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Complex longitudinal data are commonly analyzed using nonlinearmixed-effects (NLME)models
with a normal distribution. However, a departure fromnormalitymay lead to invalid inference and
unreasonable parameter estimates. Some covariates may be measured with substantial errors, and
the response observations may also be subjected to left-censoring due to a detection limit. Inferen-
tial procedures can be complicated dramatically when such data with asymmetric characteristics,
left censoring, and measurement errors are analyzed. There is relatively little work concerning all
of the three features simultaneously. In this paper, we jointly investigate a skew-t NLME Tobit
model for response (with left censoring) process and a skew-t nonparametric mixed-effects model
for covariate (withmeasurement errors) process under a Bayesian framework. A real data example
is used to illustrate the proposed methods.

1. Introduction

Modeling of longitudinal data is an active area of biostatistics and statistics research that has
received a lot of attention in the recent years. Various statistical modeling and analysis meth-
ods have been suggested in the literature for analyzing such data with complex features (Hig-
gins et al. [1], Liu and Wu [2], Wulfsohn and Tsiatis [3], and Wu [4]). However, there is a
relatively little work done on simultaneously accounting for skewness, left censoring due to
a detection limit (for example, a threshold below which viral loads are not quantifiable) and
covariate measurement errors, which are inherent features of longitudinal data. This paper
proposes a joint skew-t NLME Tobit model for a response and measurement errors in co-
variate by simultaneously accounting for left-censoring and skewness. Thus, the proposed
model addresses three important features of longitudinal data such as viral load in an AIDS
study.
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Firstly, our model relaxes the normality assumption for random errors and random-
effects by using flexible skew-normal and skew-t distributions. It has been documented in the
literature that the normality assumption lacks robustness against extreme values, obscures
important features of between- and within-subject variations, and leads to biased or mislead-
ing results (Huang and Dagne [5], Verbeke and Lesaffre [6], and Sahu et al. [7]). Specially,
nonnormal characteristics such as skewness with heavy tails appear very often in virologic
responses. For example, Figures 1(a) and 1(b) displays the histograms of repeated viral load
(in ln scale) and CD4 cell count measurements for 44 subjects enrolled in an AIDS clinical
study (Acosta et al. [8]). For this data set, which is analyzed in this paper, both viral load
(even after ln-transformation) and CD4 cell count are highly skewed, and thus a normality
assumption may be violated.

Secondly, an outcome of a longitudinal study may be subject to a detection limit be-
cause of low sensitivity of current standard assays (Perelson et al. [9]). For example, for a
longitudinal AIDS study, designed to collect data on every individual at each assessment, the
response (viral load) measurements may be subject to left censoring due to a detection limit
of quantification. Figures 1(c) and 1(d) shows the measurements of viral load and CD4 cell
count for three randomly selected patients in the study.We can see that for some patients their
viral loads are below detection limit (BDL), which is 50 (in copies/mL). When observations
fall below the BDL, a common practice is to impute the censored values by either the detection
limit or half of the detection limit (Wu [4], Ding and Wu [10], and Davidian and Giltinan
[11]). Such ad hoc methods may produce biased results (Hughes [12]). In this paper, instead
of arbitrarily imputing the observations below detection limit, we impute them using fully
Bayesian predictive distributions based on a Tobit model (Tobin [13]), which is discussed in
Section 2.

Thirdly, another feature of a longitudinal data set is the existence of time-varying
covariates which suffer from random measurement errors. This is usually the case in a longi-
tudinal AIDS study where CD4 cell counts are often measured with substantial measurement
errors. Thus, any statistical inference without considering measurement errors in covariates
may result in biased results (Liu and Wu [2], Wu [4], and Huang and Dagne [5]). In this
paper, we jointly model measurement errors in covariate process along with the response
process. The distributional assumption for the covariate model is a skew-t distribution which
is relatively robust against potential extreme values and heavy tails.

Our researchwasmotivated by the AIDS clinical trial considered byAcosta et al. [8]. In
this study, 44 HIV-1-infected patients were treated with a potent artiretroviral regimen. RNA
viral load was measured in copies/mL at study days 0, 7, 14, 28, 56, 84, 112, 140, and 168
of followup. Covariates such as CD4 cell counts were also measured throughout the study
on similar scheme. In this study, the viral load detectable limit is 50 copies/mL, and there
are 107 out of 357 (30 percent) of all viral load measurements that are below the detection
limit. Previous studies show that change in viral load may be associated with change in
CD4 cell counts. It is important to study the patterns of virological response to treatment in
order tomake clinical decisions and provide individualized treatments. Since viral loadmeas-
urements appear to be skewed and censored, and in addition CD4 cell counts are typically
measured with substantial errors and skewness, statistical analyses must take all these factors
into account.

For longitudinal data, it is not clear how asymmetric nature, left censoring due to BDL,
and covariate measurement error may interact and simultaneously influence inferential pro-
cedures. It is the objective of this paper to investigate the effects on inference when
all of the three typical features exist in the longitudinal data. To achieve our objective,
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Figure 1: The histograms (a,b) of viral load measured from RNA levels (in natural ln scale) and
standardized CD4 cell count in plasma for 44 patients in an AIDS clinical trial study. Profiles (c,d) of
viral load (response) in ln scale and CD4 cell count (covariate) for three randomly selected patients. The
vertical and horizontal lines in (a) and (c) are below the detectable level of viral load (3.91 = ln(50)).

we employ a fairly general framework to accommodate a large class of problemswith various
features. Accordingly, we explore a flexible class of skew-elliptical (SE) distributions (see
the Appendix for details) which include skew-normal (SN) and skew-t (ST) distributions as
special cases for accounting skewness and heavy tails of longitudinal data, extend the Tobit
model (Tobin [13]) to treat all left-censored observations as missing values, and investigate
nonparametric mixed effects model for covariate measured with error under the framework
of joint models. Because the SN distribution is a special case of the ST distribution when
the degrees of freedom approach infinity, for the completeness and convenient presentation,
we chose ST distributions to develop NLME Tobit joint models (i.e., the ST distribution is
assumed for within-subject random errors and between-subject random effects). The skew-
ness in both within-subject random errors and random-effects distributions may jointly con-
tribute to the skewness of response and covariate variables in a longitudinal study, which
makes the assumption of normality unrealistic.

The remaining of the paper is structured as follows. In Section 2, we present the joint
models with ST distribution and associated Bayesian modeling approach in general forms
so that they can be applicable to other scientific fields. In Section 3, we discuss specific
joint models for HIV response process with left censoring and CD4 covariate process with
measurement error that are used to illustrate the proposed methods using the data set
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described above and report the analysis results. Finally, the paper concludes with some dis-
cussions in Section 4.

2. Joint Models and Bayesian Inferential Methods

2.1. Skew-t Mixed-Effects Tobit Joint Models

In this section, we present the models andmethods in general forms so that our methods may
be applicable to other areas of research. An approach we present in this paper treats censored
values as realizations of a latent (unobserved) continuous variable that has been left-cen-
sored. This idea was popularized by Tobin ([13]) and the resulting model is commonly re-
ferred to as the Tobit model. Denote the number of subjects by n and the number of meas-
urements on the ith subject by ni. Let yij = yi(tij) and zij = zi(tij) be observed response and
covariate for individual i at time tij (i = 1, 2, . . . , n; j = 1, 2, . . . , ni) and qij denote the latent
response variable that would be measured if the assay did not have a lower detectible limit ρ.
In our case the Tobit model can be formulated as

yij =

⎧
⎨

⎩

qij if qij > ρ,

missing if qij ≤ ρ,
(2.1)

where ρ is a nonstochastic BDL, which in our example below is equivalent to ln(50). Note
that the value of yij is missing when it is less than or equal to ρ.

For the response process with left-censoring, we consider the following NLME model
with an ST distribution which incorporates possibly mismeasured time-varying covariates

yij = g
(
tij , xij ,βij

)
+ eij , ei iid ∼ STni,νe

(
0, σ2Ini ,Δ(δei)

)
,

βij = d
(
z∗ij ,β,bi

)
, bi iid ∼ STs3,νb(0, Σb,Δ(δb)),

(2.2)

where xij is an s1×1 design vector, g(·) is a linear or nonlinear known function, d(·) is an s1-di-
mensional vector-valued linear function, βij is an s1 × 1 individual-specific time-dependent
parameter vector, β is an s2 × 1 population parameter vector (s2 ≥ s1); in the model (2.2), we
assume that the individual-specific parameters βij depend on the true (but unobservable)
covariate z∗ij rather than the observed covariate zij , which may be measured with errors, and
we discuss a covariate model (2.3) below.

It is noticed that we assume that an s3 × 1 vector of random effects bi = (bi1, . . . , bis3)
T

(s3 ≤ s1) follows a multivariate ST distribution with the unrestricted covariance matrix Σb,
the s3 × s3 skewness diagonal matrix Δ(δb) = diag(δb1 , . . . , δ

b
s3), and the degree of freedom

νb; the model random error ei = (ei1, . . . , eini)
T follows a multivariate ST distribution with the

unknown scale parameter σ2, the degree of freedom νe, and the ni × ni skewness diagonal
matrix Δ(δei) = diag(δei1 , . . . , δeini ), where the ni × 1 skewness parameter vector δei =
(δei1 , . . . , δeini )

T . In particular, if δei1 = · · · = δeini =̂ δe, then Δ(δei) = δeIni and δei = δe1ni with
1ni = (1, . . . , 1)T ; this indicates that we are interested in skewness of overall data set and is the
case to be used in real data analysis in Section 3.

Covariate models have been investigated extensively in the literature (Higgins et al.
[1], Liu and Wu [2], Wu [4], and Carroll et al. [14]). However, those models used the
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normality assumption for random measurement errors. As we pointed out earlier, this as-
sumption lacks robustness against departures from normality and may also lead to mislead-
ing results. In this paper, we extend the covariate models by assuming an ST distribution for
the random errors. We adopt a flexible empirical nonparametric mixed-effects model with an
ST to quantify the covariate process as follows:

zij = w
(
tij
)
+ hi
(
tij
)
+ εij
(
≡ z∗ij + εij

)
εi iid ∼ STni,νε

(
0, τ2Ini ,Δ(δεi)

)
, (2.3)

wherew(tij) and hi(tij) are unknown nonparametric smooth fixed-effects and random effects
functions, respectively, and εi = (εi1, . . . , εini)

T follows a multivariate ST distribution with
degrees of freedom νε, the unknown scale parameter τ2, and the ni × ni skewness diagonal
matrixΔ(δεi) = diag(δεi1 , . . . , δεini )with ni×1 skewness parameter vector δεi = (δεi1 , . . . , δεini )

T .
In particular, if δεi1 = · · · = δεini =̂ δε, then Δ(δεi) = δεIni and δεi = δε1ni . z

∗
ij = w(tij) + hi(tij)

are the true but unobservable covariate values at time tij . The fixed smooth function w(t)
represents population average of the covariate process, while the random smooth function
hi(t) is introduced to incorporate the large interindividual variation in the covariate process.
We assume that hi(t) is the realization of a zero-mean stochastic process.

Nonparametric mixed-effects model (2.3) is more flexible than parametric mixed-
effects models. To fit model (2.3), we apply a regression spline method tow(t) and hi(t). The
working principle is briefly described as follows and more details can be found in the
literature (Davidian and Giltinan [11] and Wu and Zhang [15]). The main idea of regression
spline is to approximatew(t) and hi(t) by using a linear combination of spline basis functions.
For instance, w(t) and hi(t) can be approximated by a linear combination of basis functions
Ψp(t) = {ψ0(t), ψ1(t), ..., ψp−1(t)}T and Φq(t) = {φ0(t), φ1(t), ..., φq−1(t)}T , respectively. That is,

w(t) ≈ wp(t) =
p−1∑

l=0

αlψl(t) = Ψp(t)Tα, hi(t) ≈ hiq(t) =
q−1∑

l=0

ailφl(t) = Φq(t)Tai, (2.4)

where α = (α0, . . . , αp−1)
T is a p × 1 vector of fixed-effects and ai = (ai0, . . . , ai,q−1)

T (q ≤ p)
is a q × 1 vector of random-effects with ai iid ∼ STq,νa(0,Σa,Δ(δa)) with the unrestricted
covariancematrixΣa, the skewness diagonal matrixΔ(δa) = diag(δa1 , . . . , δ

a
q ), and the degrees

of freedom νa. Based on the assumption of hi(t), we can regard ai as iid realizations of
a zero-mean random vector. For our model, we consider natural cubic spline bases with
the percentile-based knots. To select an optimal degree of regression spline and numbers of
knots, that is, optimal sizes of p and q, the Akaike information criterion (AIC) or the Bayesian
information criterion (BIC) is often applied (Davidian and Giltinan [11] and Wu and Zhang
[15]). Replacingw(t) and hi(t) by their approximationswp(t) and hiq(t), we can approximate
model (2.3) by the following linear mixed-effects (LME) model:

zij ≈ Ψp

(
tij
)T
α +Φq

(
tij
)Tai + εij ≈ z∗ij + εij , εi iid ∼ STni,νε

(
0, τ2Ini ,Δ(δεi)

)
. (2.5)

2.2. Simultaneous Bayesian Inference

In a longitudinal study, such as the AIDS study described previously, the longitudinal re-
sponse and covariate processes are usually connected physically or biologically. Statistical
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inference based on the commonly used two-step method may be undesirable since it fails to
take the covariate estimation into account (Higgins et al. [1]). Although a simultaneous infer-
ence method based on a joint likelihood for the covariate and response data may be favorable,
the computation associated with the joint likelihood inference in joint models of longitudinal
data can be extremely intensive and may lead to convergence problems and in some cases
it can even be computationally infeasible (Liu and Wu [2] and Wu [4]). Here we propose a
simultaneous Bayesian inference method based on MCMC procedure for longitudinal data
of response with left censoring and covariate with measurement error. The Bayesian joint
modeling approach may pave a way to alleviate the computational burdens and to overcome
convergence problems.

We assume that ai, bi, εi, and ei are mutually independent of each other. Following
Sahu et al. [7] and properties of ST distribution, in order to specify the models (2.5) and (2.2)
for MCMC computation, it can be shown that by introducing four random variable vectors
wei = (wei1 , . . . , weini

)T ,wεi = (wεi1 , . . . , wεini
)T ,wbi = (wbi1 , . . . , wbis3

)T and wai = (wai1 , . . . ,

waiq)
T and four random variables ξei , ξεi , ξbi , and ξai (i = 1, . . . , n) based on the stochastic rep-

resentation for the ST distribution (see the Appendix for details), zij and yij can be hierarch-
ically formulated as

yij | bi, weij , ξei ; β, σ
2, δeij ∼N

(
g
(
tij , xij ,d

(
z∗ij ,β,bi

))
+ δeijweij , ξ

−1
ei σ

2
)
,

weij ∼N(0, 1)I
(
weij > 0

)
, ξei | νe ∼ G

(νe
2
,
νe
2

)
,

bi | wbi , ξbi ;Σb,δb ∼Ns3

(
Δ(δb)wbi , ξ

−1
bi
Σb
)
,

wbi ∼Ns3(0, Is3)I(wbi > 0), ξbi | νb ∼ G
(νb
2
,
νb
2

)
,

zij | ai, wεij , ξεi ;α, τ
2, δεij ∼N

(
z∗ij + δεijwεij , ξ

−1
εi τ

2
)
,

wεij ∼N(0, 1)I
(
wεij > 0

)
, ξεi | νε ∼ G

(νε
2
,
νε
2

)
,

ai | wai , ξai ;Σa,δa ∼Nq

(
Δ(δa)wai , ξ

−1
ai Σa

)
,

wai ∼Nq

(
0, Iq
)
I(wai > 0), ξai | νa ∼ G

(νa
2
,
νa
2

)
,

(2.6)

where G(·) is a gamma distribution, I(weij > 0) is an indicator function, and weij ∼ N(0, 1)
truncated in the space weij > 0 (standard half-normal distribution); wεij ,wai , and wbi can be
defined similarly. z∗ij is viewed as the true but unobservable covariate values at time tij . It is
noted that, as discussed in the Appendix, the hierarchical model with the ST distribution (2.6)
can be reduced to the following three special cases: (i) a model with skew-normal (SN) dis-
tribution as νe, νε, νb, νa → ∞ and ξei , ξεi , ξbi and ξai → 1 with probability 1 (i.e., the four cor-
responding distributional specifications are omitted in (2.6)); (ii) amodel with standard t-dis-
tribution as δεij = δeij = 0, δb = δa = 0, and thus the four distributional specifications of wεij ,
weij , wai , and wbi are omitted in (2.6); (iii) a model with standard normal distribution as
νε, νe, νa, νb → ∞ and δεij = δeij = 0 and δb = δa = 0; in this case, the eight corresponding
distributional specifications are omitted in (2.6).
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Let θ = {α,β, τ2, σ2,Σa,Σb, νε, νe, νa, νb,δa,δb,δεi ,δei ; i = 1, . . . , n} be the collection of
unknown parameters in models (2.2) and (2.5). To complete the Bayesian formulation, we
need to specify prior distributions for unknown parameters in the models (2.2) and (2.5) as
follows:

α ∼Np(α0,Λ1), τ2 ∼ IG(ω1, ω2), Σa ∼ IW
(
Ω1, ρ1

)
, δεi ∼Nni(0,Γ1),

β ∼Ns2

(
β0,Λ2

)
, σ2 ∼ IG(ω3, ω4), Σb ∼ IW

(
Ω2, ρ2

)
, δei ∼Nni(0,Γ2),

νε ∼ G(νε0, νε1)I(νε > 3), νe ∼ G(νe0, νe1)I(νe > 3), νa ∼ G(νa0, νa1)I(νa > 3),

νb ∼ G(νb0, νb1)I(νb > 3), δa ∼Nq(0,Γ3), δb ∼Ns3(0,Γ4),

(2.7)

where the mutually independent Inverse Gamma (IG), Normal (N), Gamma (G), and In-
verse Wishart (IW) prior distributions are chosen to facilitate computations (Pinheiro and
Bates [16]). The hyperparameter matrices Λ1,Λ2,Ω1,Ω2,Γ1,Γ2,Γ3, and Γ4 can be assumed to
be diagonal for convenient implementation.

Let f(· | ·), F(· | ·) and π(·) denote a probability density function (pdf), cumulative
density function (cdf), and prior density function, respectively. Conditional on the ran-
dom variables and some unknown parameters, a detectable measurement yij contributes
f(yij | bi, weij , uei), whereas a nondetectable measurement contributes F(ρ | bi, weij , uei) ≡
P(yij < ρ | bi, weij , uei) in the likelihood. We assume that α,β, τ2, σ2,Σa,Σb, νε, νe,δεi ,
δei(i = 1, . . . , n) are independent of each other, that is, π(θ) = π(α)π(β)π(τ2)π(σ2)π(Σa)
π(Σb)π(νε)π(νe)π(νa)π(νb)π(δa)π(δb)

∏
iπ(δεi)π(δei). After we specify the models for the

observed data and the prior distributions for the unknown model parameters, we can make
statistical inference for the parameters based on their posterior distributions under the Baye-
sian framework. Letting yi = (yi1, . . . , yini)

T and zi = (zi1, . . . , zini)
T , the joint posterior density

of θ based on the observed data can be given by

f(θ | data) ∝
{

n∏

i=1

∫ ∫

LyiLziLaiLbidaidbi

}

π(θ), (2.8)

where Lyi =
∏ni

j=1f(yij | bi, weij , ξei)
1−cij F(ρ | bi, weij , ξei)

cij f(weij | weij > 0)f(ξei) is the likeli-
hood for the observed response data, cij is the censoring indicator such that yij is observed if
cij = 0, and yij is left-censored if cij = 1, that is, yij = qij if cij = 0, and yij is treated as missing
if cij = 1, and Lzi =

∏ni
j=1f(zij | ai, wεij , ξεi)f(wεij | wεij > 0)f(ξεi) is the likelihood for the

observed covariate data {zi, i = 1, . . . , n}, Lbi = f(bi | wbi , ξbi)f(wbi | wbi > 0)f(ξbi), and
Lai = f(ai | wai , ξai)f(wai | wai > 0)f(ξai).

In general, the integrals in (2.8) are of high dimension and do not have closed form
solutions. Therefore, it is prohibitive to directly calculate the posterior distribution of θ based
on the observed data. As an alternative, MCMC procedures can be used to sample based on
(2.8) using the Gibbs sampler along with the Metropolis-Hasting (M-H) algorithm. An im-
portant advantage of the above representations based on the hierarchical models (2.6) and
(2.7) is that they can be very easily implemented using the freely availableWinBUGS software
(Lunn et al. [17]) and that the computational effort is equivalent to the one necessary to fit the
normal version of themodel. Note that when usingWinBUGS to implement ourmodeling ap-
proach, it is not necessary to explicitly specify the full conditional distributions. Thus we omit
those here to save space.
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3. Data Analysis

3.1. Specification of Models

We now analyze the data set described in Section 1 based on the proposed method. Among
the 44 eligible patients, the number of viral load measurements for each patient varies from
4 to 9 measurements. As is evident from Figures 1(c) and 1(d), the interpatient variations in
viral load appear to be large and these variations appear to change over time. Previous studies
suggest that the interpatient variation in viral load may be partially explained by time-vary-
ing CD4 cell count (Wu [4] and Huang et al. [18]).

Models for covariate processes are needed in order to incorporate measurement errors
in covariates. CD4 cell counts often have nonnegligible measurement errors, and ignoring
these errors can lead to severely misleading results in a statistical inference (Carroll et al.
[14]). In A5055 study, roughly 10 per cent of the CD4 measurement times are inconsistent
with the viral load measurement times. Consequently, CD4 measurements may be missed
at viral load measurement times mainly due to a different CD4 measurement scheme as
designed in the study (e.g., CD4 measurements were missed at day 7 as displayed in
Figures 1(c) and 1(d)). There seem to be no particular patterns for the missingness. Thus
we assume that the missing data in CD4 are missing at random (MAR) in the sense of Rubin
[19], so that the missing data mechanism can be ignored in the analysis. With CD4 measures
collected over time from the AIDS study, we may model the CD4 process to partially address
the measurement errors (Wu [4]). However, the CD4 trajectories are often complicated, and
there is no well-established model for the CD4 process. We, thus, model the CD4 process
empirically using a nonparametric mixed-effects model, which is flexible and works well
for complex longitudinal data. We use linear combinations of natural cubic splines with
percentile-based knots to approximate w(t) and hi(t). Following the study in (Liu and Wu
[2]), we set ψ0(t) = φ0(t) = 1 and take the same natural cubic splines in the approximations
(2.4) with q ≤ p (in order to limit the dimension of random-effects). The values of p and q
are determined based on the AIC/BIC criteria. The AIC/BIC values are evaluated for various
models with (p, q) = {(1, 1), (2, 1), (2, 2), (3, 1), (3, 2), (3, 3)} which was found that the model
with (p, q) = (3, 3) has the smallest AIC/BIC values being 703.6/744.4. We thus adopted the
following ST nonparametric mixed-effects CD4 covariate model:

zij = (α0 + ai0) + (α1 + ai1)ψ1
(
tij
)
+ (α2 + ai2)ψ2

(
tij
)
+ εij
(
≡ z∗ij + εij

)
, (3.1)

where zij is the observed CD4 value at time tij , ψ1(·) and ψ2(·) are two basis functions given in
Section 2.1 and taking the same natural cubic splines for φ(·), α = (α0, α1, α2)

T is a vector of
population parameters (fixed-effects), ai = (ai0, ai1, ai2)

T is a vector of random-effects, and
εi = (εi1, . . . , εini)

T ∼ STni,νε(0, τ
2Ini , δεIni). In addition, in order to avoid too small or large

estimates which may be unstable, we standardize the time-varying covariate CD4 cell counts
(each CD4 value is subtracted by mean 375.46 and divided by standard deviation 228.57) and
rescale the original time (in days) so that the time scale is between 0 and 1.

For the initial stage of viral decay after treatment, a biologically reasonable viral load
model can be formulated by the uniexponential form (Ho et al. [20]), V (t) = V (0) exp(−λt),
where V (t) is the total virus at time t and λ is the rate of change in viral load. To model the
complete viral load trajectory, one possible extension of the model given above is to allow λ
to vary over time. A simple determinant for time-varying λ is the linear function λ(t) = a+bt.
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For HIV viral dynamic models, it is typical to take ln-transformation of the viral load in order
to stabilize the variance and to speed up estimation algorithm (Ding and Wu [10]). After
ln-transformation of V (t), substituting λ by the linear function λ(t) = a + bt, we obtain the
following quadratic linear mixed-effects model:

yij = βi0 + βij1tij + βij2t2ij + eij , (3.2)

where yij = ln(Vi(tij)), parameter βi0 represents the initial viral load in ln scale, and pa-
rameters βij1 and βij2 incorporate change in viral decay rate over time, with λij ≡ −(βij1 +
βij2tij) being the time-varying exponential decay rate. ei = (ei1, . . . , eini)

T ∼ STni,νe(0, σ
2Ini ,

δeIni); βij = (βij0, βij1, βij2)
T is a vector of individual parameters for the ith subject at time tij .

Since CD4 cell counts are measured with errors, we assume that the individual-specific
and time-varying parameters βij are related to the summary of true CD4 values z∗ij which
may be interpreted as the “regularized” CD4 covariate value. As discussed by Wu [21], to
determine whether CD4 values influence the dynamic parameters βij , AIC/BIC criteria are
used again as guidance (Pinheiro and Bates [16]) to find the following model

βi0 = β1 + bi1, βij1 = β2 + β3z∗ij + bi2, βij2 = β4 + β5z∗ij + bi3, (3.3)

where bi = (bi1, . . . , bi3)
T is individual random-effect, and β = (β1, β2, . . . , β5)

T is a vector of
population parameters. The model (3.3) indicates that the current (regularized) CD4 values
z∗ij rather than the past (observed) CD4 values zij are most predictive of the change in viral
load at time tij . One possible explanation is that, since CD4measurements for each individual
are often sparse, the current CD4 value may be the best summary of immediate past CD4
values, while the early CD4 values may not be very predictive of the current change in viral
load.

3.2. Model Implementation

In this section, we analyze the AIDS data set described in Section 1 to illustrate the proposed
joint modeling method (denoted by JM) based on the joint models (3.2) in conjunction with
the covariate model (3.1) and the corresponding specifications of prior distributions. As
shown in Figures 1(a) and 1(b), the histograms of viral load in ln scale and CD4 cell count
clearly indicate their asymmetric nature and it seems logical to fit the joint model with a skew
distribution to the data set. Along with this consideration, the following statistical models
with different distributions of both model errors and random-effects for both the response
model (3.2) and the covariate model (3.1) are employed to compare their performance.

(i) SN Model: ei, εi, bi, and ai follow an SN-distribution.

(ii) ST Model: ei, εi, bi, and ai follow an ST-distribution.

(iii) NModel: ei, εi, bi, and ai follow a normal (N) distribution.

We investigate the following three scenarios. First, since a normal distribution is a spe-
cial case of an SN distribution when skewness parameter is zero, while the ST distribution
reduces to the SN distributionwhen the degree of freedom approaches infinity, we investigate
how an asymmetric (SN or ST) distribution contributes to modeling results and parameter
estimation in comparison with a symmetric (normal) distribution. Second, we estimate the
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model parameters by using the “naive” method (denoted by NV), which ignores meas-
urement errors in CD4, and missing responses are imputed by the half (i.e., ln(25)) of the
BDL. That is, the “naive” method only uses the observed CD4 values zij rather than true
(unobservable) CD4 values z∗ij in the response model (3.2) and the missing data in the Tobit
model (2.1) is imputed by ln(25). We use it as a comparison to the JM proposed in Section 2.
This comparison attempts to investigate how the measurement errors in CD4 and missing
data in viral load together contribute to modeling results. Third, when covariates are meas-
ured with errors, a common approach is the so-called two-step (TS) method (Higgins et al.
[1]): the first step estimates the “true” covariate values based on the covariate model (3.1); at
the second step the covariate in the response model (2.6) is substituted by the estimate from
the first step. Thus we use the two-step (TS) method to assess the performance of the JM
method.

The progress in the Bayesian posterior computation due to MCMC procedures has
made it possible to fit increasingly complex statistical models (Lunn et al. [17] and Huang
et al. [18]). To choose the best model among candidate models, it has become more important
to develop efficient model selection criteria. A recent publication by Spiegelhalter et al. [22]
suggested a generalization of AIC called deviance information criterion (DIC). Since the
structure of DIC allows for an automatic computation in WinBUGS, we use DIC to compare
the models in this paper. As with other model selection criteria, we caution that DIC is not
intended for identification of the “correct” model, but rather merely as a method of com-
paring a collection of alternative formulations. In our models with different distribution
specifications for model errors, DIC can be used to find out how assumption of a skew-
normal distribution contributes to virologic response in comparison with that of a normal
distribution and how the proposed joint modeling approach influences parameter estimation
compared with the “naive” method and imputation method.

To carry out the Bayesian inference, we need to specify the values of the hyperparame-
ters in the prior distributions. In the Bayesian approach, we only need to specify the priors at
the population level. The values of the hyperparameters were mostly chosen from previous
studies in the literature (Liu and Wu [2], Huang and Dagne [5], Sahu et al. [7], Wu [21],
and among others). We take weakly informative prior distribution for the parameters in the
models. In particular, (i) fixed-effects were taken to be independent normal distribution
N(0, 100) for each component of the population parameter vectors α and β. (ii) For the
scale parameters τ2 and σ2, we assume a limiting noninformative inverse gamma prior dis-
tribution, IG(0.01, 0.01) so that the distribution has mean 1 and variance 100. (iii) The priors
for the variance-covariance matrices of the random-effects Σa and Σb are taken to be inverse
Wishart distributions IW(Ω1, ρ1) and IW(Ω2, ρ2) with covariance matrices Ω1 = Ω2 =
diag(0.01, 0.01, 0.01) and degrees of freedom ρ1 = ρ2 = 5, respectively. (iv) The degrees of
freedom parameters νε, νe, νa, and νb follow a truncated gamma distribution with two hyper-
parameter values being 1 and 0.1, respectively. (v) For each of the skewness parameters δe,
δε, δak , and δ

b
k (k = 1, 2, 3), we choose independent normal distribution N(0, 100), where we

assume that δei = δe1ni and δεi = δε1ni to indicate that we are interested in skewness of overall
viral load data and overall CD4 cell count data. The MCMC sampler was implemented using
WinBUGS software, and the program codes are available from authors on request. The con-
vergence of MCMC implementation was assessed using standard tools (such as trace plots
which are not shown here to save space) within WinBUGS, and convergence was achieved
after initial 50,000 burn-in iterations. After convergence diagnostics was done, one long chain
of 200,000 iterations, retaining every 20th, was run to obtain 10,000 samples for Bayesian in-
ference. Next, we report analysis results of the three scenarios proposed above.
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3.3. Comparison of Joint Modeling Results

The population posterior mean (PM), the corresponding standard deviation (SD), and 95%
credible interval for fixed-effects parameters based on the three models (SN, ST, and N) for
JMmethod are presented in the upper part of Table 1. The significant findings are presented as
follows. (i) For the responsemodel (3.2), where themost substantively interesting parameters
are (β2, β3, β4, β5), the estimates of β2 and β4, the linear coefficient and quadratic coefficient of
time, respectively, under the three models, are significant since the 95% credible intervals do
not contain zero. Among the coefficients of the true CD4 covariate (β3, β5) in model (3.3), the
posterior means of β5 are significantly different from zero for all the three models under JM
method. Moreover, the posterior mean values for β5 are quite different between models SN
(−4.76), ST (−6.31), and N (−6.26), implying that the posterior means may be substantially
biased if model distribution ignores skewness. We will see later that SN gives better fit than
either ST orN. In addition, for the scale parameter σ2, the posterior mean value (2.63) inN
model is much larger than that of any other corresponding posterior means in SN and ST
models. (ii) For parameter estimates of the CD4 covariate model (3.1), the posterior means of
intercept α0 and coefficient α1 based on SN and ST models are significant, while the posterior
mean of α2 turns out to be nonsignificant under all the three models. For the scale parameter
τ2 of the covariate model, the posterior mean value (0.13) is the largest underN model. This
is expected since the model based on ordinary normal distribution does not account for skew-
ness and heaviness in tails for the type of data analyzed here.

To assess the goodness-of-fit of the proposed JM method, the diagnosis plots for the
SN, ST, andN models comparing the residuals and the fitted values (Figures 2(a)–2(c)) and
the observed values versus the fitted values (Figures 2(d)–2(f)). The distribution of the re-
siduals for SN model looks tighter than those for either ST model or N model, showing
a better fit. Similar results are observed by looking at the plots in Figures 2(d)–2(f). The plot
for SN model has most of the points close the line showing a strong agreement between
the observed and the fitted values. Clearly, it can be seen from the plots thatN model, which
ignores skewness, does not fit the data verywell as compared to either SNmodel or STmodel.
Note that the horizontal line designates the below detection limit (BDL), which is at ln(50).
The recorded observations less than BDL are not accurate and, therefore, have not been used
in the analysis, but instead they were treated as missing and predicted values are obtained.
These predicted values are plotted against the recorded observations below detection limit
as shown in the lower-row plots. In general, from the model fitting results, both SN and ST
models provide a reasonably good fit to the observed data even though SN model is slightly
better than ST model.

In order to further investigate whether SNmodel under JMmethod can provide better
fit to the data than ST model, the DIC values are obtained and found to be 863.0 for SN
model and 985.6 for ST model. The DIC value for SN model is smaller than that of ST model,
confirming that SN model is better than ST model in fitting the proposed joint model. As
mentioned before, it is hard sometimes to tell which model is “correct” but which one fits
data better. The model which fits the data better may be more appealing in order to describe
the mechanism of HIV infection and CD4 changing process. Thus, based on the DIC criterion,
the results indicate that SNmodel is relatively better than either ST model orN model. These
findings are consistent with those displayed in the goodness-of-fit in Figure 2 indicating that
SN model outperforms both ST model and N model. In summary, our results suggest that
it is very important to assume an SN distribution for the response Tobit model and the CD4
covariate model in order to achieve reliable results, in particular if the data exhibit skewness,
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Table 1: A summary of the estimated posterior mean (PM) of population (fixed-effects) and scale parame-
ters, the corresponding standard deviation (SD) and lower limit (LCI) and upper limit (UCI) of 95% equal-
tail credible interval (CI) as well as DIC values based on the joint modeling (JM), the naive (NV), and the
two-step (TS) methods.

Method Model α0 α1 α2 β1 β2 β3 β4 β5 τ2 σ2 DIC

JM

SN
PM −0.95 0.15 −0.23 5.62 −14.6 −2.34 11.7 −4.76 0.07 0.14

863.0LCI −1.58 0.06 −15.2 4.17 −22.1 −5.14 4.52 −9.92 0.04 0.01
UCI −0.01 0.90 14.8 7.59 −8.14 1.44 21.7 −0.62 0.11 0.64
SD 0.47 0.37 7.63 0.96 3.98 1.65 5.25 2.34 0.02 0.18

ST

PM −0.94 0.34 −0.31 5.84 −12.0 −1.20 8.12 −6.31 0.04 0.21

985.6LCI −1.41 0.18 −14.1 4.15 −16.5 −5.72 2.20 −12.6 0.02 0.01
UCI −0.06 0.88 13.4 8.02 −7.72 2.72 19.2 −1.41 0.05 0.86
SD 0.35 0.26 7.09 1.10 2.22 2.22 4.14 2.77 0.01 0.26

N

PM −0.21 0.45 −2.87 7.74 −15.4 −0.80 13.6 −6.26 0.13 2.63
1242.3LCI −0.46 0.22 −15.9 7.20 −18.3 −4.16 9.97 −11.7 0.11 2.06

UCI 0.04 0.68 9.90 8.29 −12.6 2.53 17.2 −1.43 0.16 3.35
SD 0.13 0.12 6.54 0.28 1.48 1.73 1.85 2.61 0.01 0.33

NV SN

PM — — — 5.03 −11.1 0.58 6.83 −2.10 — 0.10

1083.5LCI — — — 3.82 −13.6 −0.94 4.52 −4.18 — 0.01
UCI — — — 6.59 −8.73 2.08 9.18 0.07 — 0.35
SD — — — 0.75 1.23 0.77 1.19 1.04 — 0.09

TS SN

PM −0.99 0.19 2.71 5.91 −14.4 −1.24 8.47 −5.90 0.09 0.14

1023.8LCI −1.58 −0.43 −12.1 4.12 −22.1 −5.01 1.83 −10.6 0.05 0.01
UCI 0.07 0.90 17.1 7.72 −8.50 2.16 21.2 −0.80 0.14 0.65
SD 0.42 0.36 7.54 1.05 3.88 1.79 5.14 2.52 0.02 0.18

but not heaviness in the tails. Along with these observations, next we provide detailed fitting
results and interpretations based on the SN Model.

3.4. Estimation Results Based on SN Model

For comparison, we used the “naive” (NV) method to estimate the model parameters pre-
sented in the lower part of Table 1 where the raw (observed) CD4 values zij rather than the
true (unobserved) CD4 values z∗ij are substituted in the response model (3.3). It can be seen
that there are important differences in the posteriormeans for the parameters β3 and β5, which
are coefficients of CD4 covariate. These posterior means are β̂3 = 0.58 and β̂5 = −2.10 for the
NV method, and β̂3 = −2.34 and β̂5 = −4.76 for the JM method. The NV method may produce
biased posterior means and may substantially overestimate the covariate CD4 effect. The
estimated standard deviations (SD) for the CD4 effect (β3 and β5) using the JM method are
1.65 and 2.34, which are approximately twice as large as those (0.77 and 1.04) using the NV
method, respectively, probably because the JMmethod incorporates the variation from fitting
the CD4 process. The differences of the NV estimates and the JM estimates suggest that the
estimated parameters may be substantially biased if measurement errors in CD4 covariate are
ignored.We also obtained DIC value of 1083.5 for the NVmethod, while the DIC value for the
JMmethod is 863.0. We can see from the estimated DIC values that the JM approach provides
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Figure 2: The goodness-of-fit. (a–c): Residuals versus fitted values of ln(RNA) under skew-normal (SN),
skew-t (ST), and normal (N) models based on the JM method; the values below detection limit (ln(50))
are not included in the plots since there are no corresponding residuals but only predicted values. (d–f):
Observed values versus fitted values of ln(RNA) under SN, ST, and N models, where the horizontal line
at ln(50) represents the detection limit.
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Table 2:A summary of the estimated posterior mean (PM) of skewness and degree of freedom parameters,
the corresponding standard deviation (SD), and lower limit (LCI) and upper limit (UCI) of 95% equal-tail
credible interval (CI) based on the joint modeling (JM), the naive (NV), and the two-step (TS)methods.

Method Model δε δe δa1 δa2 δa3 δb1 δb2 δb3 νε νe νa νb

JM

SN

PM 0.41 2.34 0.58 0.34 0.26 0.52 −1.81 2.58 — — — —
LCI 0.25 1.93 −0.62 −0.58 −16.1 −1.90 −10.1 −10.7 — — — —
UCI 0.54 2.73 1.41 1.09 17.0 2.31 7.12 11.0 — — — —
SD 0.07 0.20 0.60 0.47 8.57 1.18 5.30 6.93 — — — —

ST

PM 0.05 2.26 0.87 0.04 −0.56 0.32 −4.70 6.45 3.32 10.2 14.0 14.4
LCI −0.14 1.59 −0.35 −0.60 −16.5 −2.23 −10.1 −8.23 3.01 3.07 3.52 3.52
UCI 0.25 2.70 1.54 0.65 14.7 2.37 1.91 12.3 4.18 35.2 41.1 41.9
SD 0.11 0.33 0.50 0.32 8.41 1.31 2.93 4.88 0.32 8.98 10.3 10.3

NV SN

PM — 2.24 — — — 0.80 0.15 5.53 — — — —
LCI — 1.95 — — — −1.05 −1.71 3.62 — — — —
UCI — 2.55 — — — 2.25 2.30 7.74 — — — —
SD — 0.15 — — — 0.92 1.00 1.06 — — — —

TS SN

PM 0.16 2.44 0.89 0.28 3.06 0.04 −0.94 5.18 — — — —
LCI −0.39 2.07 −0.48 −0.58 −11.7 −2.20 −8.53 −12.4 — — — —
UCI 0.51 2.79 1.55 1.04 21.0 2.23 7.49 12.2 — — — —
SD 0.29 0.18 0.50 0.45 8.30 1.31 4.75 6.67 — — — —

a better fit to the data in comparison with the NV method. Thus it is important to take the
measurement errors into account when covariates are measured with errors.

Comparing the JM method against the two-step (TS) method from the lower part of
Table 1, we can see that the TS estimates and the JM estimates are somewhat different. In
particular, there are important differences in the posterior means for the parameters β4 and
β5 which is directly associated CD4 covariate. For the parameter β5, the posterior means are
−4.76 (95% CI = (−9.92,−0.62)) and −5.90 (95% CI = (−10.60,−0.80)) for the JM and TS
methods, respectively. The TS method slightly underestimates the effect of CD4 covariate.

The estimated results based on the JM method for SN model in Table 2 presents the
estimated skewness parameters, and the only significant skewness parameters are those for
the response model errors and CD4 covariate model errors, but not random-effects. These are
δ̂e = 2.34 (95% CI = (1.93, 2.73)) and δ̂ε = 0.41 (95% CI = (0.25, 0.54)) for viral load and CD4
cell count, respectively. They are significantly positive confirming the right-skewed viral load
and CD4 cell count as was depicted in Figure 1. Thus, the results suggest that accounting for
significant skewness, when the data exhibit skewness, provides a better model fit to the data
and gives more accurate estimates to the parameters.

In summary, the results indicate that the SN model under the JM method is a better
suited model for viral loads and CD4 covariate with measurement errors. Looking now at the
estimated population initial stage of viral decay after treatment bases on the JM method, we
get λ̂(t) = − (− 14.6 − 2.34z∗(t) + 11.7t − 4.76z∗(t)t), where z∗(t) is the standardized true
CD4 value at time twhich may be interpreted as the “regularized” covariate value. Thus, the
population viral load process may be approximated by V̂ (t) = exp[5.62 − λ̂(t)t]. Since the
viral decay rate (λ(t)) is significantly associated with the true CD4 values (due to statistically
significant estimate of β5), this suggests that the viral load change V (t) may be significantly
associated with the true CD4 process. Note that, although the true association described
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above may be complicated, the simple approximation considered here may provide a rea-
sonable guidance and suggest a further research.

4. Discussion

Attempts to jointly fit the viral load data and CD4 cell counts with measurement errors are
compromised by left censoring in viral load response due to detection limits. We addressed
this problem using Bayesian nonlinear mixed-effects Tobit models with skew distributions.
The models were fitted based on the assumption that the viral dynamic model (2.2) continues
to hold for those unobserved left-censored viral loads. This assumption may be reasonable
since the dynamic model considered here is a natural extension of a biologically justified
model (Ding and Wu [10]). Even though left censoring effects are the focus of this paper,
right-censoring (ceiling) effects can also be dealt with in very similar ways. It is therefore im-
portant for researchers to pay attention to censoring effects in a longitudinal data analysis,
and Bayesian Tobit models with skew distributions make best use of both censored and un-
censored data information.

Our results suggest that both ST (skew-t) and SN (skew-normal)models show superi-
ority to theN (normal)model. Our results also indicate that the JMmethod outperformed the
NV and TS methods in the sense that it produces more accurate parameter estimates. The JM
method is quite general and so can be applied to other application areas, allowing accurate
inferences of parameters while adjusting for skewness, left-censoring, and measurement er-
rors. In short, skew distributions show potentials to gain efficiency and accuracy in estimating
certain parameters when the normality assumption does not hold in the data.

The proposed NLME Tobit joint model with skew distributions can be easily fitted
using MCMC procedure by using the WinBUGS package that is available publicly and has
a computational cost similar to the normal version of the model due to the features of
its hierarchically stochastic representations. Implementation via MCMC makes it straight-
forward to compare the proposed models and methods with various scenarios for real data
analysis in comparison with symmetric distributions and asymmetric distributions for model
errors. This makes our approach quite powerful and also accessible to practicing statisticians
in the fields. In order to examine the sensitivity of parameter estimates to the prior distribu-
tions and initial values, we also conducted a limited sensitivity analysis using different values
of hyperparameters of prior distributions and different initial values (data not shown). The
results of the sensitivity analysis showed that the estimated dynamic parameters were not
sensitive to changes of both priors and initial values. Thus, the final results are reasonable and
robust, and the conclusions of our analysis remain unchanged (see Huang et al. [18] for more
details).

The methods of this paper may be extended to accommodate various subpopulations
of patients whose viral decay trajectories after treatment may differ. In addition, the purpose
of this paper is to demonstrate the proposed models and methods with various scenarios for
real data analysis for comparing asymmetric distributions for model errors to a symmetric
distribution, although a limited simulation study might have been conducted to evaluate our
results from different model specifications and the corresponding methods. However, since
this paper investigated many different scenarios-based models and methods with real data
analysis, the complex natures considered, especially skew distributions involved, will pose
some challenges for such a simulation study which requires additional efforts, and it is be-
yond the purpose of this paper.We are currently investigating these related problems andwill
report the findings in the near future.
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Appendix

A. Multivariate Skew-t and Skew Normal Distributions

Different versions of the multivariate skew-elliptical (SE) distributions have been proposed
and used in the literature (Sahu et al. [7], Azzalini and Capitanio [23], Jara et al. [24], Arel-
lano-Valle et al. [25], and among others). We adopt a class of multivariate SE distributions
proposed by Sahu et al. [7], which is obtained by using transformation and conditioning and
contains multivariate skew-t (ST) and skew-normal (SN) distributions as special cases. A
k-dimensional random vector Y follows a k-variate SE distribution if its probability density
function (pdf) is given by

f
(
y | μ,Σ,Δ(δ);m(k)

ν

)
= 2kf

(
y | μ,A;m(k)

ν

)
P(V > 0), (A.1)

where A = Σ + Δ2(δ), μ is a location parameter vector, Σ is a covariance matrix, Δ(δ) is
a skewness diagonal matrix with the skewness parameter vector δ = (δ1, δ2, . . . , δk)

T ; V
follows the elliptical distribution El(Δ(δ)A−1(y−μ), Ik −Δ(δ)A−1Δ(δ);m(k)

ν ) and the density
generator function m

(k)
ν (u) = (Γ(k/2)/πk/2)(mν(u)/

∫∞
0 rk/2−1mν(u)dr), with mν(u) being a

function such that
∫∞
0 rk/2−1mν(u)dr exists. The function mν(u) provides the kernel of the

original elliptical density andmay depend on the parameter ν. We denote this SE distribution
by SE(μ,Σ,Δ(δ);m(k)). Two examples of mν(u), leading to important special cases used
throughout the paper, are mν(u) = exp(−u/2) and mν(u) = (u/ν)−(ν+k)/2, where ν > 0. These
two expressions lead to the multivariate ST and SN distributions, respectively. In the latter
case, ν corresponds to the degree of freedom parameter.

Since the SN distribution is a special case of the ST distribution when the degree of
freedom approaches infinity, for completeness, this section is started by discussing the mul-
tivariate ST distribution that will be used in defining the ST joint models considered in this
paper. For detailed discussions on properties and differences among various versions of ST
and SN distributions, see the references above. We consider a multivariate ST distribution
introduced by Sahu et al. [7], which is suitable for a Bayesian inference since it is built using
conditional method and is defined below.

An k-dimensional random vector Y follows an k-variate ST distribution if its pdf is
given by

f(y | μ,Σ,Δ(δ), ν) = 2ktk,ν(y | μ,A)P(V > 0). (A.2)

We denote the k-variate t distribution with parameters μ,A and degrees of freedom ν by
tk,ν(μ,A) and the corresponding pdf by tk,ν(y | μ,A) henceforth, V follows the t distribution
tk,ν+k. We denote this distribution by STk,ν(μ,Σ,Δ(δ)). In particular, when Σ = σ2Ik and
Δ(δ) = δIk, (A.2) simplifies to

f
(
y | μ, σ2, δ, ν

)
= 2k
(
σ2 + δ2

)−k/2 Γ((ν +m)/2)

Γ(ν/2)(νπ)k/2

{

1 +
(y − μ)T (y − μ)
ν(σ2 + δ2)

}−(ν+k)/2

× Tk,ν+k
⎡

⎣

{
ν +
(
σ2 + δ2

)−1(y − μ)T (y − μ)
ν + k

}−1/2
δ(y − μ)

σ
√
σ2 + δ2

⎤

⎦,

(A.3)
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where Tk,ν+k(·) denotes the cumulative distribution function (cdf) of tk,ν+k(0, Ik). However,
unlike in the SN distribution to be discussed below, the ST density cannot be written as the
product of univariate ST densities. Here Y are dependent but uncorrelated.

The mean and covariance matrix of the ST distribution STk,ν(μ, σ2Ik,Δ(δ)) are given
by

E(Y) = μ +
(
ν

π

)1/2 Γ((ν − 1)/2)
Γ(ν/2)

δ,

cov(Y) =
[
σ2Ik +Δ2(δ)

] ν

ν − 2
− ν

π

[
Γ{(ν − 1)/2}

Γ(ν/2)

]2

Δ2(δ).

(A.4)

According to Lemma 1 of Azzalini and Capitanio [23], if Y follows STk,ν(μ,Σ,Δ(δ)), it
can be represented by

Y = μ + ξ−1/2X, (A.5)

where ξ follows a Gamma distribution Γ(ν/2, ν/2), which is independent of X, and X follows
a k-dimensional skew-normal (SN) distribution, denoted by SNk(0,Σ,Δ(δ)). It follows from
(A.5) that Y | ξ ∼ SNk(μ,Σ/ξ,Δ(δ)). By Proposition 1 of Arellano-Valle et al. [25], the SN
distribution of Y conditional on ξ has a convenient stochastic representation as follows:

Y = μ +Δ(δ)|X0| + ξ−1/2Σ1/2X1, (A.6)

where X0 and X1 are two independent Nk(0, Ik) random vectors. Note that the expression
(A.6) provides a convenience device for random number generation and for implementation
purpose. Letw = |X0|; thenw follows a k-dimensional standard normal distributionNk(0, Im)
truncated in the space w > 0 (i.e., the standard half-normal distribution). Thus, following
Sahu et al. [7], a hierarchical representation of (A.6) is given by

Y | w, ξ ∼Nk

(
μ +Δ(δ)w, ξ−1Σ

)
, w ∼Nk(0, Ik)I(w > 0), ξ ∼ G

(ν

2
,
ν

2

)
, (A.7)

where G(·) is a gamma distribution. Note that the ST distribution presented in (A.7) can be
reduced to the following three special cases: (i) as ν → ∞ and ξ → 1 with probability 1 (i.e.,
the last distributional specification is omitted), then the hierarchical expression (A.7) becomes
an SN distribution SNk(μ,Σ,Δ(δ)); (ii) asΔ(δ) = 0, then the hierarchical expression (A.7) is a
standard multivariate t-distribution; (iii) as ν → ∞, ξ → 1 with probability 1, and Δ(δ) = 0,
then the hierarchical expression (A.7) is a standard multivariate normal distribution.

Specifically, if a k-dimensional random vector Y follows a k-variate SN distribution,
then (A.2)–(A.4) revert to the following forms, respectively:

f(y | μ,Σ,Δ(δ)) = 2k|A|−1/2φk
{
A−1/2(y − μ)

}
P(V > 0), (A.8)

where V ∼ Nk{Δ(δ)A−1(y − μ), Ik − Δ(δ)A−1Δ(δ)}, and φk(·) is the pdf of Nk(0, Ik). We
denote the above distribution by SNk(μ,Σ,Δ(δ)). An appealing feature of (A.8) is that it
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gives independent marginal when Σ = diag(σ2
1 , σ

2
2 , . . . , σ

2
k). The pdf (A.8) thus simplifies to

f(y | μ,Σ,Δ(δ)) =
k∏

i=1

⎡

⎢
⎣

2
√

σ2
i + δ

2
i

φ

⎧
⎪⎨

⎪⎩

yi − μi
√

σ2
i + δ

2
i

⎫
⎪⎬

⎪⎭
Φ

⎧
⎪⎨

⎪⎩

δi
σi

yi − μi
√

σ2
i + δ

2
i

⎫
⎪⎬

⎪⎭

⎤

⎥
⎦, (A.9)

where φ(·) andΦ(·) are the pdf and cdf of the standard normal distribution, respectively. The
mean and covariance matrix are given by E(Y) = μ+

√
2/πδ, cov(Y) = Σ+(1−2/π)Δ(δ)2. It

is noted that when δ = 0, the SN distribution reduces to usual normal distribution.

Acknowledgments

The authors are grateful to the Guest Editor and three reviewers for their insightful comments
and suggestions that led to amarked improvement of the paper. They gratefully acknowledge
A5055 study investigators for allowing them to use the clinical data from their study. This
research was partially supported by NIAID/NIH Grant R03 AI080338 and MSP/NSA Grant
H98230-09-1-0053 to Y. Huang.

References

[1] M. Higgins, M. Davidian, and D. M. Gilitinan, “A two-step approach to measurement error in time-
dependent covariates in nonlinear mixed-effects models, with application to IGF-I pharmacokinet-
ics,” Journal of the American Statistical Association, vol. 92, pp. 436–448, 1997.

[2] W. Liu and L. Wu, “Simultaneous inference for semiparametric nonlinear mixed-effects models with
covariate measurement errors and missing responses,” Biometrics, vol. 63, no. 2, pp. 342–350, 2007.

[3] M. S. Wulfsohn and A. A. Tsiatis, “A joint model for survival and longitudinal data measured with
error,” Biometrics, vol. 53, no. 1, pp. 330–339, 1997.

[4] L. Wu, “A joint model for nonlinear mixed-effects models with censoring and covariants measured
with error, with application to AIDS studies,” Journal of the American Statistical Association, vol. 97, no.
460, pp. 955–964, 2002.

[5] Y. Huang and G. Dagne, “A Bayesian approach to joint mixed-effects models with a skew-normal
distribution and measurement errors in covariates,” Biometrics, vol. 67, no. 1, pp. 260–269, 2011.

[6] G. Verbeke and E. Lesaffre, “A linear mixed-effects model with heterogeneity in the random-effects
population,” Journal of the American Statistical Association, vol. 91, no. 433, pp. 217–221, 1996.

[7] S. K. Sahu, D. K. Dey, and M. D. Branco, “A new class of multivariate skew distributions with appli-
cations to Bayesian regression models,” The Canadian Journal of Statistics, vol. 31, no. 2, pp. 129–150,
2003.

[8] E. P. Acosta, H. Wu, S. M. Hammer et al., “Comparison of two indinavir/ritonavir regimens in the
treatment of HIV-infected individuals,” Journal of Acquired Immune Deficiency Syndromes, vol. 37, no.
3, pp. 1358–1366, 2004.

[9] A. S. Perelson, P. Essunger, Y. Cao et al., “Decay characteristics of HIV-1-infected compartments
during combination therapy,” Nature, vol. 387, no. 6629, pp. 188–191, 1997.

[10] A. A. Ding and H. Wu, “Relationships between antiviral treatment effects and biphasic viral decay
rates in modeling HIV dynamics,” Mathematical Biosciences, vol. 160, no. 1, pp. 63–82, 1999.

[11] M. Davidian and D. M. Giltinan, Nonlinear Models for Repeated Measurement Data, Chapman & Hall,
London, UK, 1995.

[12] J. P. Hughes, “Mixed effects models with censored data with application to HIV RNA levels,” Biomet-
rics, vol. 55, no. 2, pp. 625–629, 1999.

[13] J. Tobin, “Estimation of relationships for limited dependent variables,” Econometrica, vol. 26, pp. 24–
36, 1958.

[14] R. J. Carroll, D. Ruppert, L. A. Stefanski, and C.M. Crainiceanu,Measurement Error in NonlinearModels:
A Modern Perspective, Chapman & Hall, Boca Raton, Fla, USA, 2nd edition, 2006.



Journal of Probability and Statistics 19

[15] H. Wu and J. T. Zhang, “The study of long-term HIV dynamics using semi-parametric non-linear
mixed-effects models,” Statistics in Medicine, vol. 21, no. 23, pp. 3655–3675, 2002.

[16] J. C. Pinheiro and M. D. Bates, Mixed-Effects Models in S and S-PLUS, Springer, New York, NY, USA,
2000.

[17] D. J. Lunn, A. Thomas, N. Best, and D. Spiegelhalter, “WinBUGS—a Bayesian modelling framework:
concepts, structure, and extensibility,” Statistics and Computing, vol. 10, no. 4, pp. 325–337, 2000.

[18] Y. Huang, D. Liu, and H. Wu, “Hierarchical Bayesian methods for estimation of parameters in a lon-
gitudinal HIV dynamic system,” Biometrics, vol. 62, no. 2, pp. 413–423, 2006.

[19] D. B. Rubin, “Inference and missing data,” Biometrika, vol. 63, no. 3, pp. 581–592, 1976.
[20] D. D. Ho, A. U. Neumann, A. S. Perelson,W. Chen, J. M. Leonard, andM.Markowitz, “Rapid turnover

of plasma virions and CD4 lymphocytes in HIV-1 infection,” Nature, vol. 373, no. 6510, pp. 123–126,
1995.

[21] L. Wu, “Simultaneous inference for longitudinal data with detection limits and covariates measured
with errors, with application to AIDS studies,” Statistics in Medicine, vol. 23, no. 11, pp. 1715–1731,
2004.

[22] D. J. Spiegelhalter, N. G. Best, B. P. Carlin, and A. Van der Linde, “Bayesian measures of model com-
plexity and fit,” Journal of the Royal Statistical Society. Series B, vol. 64, no. 4, pp. 583–639, 2002.

[23] A. Azzalini and A. Capitanio, “Distributions generated by perturbation of symmetry with emphasis
on a multivariate skew t-distribution,” Journal of the Royal Statistical Society. Series B, vol. 65, no. 2, pp.
367–389, 2003.

[24] A. Jara, F. Quintana, and E. San Martı́n, “Linear mixed models with skew-elliptical distributions:
a Bayesian approach,” Computational Statistics & Data Analysis, vol. 52, no. 11, pp. 5033–5045, 2008.

[25] R. B. Arellano-Valle, H. Bolfarine, and V. H. Lachos, “Bayesian inference for skew-normal linearmixed
models,” Journal of Applied Statistics, vol. 34, no. 5-6, pp. 663–682, 2007.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


