some of the coherence
properties of EWOC-POM.

Theorem 3.2. Suppose that for all x ∈ [Xmin, Xmax] and all (ρ0, ρ1) such that 0 ≤ ρ0 ≤ ρ1 ≤ 1 and
ρ0 ≤ θ, F1 and F2 are monotonically decreasing in γ . Then the design EWOC-POM described in 2.1.3
is coherent in deescalation. Furthermore, if the toxicity response for patient k is Yk = 0, then the dose
allocated to patient k + 1 satisfies xk+1 ≥ xk.

The proof of Theorem 3.2 is given in the Appendix section.

4. Simulation Studies

We compare the design operating characteristics of EWOC-POM with the original EWOC
by simulating a large number of trials under several scenarios. We used the logistic function
F(w) = 1/(1+e−w) to model the dose-toxicities relationship in (2.2). EWOCwas implemented
as in Tighiouart et al. [22] using the same logistic function to model the dose-toxicity
relationship. For all scenarios, we standardize the dose to be in the interval [0, 1], θ = 0.33, the
feasibility bound α = 0.25, and the trial sample size is n = 30. The priors in (2.9)were adopted
for EWOC-POM. We also carried out design operating characteristics for θ = 0.20, and the
conclusions regarding the performance of EWOC-POM relative to EWOC were essentially
the same.

4.1. Algorithm

For a given scenario determined by ρ0, ρ1, and γ , the first patient receives dose 0, and
the next dose x2 is determined according to the trial design described in 2.1.3. The second
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Figure 2: Dose-toxicity relationship for the nine scenarios considered in the design operations characteris-
tics. The solid curves correspond to P(Y = 2 | x) = P(DLT | x) and the dashed curves in bold correspond
to P(Y > 1 | x). The horizontal dashed lines represent the target probability of DLT θ = 0.33 and the vertical
lines correspond to the true values of the MTD γ .

response y2 is then generated from model (2.2) reparameterized in terms of ρ0, ρ1, and γ
with x = x2. This process is repeated until all n patients have been enrolled to the trial. We
considered 9 scenarios corresponding to a fixed value for ρ0 = 0.05, three values of ρ1, 0.2,
0.5, and 0.8, and three values of the MTD γ , 0.1, 0.5, and 0.7. The corresponding dose-toxicity
relationships for these nine scenarios are illustrated in Figure 2. For each model and each
scenario, we simulated M = 1000 trials. EWOC and EWOC-POM were compared in terms
of the proportion of patients exhibiting DLT, the average bias, biasave = M−1(

∑M
i=1 γ̂i − γtrue),

and the estimated mean square error MSE = M−1(
∑M

i=1 (γ̂i − γtrue)
2), where γ̂i is the Bayes
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Figure 3: Summary statistics for trial safety for EWOC and EWOC-POM under all scenarios. Each graph
represents mean proportion obtained from all patients from all 1000 simulated trials.
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Table 1: Percent of trials with estimated MTD within 5% of the dose range and 10% of the dose range of
the true MTD γ and percent of trials for which the rate of DLT exceeds 40% for EWOC and EWOC-POM
under the nine scenarios.

Scenarios
Percent of trial with estimated MTD Percent of Trial

Within 0.05 of γ Within 0.10 of γ with rate of DLT >0.4
EWOC EWOC-POM EWOC EWOC-POM EWOC EWOC-POM

γ = 0.1, ρ1 = 0.2 98.3 98.4 100 100 7.5 6.6
γ = 0.1, ρ1 = 0.5 98.3 97.5 100 100 7.5 3.0
γ = 0.1, ρ1 = 0.8 98.3 96.4 100 100 7.5 2.9
γ = 0.5, ρ1 = 0.2 39.6 40.5 70.3 71.3 0.2 0.0
γ = 0.5, ρ1 = 0.5 39.6 35.6 70.3 63.2 0.2 0.0
γ = 0.5, ρ1 = 0.8 39.6 31.0 70.3 59.4 0.2 0.0
γ = 0.7, ρ1 = 0.2 24.3 27.6 49.1 53.3 0.0 0.0
γ = 0.7, ρ1 = 0.5 24.3 23.2 49.1 45.7 0.0 0.0
γ = 0.7, ρ1 = 0.8 24.3 20.1 49.1 37.1 0.0 0.0

estimate of the posterior distribution of the MTD at the end of the ith trial with respect to the
asymmetric loss function:

L
(
x, γ

)
=

{
α
(
γ − x

)
if x ≤ γ

(1 − α)
(
x − γ

)
if x > γ.

(4.1)

We also compared the models with respect to the proportion of patients that were overdosed.
Here, a dose x is defined as an overdose if x > x∗, where x∗ is defined as the dose for which
P(DLT | x∗) = θ + 0.05. This probability is calculated using the parameter values from the
corresponding scenario. These models are further compared with respect to the proportion
of patients that were overdosed given that the previously treated patient exhibited grade
2 toxicity. Finally, we compared EWOC-POM to EWOC in terms of the proportion of trials
for which the probability of DLT exceeds 0.4. This gives us an estimate of the probability
that a prospective trial will result in an excessively high DLT rate. As for the proportion of
trials with correct MTD recommendation, we presented percent of trials with estimated MTD
within 10% and 20% of the dose range of the true MTD for EWOC-POM and EWOC.

4.2. Results

Figure 3 shows that the proportion of patients exhibiting DLT is always less than 34% for
both EWOC and EWOC-POM under all scenarios and 4% fewer patients experiencing DLT
under EWOC-POM when the MTD is small (γ = 0.1) and ρ1 = 0.8. The same figure shows
that the proportion of patients that are overdosed using EWOC is uniformly higher relative
to EWOC-POM when the MTD is small. The same trend is observed when γ = 0.5 except
when ρ1 = 0.2. The difference in the proportion of patients being overdosed when γ = 0.7 is
negligible. The last panel of Figure 3 shows that the proportion of patients that are overdosed
given that the previously treated patient exhibited grade 2 toxicity using EWOC is uniformly
higher relative to EWOC-POMwhen γ = 0.1, 0.5 except when ρ1 = 0.2. The difference in these
proportions when γ = 0.7 is negligible. The last two columns of Table 1 show that the percent
of trials with DLT rate of 0.4 or more is 7.5% at the most for EWOC and 6.6% for EWOC-
POM. A more detailed comparison is shown in Figure 4, where side-by-side box plots of



10 Journal of Probability and Statistics

0.2
0.4

γ
=

0.
1

POM
ρ1 = 0.2

EWOC
ρ1 = 0.2

POM
ρ1 = 0.5

EWOC
ρ1 = 0.5

POM
ρ1 = 0.8

EWOC
ρ1 = 0.8

Box plots of proportions of DLTs in each scenario

(a)

0.1
0.3

γ
=

0.
5

POM
ρ1 = 0.2

EWOC
ρ1 = 0.2

POM
ρ1 = 0.5

EWOC
ρ1 = 0.5

POM
ρ1 = 0.8

EWOC
ρ1 = 0.8

(b)

0.1

0.3

γ
=

0.
7

POM
ρ1 = 0.2

EWOC
ρ1 = 0.2

POM
ρ1 = 0.5

EWOC
ρ1 = 0.5

POM
ρ1 = 0.8

EWOC
ρ1 = 0.8

(c)

Figure 4: Box plots for the proportion of DLTs for EWOC-POM and EWOC under the nine scenarios.
Each box plot was constructed from the DLT rates of the 1000 simulated trials. The dashed horizontal line
corresponds to the target probability of DLT θ = 0.33.

the distributions of the proportion of DLTs for EWOC-POM and EWOC under the nine
scenarios are displayed. These results show that EWOC-POMmaintains the safety of the trial
relative to EWOC and is much safer when the true MTD is close to the minimum dose by
reducing the number of patients that are exposed to toxic doses.

Figure 5 shows that the estimatedMTDs using EWOC and EWOC-POM are very close
in general, with the highest difference observed when ρ1 = 0.8. This is reflected by the
estimated bias and RMSE shown in Figure 5. This is expected since EWOC-POM is charac-
terized by a conservative dose escalation when a patient experiences grade 2 toxicity. The
highest absolute value of the bias is 0.04 and is achieved when γ = 0.5, 0.7 and ρ1 = 0.8. This
constitutes 4% of the range of the dose and is practically not significant. The percent of trials
with estimated MTD within 5% of the dose range and 10% of the dose range of the true MTD
γ under the nine scenarios are shown in columns 2–5 of Table 1. These results further confirm
that the precision of the estimate of theMTD is similar between the twomodels, with a higher
precision for EWOC achieved when γ = 0.5 and ρ1 = 0.8. Values other than 5% and 10% of the
dose range were also used, and the conclusions were essentially the same. We conclude that
EWOC-POMmaintains the efficiency of the trial relative to EWOC for all practical purpose.

These simulation results suggest that EWOC-POM is a good alternative design for
cancer phase I clinical trials which takes into account the ethical consideration that dose
escalation in the absence of DLT is mitigated by the occurrence of a grade 2 toxicity.

4.3. Model Robustness

Model robustness with respect to assumption of proportional odds model in (2.2) was
assessed by simulating the toxicity responses from a nonproportional odds model:

P
(
Y ≥ j | x) = F

(
αj + βjx

)
, j = 1, 2. (4.2)
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Figure 5: Summary statistics for trial efficiency for EWOC and EWOC-POM under all scenarios. Each
graph represents a mean value obtained from all patients from all 1000 trials.

The same logistic link function F(w) = 1/(1 + e−w) was used. We considered two differ-
ent models M1 and M2 corresponding to the set of parameters α2 = −3.94, β1 = 22.36, β2 =
32.36 for model M1 and α2 = −1.94, β1 = 22.36, β2 = 12.36 for M2. For each model Mi, i = 1, 2,
we considered three different values for the intercept term α1, α1 = −1.38, 0.00, 1.38 which
correspond to ρ1 = 0.2, 0.5, 0.8. These parameters have been selected so that ρ0 = 0.020 for
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Figure 6: Dose-toxicity relationship under the proportional (EWOC-POM) and nonproportional odds
models (M1 and M2) when the true MTD γ = 0.1. The dashed horizontal line corresponds to the target
probability of DLT θ = 0.33.

model M1, ρ0 = 0.126 for model M2, and the true MTD is γ = 0.1. Figure 6 shows the graphs
of the probabilities of DLT and probability of grade 2 or more toxicity as a function of dose
for the proportional odds model POM and models M1 and M2 when ρ1 = 0.2. For each
scenario, we simulated 1000 trials with n = 30 patients where at each stage of the trial, the
next dose is calculated using the trial design described in 2.1.3 as in Section 4.1 but the toxicity
response is generated using the nonproportional odds model (4.2). The simulation results are
summarized in Table 2. The maximum difference in proportion of patients exhibiting DLT
(averaged across the simulated trials) between model Mi, i = 1, 2 and EWOC-POM is 3%.
Under model M2, the proportion of patients that are overdosed is higher than EWOC-POM,
and this proportion is 13% higher when ρ1 = 0.2.

The percent of trials with DLT rate exceeding 0.4 is less than 15% in all cases. This
percent is highest for model M2; however, this is still relatively small compared to the results
obtained in [42]. The percent of trials with estimated MTD within 10% of the dose range of
the trueMTD is 100% between the threemodels and across all scenarios and very goodwithin
5% of the dose range of the true MTD.

In summary, EWOC-POM seems to be robust to model misspecification when the
true MTD is near the initial dose. On the other hand, the model is sensitive to model
misspecification when the true MTD is high but the safety of the trial is not compromised. We
also conducted similar simulations (results not shown)when the true MTD is γ = 0.5, 0.7. We
found that under all scenarios, the proportion of patients exhibiting DLT is always less than
33% but the bias tends to be higher for high values of ρ1 and γ . This is the case when the prob-
ability of DLT curve increases very slowly as a function of dose which results in a very slow
dose escalation scheme.

5. Discussion

In this paper, we proposed a Bayesian adaptive design for dose-finding studies in cancer
phase I clinical trials. The method addresses the ethical concern regarding dose escalation in
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Table 2: Summary statistics for trial safety and efficiency under model misspecification when the trueMTD
γ = 0.1. Rows 2–6 give the summary statistics based on all patients from all 1000 trials.

Statistics Model ρ1
0.2 0.5 0.8

Proportion of DLTs
EWOC-POM 0.337 0.312 0.299

M1 0.328 0.304 0.289
M2 0.357 0.342 0.331

Proportion overdosed
EWOC-POM 0.274 0.155 0.200

M1 0.240 0.203 0.173
M2 0.404 0.351 0.322

MTD estimate
EWOC-POM 0.093 0.090 0.087

M1 0.094 0.092 0.090
M2 0.095 0.090 0.086

Bias
EWOC-POM −0.007 −0.010 −0.013

M1 −0.006 −0.007 −0.010
M2 −0.005 −0.010 −0.013

Root MSE
EWOC-POM 0.022 0.021 0.023

M1 0.016 0.016 0.017
M2 0.027 0.029 0.031

Percent of trial with DLT rate >40%
EWOC-POM 6.6 3.0 2.9

M1 1.5 1.2 0.8
M2 14.7 11.6 12.6

Percent of trial with estimated MTD within 0.05 of γ
EWOC-POM 98.4 97.5 96.4

M1 99.7 99.5 99.5
M2 91.1 91.2 88.1

Percent of trial with estimated MTD within 0.10 of γ
EWOC-POM 100.0 100.0 100.0

M1 100.0 100.0 100.0
M2 100.0 100.0 100.0

the absence of DLT. Specifically, if the current patient experiences drug-related grade 2
toxicity at the most, then it is ethical not to escalate the dose for the next patient by the same
amount as the one had the current patient experienced a maximum of grade 0 or 1 toxicity.
The method termed EWOC-POM is an extension of EWOC by accommodating an interme-
diate grade 2 toxicity to the model. We used a proportional odds model to describe the dose-
toxicities relationship for simplicity. We proved that if the maximum grade of toxicity
experienced by patient k − 1 within one cycle of therapy is grade 2, then the dose allocated to
patient k is lower than the dose that would have been given to patient k had the maximum
grade of toxicity experienced by patient k−1 been grade 0 or 1. Furthermore, we also showed
that the coherence properties of EWOC are maintained.

We studied design operating characteristics by simulating a large number of trials
under different scenarios of the dose-toxicity relationships. EWOC-POM was compared to
EWOC with respect to the primary goals of cancer phase I trials, safety and efficiency of the
estimate of the MTD. We found that in general, the safety of the trial is not compromised
when we account for an intermediate grade 2 toxicity. In particular, when the unknownMTD
is close to the initial dose, a substantial number of patients are overdosed when using EWOC
relative to EWOC-POM, and if the current patient experiences grade 2 toxicity, then the next
patient is more likely to be overdosed using EWOC compared to EWOC-POM. The loss in
efficiency of the estimate of the MTD by introducing an extra parameter to the model is very
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marginal as was shown by the simulation results of the various scenarios. We also showed
that the proportional odds assumption is robust to model misspecification when the true
MTD is close to the minimum dose. However, the bias of the estimate of theMTD increases as
a function of theMTDundermodelmisspecification. In any case, safety of the trial as assessed
by the number of patients exhibiting DLT and number of patients that are overdosed was
never compromised.

We have shown that Theorem 3.1 holds under the proportional odds assumption using
EWOC scheme with link functions satisfying monotonicity conditions as a function of the
MTD. One can easily prove that a similar ethical constraint stated in Theorem 3.1 can be estab-
lished using the Bayesian CRM originally proposed in O’Quigley et al. [3]. In fact, a more
general theorem can be established for a Bayes estimate using a general convex loss function.
Extensions of EWOC-POM to accommodate patients’ baseline characteristics ([30]) and time
to event DLT for late onset toxicities are being investigated. In conclusion, EWOC-POM is a
good alternative design to EWOC if clinicians expect to see a substantial number of grade 2
toxicities induced by the agent or drug combinations under study.

Appendix

Proof of Theorem 3.1. To simplify notation and presentation of the proof, we assume that
Xmin = 0, ρ0 ≤ ρ1 are fixed, and let us drop the nuisance parameters ρ0 and ρ1 from F1(ρ0, ρ1,
γ ;x), and F2(ρ0, ρ1, γ ;x). Let Lk(γ) = Lk(ρ0, ρ1, γ | Dk), and π(γ) be a proper prior density for
γ . If Yk = 0, Lk(γ) = Lk−1(γ)[1−F1(γ ;xk)], and if Yk = 1, Lk(γ) = Lk−1(γ)[F1(γ ;xk)−F2(γ ;xk)].
Using Bayes’ rule,

∏
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where

A =
∫∫1
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Since γ ≤ γ ′ and (F1 − F2)/(1 − F1) is monotonically decreasing in γ , then [F1(γ ′;xk) −
F2(γ ′;xk)]/[1 − F1(γ ′;xk)] ≤ [F1(γ ;xk) − F2(γ ;xk)]/[1 − F1(γ ;xk)], which implies that [1 −
F1(γ ;xk)][F1(γ ′;xk) − F2(γ ′;xk)] ≤ [F1(γ ;xk) − F2(γ ;xk)][1 − F1(γ ′;xk)]. Hence, Πk(t; 0) ≤
Πk(t; 1), which implies that Π−1

k
(α; 0) ≥ Π−1

k
(α; 1), that is, xk+1 ≥ x′

k+1. This completes the
proof of Theorem 3.1.

Proof of Theorem 3.2. Using the notation in the proof of Theorem 3.1, if Yk = 0, then Lk(γ) =
Lk-1(γ)[1 − F1(γ ;xk)], and if Yk = 2, then Lk(γ) = Lk−1(γ)F2(γ ;xk). Since both F1 and F2 are
monotonically decreasing in γ , then the result of the theorem follows from the proof of
Theorem 1 in Tighiouart and Rogatko [23].

WinBUGS Code

# Assume that the toxicity response Y has 3 categories:

# Y = 1 if patient has grade 0 or 1 toxicity

# Y = 2 if patient has a grade 2 toxicity

# Y = 3 if patient has grade 3 or 4 toxicity, that is, DLT

# Dose is standardized between 0 and 1.

model {
for (i in 1 :N) {
# Likelihood

logit(eta[i,1])<- -(logit(rho1)) − (1/mtd)∗(logit(theta) − logit(rho0))∗X[i]

logit(eta[i,3])<- logit(rho0) + (1/mtd)∗(logit(theta) − logit(rho0))∗X[i]

# rho1 = P(grade 2 or more toxicity at initial dose)

# rho0 = P(DLT or grade 3 or 4 toxicity at initial dose)

# MTD = dose producing DLT in theta fraction of the population

}
for (i in 1 :N) {
p[i,1] <-eta[i,1]

p[i,3]<-eta[i,3]

p[i,2]<-1-(eta[i,1]+eta[i,3])

Y[i]∼dcat(p[i,])
}
# Prior Distributions

rho0 ∼ dunif(0, theta)

rho1 ∼ dunif(rho0, 1)
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mtd ∼ dunif(0,1)

}
# Data

list(Y = c(1, 2, 2, 2, 3, 1, 2, 3, 3, 1, 2, 2, 1, 3),dose =

c(0.1,0.3262,0.3873,0.4390,0.4892,0.3810,0.4298,0.4681,0.3980,

0.3339,0.3650,0.3788,0.3986,0.4308),theta = 0.33333333,N = 14)

# Initial values

list(rho0 = 0.05, rho1 = 0.15, mtd = 0.3).
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