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This paper presents a Bayesian analysis of bivariate ordered probit regression model with excess
of zeros. Specifically, in the context of joint modeling of two ordered outcomes, we develop zero-
inflated bivariate ordered probit model and carry out estimation usingMarkov ChainMonte Carlo
techniques. Using household tobacco survey data with substantial proportion of zeros, we analyze
the socioeconomic determinants of individual problem of smoking and chewing tobacco. In our
illustration, we find strong evidence that accounting for excess zeros provides good fit to the data.
The example shows that the use of a model that ignores zero-inflation masks differential effects of
covariates on nonusers and users.

1. Introduction

This paper is concerned with joint modeling of two ordered data outcomes allowing for
excess zeros. Economic, biological, and social science studies often yield data on two ordered
categorical variables that are jointly dependent. Examples include the relationship between
desired and excess fertility [1, 2], helmet use and motorcycle injuries [3], ownership of dogs
and televisions [4], severity of diabetic retinopathy of the left and right eyes [5], and self-
assessed health status and wealth [6]. The underlying response variables could be measured
on an ordinal scale. It is also common in the literature to generate a categorical or grouped
variable from an underlying quantitative variable and then use ordinal response regression
model (e.g., [4, 5, 7]). The ensuing model is usually analyzed using the bivariate ordered
probit model.
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Many ordered discrete data sets are characterized by excess of zeros, both in terms of
the proportion of nonusers and relative to the basic ordered probit or logit model. The zeros
may be attributed to either corner solution to consumer optimization problem or errors in
recording. In the case of individual smoking behavior, for example, the zeros may be recorded
for individuals who never smoke cigarettes or for those who either used tobacco in the past
or are potential smokers. In the context of individual patents applied for by scientists during
a period of five years, zero patents may be recorded for scientists who either never made
patent applications or for those who do but not during the reporting period [8]. Ignoring the
two types of zeros for nonusers or nonparticipants leads to model misspecification.

The univariate as well as bivariate zero-inflated count data models are well established
in the literature for example, Lambert [9], Gurmu and Trivedi [10], Mullahy [11], and Gurmu
and Elder [12]. The recent literature presents a Bayesian treatment of zero-inflated Poisson
models in both cross-sectional and panel data settings (see [13, 14], and references there in).
By contrast, little attention has been given to the problem of excess zeros in the ordered
discrete choice models. Recently, an important paper by Harris and Zhao [15] developed
a zero-inflated univariate ordered probit model. However, the problem of excess zeros in
ordered probit models has not been analyzed in the Bayesian framework. Despite recent
applications and advances in estimation of bivariate ordered probit models [1–6], we know
of no studies that model excess zeros in bivariate ordered probit models.

This paper presents a Bayesian analysis of bivariate ordered probit model with excess
of zeros. Specifically, we develop a zero-inflated ordered probit model and carry out the
analysis using the Bayesian approach. The Bayesian analysis is carried out using Markov
Chain Monte Carlo (MCMC) techniques to approximate the posterior distribution of the
parameters. Bayesian analysis of the univariate zero-inflated ordered probit will be treated
as a special case of the zero-inflated bivariate order probit model. The proposed models
are illustrated by analyzing the socioeconomic determinants of individual choice problem
of bivariate ordered outcomes on smoking and chewing tobacco. We use household tobacco
prevalence survey data fromBangladesh. The observed proportion of zeros (those identifying
themselves as nonusers of tobacco) is about 76% for smoking and 87% for chewing tobacco.

The proposed approach is useful for the analysis of ordinal data with natural zeros.
The empirical analysis clearly shows the importance of accounting for excess zeros in
ordinal qualitative response models. Accounting for excess zeros provides good fit to the
data. In terms of both the signs and magnitudes of marginal effects, various covariates
have differential impacts on the probabilities associated with the two types of zeros,
nonparticipants and zero-consumption. The usual analysis that ignores excess of zeros masks
these differential effects, by just focusing on observed zeros. The empirical results also show
the importance of taking into account the uncertainty in the parameter estimates. Another
advantage of the Bayesian approach to modeling excess zeros is the flexibility, particularly
computational, of generalizing to multivariate ordered response models.

The rest of the paper is organized as follows. Section 2 describes the proposed zero-
inflated bivariate probit model. Section 3 presents the MCMC algorithm and model selection
procedure for the model. An illustrative application using household tobacco consumption
data is given in Section 4. Section 5 concludes the paper.

2. Zero-Inflated Bivariate Ordered Probit Model

2.1. The Basic Model

We consider the basic Bayesian approach to a bivariate latent variable regression model with
excess of zeros. To develop notation, let ỹ∗

1i and ỹ∗
2i denote the bivariate latent variables. We
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consider two observed ordered response variables ỹ1i and ỹ2i taking on values 0, 1, . . . , Jr ,
for r = 1, 2. Define two sets of cut-off parameters αr = (αr2, αr3, . . . , αrJr), r = 1, 2, where the
restrictions αr0 = −∞, αrJr+1 = ∞, and αr1 = 0 have been imposed. We assume that (ỹ∗

1i, ỹ
∗
2i)

′ ≡
ỹ∗i follows a bivariate regression model

ỹ∗
ri = x′riβr + εri, r = 1, 2, (2.1)

where xri is aKr-variate of regressors for the ith individual (i = 1, . . . ,N) and εri are the error
terms. For subsequent analysis, let β = (β′

1,β
′
2)

′, εi = (ε1i, ε2i)
′, and

Xi =

(

x′1i 0′

0′ x′2i

)

. (2.2)

Analogous to the univariate case, the observed bivariate-dependent variables are defined as

ỹri =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0 if ỹ∗
ri ≤ 0,

1 if 0 < ỹ∗
ri ≤ αr2,

j if αrj < ỹ∗
ri ≤ αrj+1, j = 2, 3, . . . , Jr − 1,

Jr if ỹ∗
i ≤ αrJr ,

(2.3)

where r = 1, 2. Let ỹi = (ỹ1i, ỹ2i)
′.

We introduce inflation at the point (ỹ1i = 0, ỹ2i = 0), called the zero-zero state. As in
the univariate case, define the participation model:

s∗i = z′iγ + μi,

si = I
(

s∗i > 0
)

.
(2.4)

In the context of the zero-inflation model, the observed response random vector yi = (y1i, y2i)
′

takes the form

yi = siỹi. (2.5)

We observe yi = 0 when either the individual is a non-participant (si = 0) or the individual
is a zero-consumption participant (si = 1 and ỹi = 0). Likewise, we observe positive outcome
(consumption) when the individual is a positive consumption participant for at least one
good (si = 1 and ỹi /= 0).

Let Φ(a) and φ(a) denote the respective cumulative distribution and probability
density functions of standardized normal evaluated at a. Assuming normality and that μi is
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uncorrelated with (ε1i, ε2i), but corr(ε1i, ε2i) = ρ12 /= 0, and each component with unit variance,
the zero-inflated bivariate ordered probit (ZIBOP) distribution is

fb
(

y∗i ,yi, s
∗
i , si | Xi, zi,Ψ

)

=

⎧

⎨

⎩

Pr(si = 0)+(1 − Pr(si = 0))Pr
(

ỹ1i = 0, ỹ2i = 0
)

, for
(

ỹ1i, ỹ2i
)

= (0, 0)

(1 − Pr(si = 0))Pr
(

ỹ1i = j, ỹ2i = l
)

, for
(

ỹ1i, ỹ2i
)

/= (0, 0),

(2.6)

where j = 0, 1, . . . , J1, l = 0, 1, . . . , J2, Pr(si = 0) = Φ(−z′iγ), Pr(si = 1) = Φ(−z′iγ). Further, for
(ỹ1i, ỹ2i) = (0, 0) in (2.6), we have αr0 = −∞, αr1 = 0 for r = 1, 2 so that

Pr
(

ỹ1i = 0, ỹ2i = 0
)

= Φ2
(−x′1iβ1,−x′2iβ2, ρ12

)

, (2.7)

where Φ2(·) is the cdf for the standardized bivariate normal. Likewise, Pr(ỹ1i = j, ỹ2i = l) in
(2.6) are given by

Pr
(

ỹ1i = j, ỹ2i = l
)

= Φ2
(

α1j+1 − x′1iβ1, α2l+1 − x′2iβ2; ρ12
)

−Φ2
(

α1j − x′1iβ1, α2l − x′2iβ2, ρ12
)

for j = 1, . . . , J1 − 1; l = 1, . . . , J2 − 1;

Pr
(

ỹ1i = J1, ỹ2i = J2
)

= 1 −Φ2
(

α1J1 − x′1iβ1, α2J2 − x′2iβ2, ρ12
)

.

(2.8)

The ensuing likelihood contribution for N-independent observations is

Lb(y∗,y, s∗, s | X, z,Ψb) =
N
∏

i=1

∏

(j,l)=(0,0)

[

Pr(si = 0) + (1 − Pr(si = 0))Pr
(

ỹ1i = 0, ỹ2i = 0
)]dijl

×
N
∏

i=1

∏

(j,l)/= (0,0)

[

(1 − Pr(si = 0))Pr
(

ỹ1i = j, ỹ2i = l
)]dijl ,

(2.9)

where dijl = 1 if ỹ1i = j and ỹ2i = l, and dijl = 0 otherwise. Here, the vector Ψb consists of
β, γ , α1, α2, and the parameters associated with the trivariate distribution of (ε, μ).

Regarding identification of the parameters in the model defined by (2.1) through
(2.5) with normality assumption, we note that the mean parameter (joint choice probability
associate with the observed response vector yi) depends nonlinearly on the probability
of zero inflation (Φ(−z′iγ)) and choice probability (Pr(ỹ1i = j, ỹ2i = l)) coming from the
BOP submodel. Since the likelihood function for ZIBOP depends separately on the two
regression components, the parameters of ZIBOP model with covariates are identified as
long as the model is estimated by full maximum likelihood method. The same or different
sets of covariates can affect the two components via zi and xri. When using quasi-likelihood
estimation or generalized estimating equations methods rather than full ML, the class of
identifiable zero-inflated count and ordered data models is generally more restricted; see, for
example, Hall and Shen [16] and references there in. Although the parameters in the ZIBOP
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model above are identified through a nonlinear functional form estimated by ML, for more
robust identification we can use traditional exclusion restrictions by including instrumental
variables in the inflation equation, but excluding them from the ordered choice submodel.
We follow this strategy in the empirical section.

About 2/3 of the observations in our tobacco application below have a double-zero-
state, (y1 = 0, y2 = 0). Consequently, we focused on a mixture constructed from a point mass
at (0, 0) and a bivariate ordered probit. In addition to allowing for inflation in the double-
zero-state, our approach can be extended to allow for zero-inflation in each component.

2.2. Marginal Effects

It is common to use marginal or partial effects to interpret covariate effects in nonlinear
models; see, for example, Liu et al. [17]. Due to the nonlinearity in zero-inflated ordered
response models and in addition to estimation of regression parameters, it is essential to
obtain the marginal effects of changes in covariates on various probabilities of interest.
These include the effects of covariates on probability of nonparticipation (zero-inflation),
probability of participation, and joint and/or marginal probabilities of choice associated with
different levels of consumption.

From a practical point of view, we are less interested in the marginal effects of
explanatory variables on the joint probabilities of choice from ZIBOP. Instead, we focus on
the marginal effects associated with the marginal distributions of yri for r = 1, 2. Define a
generic (scalar) covariate wi that can be a binary or approximately continuous variable. We
obtain themarginal effects of a generic covariatewi on various probabilities assuming that the
regression results are based on ZIBOP. Ifwi is a binary regressor, then themarginal effect ofwi

on probability, say P , is the difference in the probability evaluated at 1 and 0, conditional on
observable values of covariates: P(wi = 1)−P(wi = 0). For continuous explanatory variables,
the marginal effect is given by the partial derivative of the probability of interest with respect
to wi, ∂P(·)/∂wi.

Regressor wi can be a common covariate in vectors of regressors xri and zi or appears
in either xri or zi. Focusing on the continuous regressor case, the marginal effects of wi in
each of the three cases are presented below. First, consider the case of common covariate in
participation and main parts of the model, that is, wi in both xri and zi. The marginal effect
on the probability of participation is given by

Mi(si = 1) =
∂Pr(si = 1)

∂wi
= φ
(

z′iγ
)

γwi , (2.10)

where again φ(·) is the probability density function (pdf) of the standard normal distribution
and γwi is the coefficient in the inflation part associated with variablewi. In terms of the zeros
category, the effect on the probability of nonparticipation (zero inflation) is

Mi(si = 0) =
∂Pr(si = 0)

∂wi
= −φ(−z′iγ

)

γwi , (2.11)
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while

Mi

(

s = 1, ỹri = 0
)

=
∂Pr(si = 1)Pr

(

ỹri = 0
)

∂wi

= Φ
(−x′riβr

)

φ
(

z′iγ
)

γwi −Φ
(

z′iγ
)

φ
(−x′riβr

)

βrwi , r = 1, 2,

(2.12)

represents the marginal effect on the probability of zero-consumption. Here the scalar βrwi is
the coefficient in the main part of the model associated with wi.

Continuing with the case of common covariate, the marginal effects of wi on the
probabilities of choice are given as follows. First, the total marginal effect on the probability of
observing zero-consumption is obtained as a sum of the marginal effects in (2.11) and (2.12);
that is,

Mi

(

yri = 0
)

=
[

Φ
(−x′riβr

) − 1
]

φ
(

z′iγ
)

γwi −Φ
(

z′iγ
)

φ
(−x′riβr

)

βrwi . (2.13)

The effects for the remaining choices for outcomes r = 1, 2 are as follows:

Mi

(

yri = 1
)

=
[

Φ
(

αr2 − x′riβr

) −Φ
(−x′riβr

)]

φ
(

z′iγ
)

γwi

−Φ
(

z′iγ
)[

φ
(

αr2 − x′riβr

) − φ
(−x′riβr

)]

βrwi ;

Mi

(

yri = j
)

=
[

Φ
(

αr,j+1 − x′riβr

) −Φ
(

αrj − x′riβr

)]

φ
(

z′iγ
)

γwi

−Φ
(

z′iγ
)[

φ
(

αr,j+1 − x′riβr

) − φ
(

αrj − x′riβr

)]

βrwi , for j = 2, . . . , Jr − 1;

Mi

(

yri = Jr
)

=
[

1 −Φ
(

αr,Jr − x′riβr

)]

φ
(

z′iγ
)

γwi + Φ
(

z′iγ
)

φ
(

αr,Jr − x′riβr

)

βrwi .

(2.14)

Now consider case 2, where a generic independent variable wi is included only in xri,
the main part of the model. In this case, covariate wi has obviously no direct effect on the
inflation part. The marginal effects of wi on various choice probabilities can be presented as
follows:

Mi

(

yri = j
)

=
∂Pr
(

yri = j
)

∂wi

= −Φ(z′iγ
)[

φ
(

αr,j+1 − x′riβr

) − φ
(

αrj − x′riβr

)]

βrwi , for j = 0, 1, . . . , Jr ,

(2.15)

with αr0 = −∞, αr1 = 0, and αr,Jr+1 = ∞. The marginal effects in (2.15) can be obtained by
simply setting γwi = 0 in (2.13) and (2.14).

For case 3, where wi appears only in zi, its marginal effects on participation
components given in (2.10) and (2.11) will not change. Since βrwi = 0 in case 3, the partial
effects of wi on various choice probabilities take the form:

Mi

(

yri = j
)

=
[

Φ
(

αr,j+1 − x′riβr

) −Φ
(

αrj − x′riβr

)]

φ
(

z′iγ
)

γwi for j = 0, 1, . . . , Jr . (2.16)

Again, we impose the restrictions αr0 = −∞, αr1 = 0 and αr,Jr+1 = ∞.
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As noted by a referee, it is important to understand the sources of covariate effects and
the relationship between the marginal effects and the coefficient estimates. Since

Pr
(

yri = j
)

=
[

Pr(si = 1)Pr
(

ỹri = j
)]

(2.17)

for j = 0, 1, . . . , Jr , the total effect of a generic covariate wi on probability of consumption at
level j comes from two (weighted) sources: the participation part (Pr(si = 1)) and the main
ordered probit part (Pr(ỹri = j)) such that

∂Pr(si = 1)
∂wi

= φ
(

z′iγ
)

γwi ; (2.18)

∂Pr
(

ỹri = j
)

∂wi
= −[φ(αr,j+1 − x′riβr

) − φ
(

αrj − x′riβr

)]

βrwi
(2.19)

with αr0 = −∞, αr1 = 0, s and αr,Jr+1 = ∞. This shows that sign(γwi) is the same as sign(∂Pr(si =
1)/∂wi)—the participation effect in (2.18)—but sign(βrwi) is not necessarily the same as the
sign of (∂Pr(ỹri = j)/∂wi). The latter is particularly true in the left tail of the distribution,
where the coefficient (βrwi) and the main (unweighted) effect in (2.19) have opposite signs
because

{−[φ(αr,j+1 − x′riβr

) − φ
(

αrj − x′riβr

)]} ≡ 
 (2.20)

is negative. In this case, a positive effect coming from the main part requires βrwi to be
negative. By contrast, 
 is positive in the right tail, but can be positive or negative when the
terms (αr,j −x′riβr) and (αr,j+1−x′riβr) are on the opposite sides of the mode of the distribution.
This shows that a given covariate can have opposite effects in the participation and main
models. Since the total effect of an explanatory variable on probability of choice is a weighted
average of (2.18) and (2.19), interpretation of results should focus on marginal effects of
covariates rather than the signs of estimated coefficients. This is the strategy adopted in the
empirical analysis below.

2.3. A Special Case

Since the zero-inflated univariate ordered probit (ZIOP) model has not been analyzed
previously in the Bayesian framework, we provide a brief sketch of the basic framework for
ZIOP. The univariate ordered probit model with excess of zeros can be obtained as a special
case of the ZIBOP model presented previously. To achieve this, let ρ12 = 0 in the ZIBOP
model and focus on the first ordered outcome with r = 1. In the standard ordered response
approach, the model for the latent variable ỹ∗

1i is given by (2.1) with r = 1. The observed
ordered variable ỹ1i can be presented compactly as

ỹ1i =
J
∑

j=0

jI
(

α1j < ỹ∗
1i ≤ α1j+1

)

, (2.21)
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where I(w ∈ A) is the indicator function equal to 1 or 0 according to whether w ∈ A or not.
Again α10, α11, . . . , α1J1 are unknown threshold parameters, where we set α10 = −∞, α11 = 0,
and α1J1+1 = ∞.

Zero-inflation is now introduced at point ỹ1i = 0. Using the latent variable model (2.4)
for the zero inflation, the observed binary variable is given by si = I(s∗i > 0), where I(s∗i >
0) = 1 if s∗i > 0, and 0 otherwise. In regime 1, si = 1 or s∗i > 0 for participants (e.g., smokers),
while, in regime 0, si = 0 or s∗i ≤ 0 for nonparticipants. In the context of the zero-inflation
model, the observed response variable takes the form y1i = siỹ1i. We observe y1i = 0 when
either the individual is a non-participant (si = 0) or the individual is a zero-consumption
participant (si = 1 and ỹ1i = 0). Likewise, we observe positive outcome (consumption) when
the individual is a positive consumption participant (si = 1 and ỹ∗

1i > 0).
Assume that ε1 and μ are independently distributed. Harris and Zhao [15] also

consider the case where ε1 and μ are correlated. In the context of our application, the
correlated model did not provide improvements over the uncorrelated ZIOP in terms
of deviance information criterion. The zero-inflated ordered multinomial distribution, say
Pr(y1i), arises as a mixture of a degenerate distribution at zero and the assumed distribution
of the response variable ỹ1i as follows:

f1
(

y∗
1i, y1i, s

∗
i , si | x1i, zi,Ψ1

)

=

⎧

⎨

⎩

Pr(si = 0) + Pr(si = 1)Pr
(

ỹ1i = 0
)

, for j = 0

Pr(si = 1)Pr
(

ỹ1i = j
)

, for j = 1, 2, . . . , J1,
(2.22)

where, for any parameter vector Ω10 associated with the distribution of (ε1, μ), Ψ1 =
(β1, γ ,α

1,Ω10) with α1 = (α12, . . . , α1J1). For simplicity, dependence on latent variables,
covariates, and parameters has been suppressed on the right-hand side of (2.22). The
likelihood based on N-independent observations takes the form

L1
(

y∗
1, y1, s

∗, s | x1, z,Ψ1
)

=
N
∏

i=1

J1
∏

j=0

[

Pr
(

y1i = j | x1i, zi,Ψ1
)]dij

=
N
∏

i=1

∏

j=0

[

Pr(si = 0) + Pr(si = 1)Pr
(

ỹ1i = j
)]dij

×
N
∏

i=1

∏

j>0

[

Pr(si = 1)Pr
(

ỹ1i = j
)]dij ,

(2.23)

where, for example, y∗
1 = (y∗

1, . . . , y
∗
N)′, and dij = 1 if individual i chooses outcome j, or dij = 0

otherwise.
Different choices of the specification of the joint distribution of (ε1i, μi) give rise to

various zero-inflated ordered response models. For example, if the disturbance terms in the
latent variable equations are normally distributed, we get the zero-inflated ordered probit
model of Harris and Zhao [15]. The zero-inflated ordered logit model can be obtained by
assuming that ε1i and μi are independent, each of the random variables following the logistic
distribution with cumulative distribution function defined as Λ(a) = ea/(1 + ea). Unlike the
ordered probit framework, the ordered logit cannot lend itself easily to allow for correlation
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between bivariate discrete response outcomes. Henceforth, we focus on the ordered probit
paradigm in both univariate and bivariate settings.

Assuming that ε1i and μi are independently normally distributed, each with mean 0
and variance 1, the required components in (2.22) and consequently (2.23) are given by:

Pr(si = 0) = Φ
(−z′iγ

)

,

Pr
(

ỹ1i = 0
)

= Φ
(−x′

1iβ1

)

,

Pr
(

ỹ1i = j
)

= Φ
(

α1j+1 − x′1iβ1

) −Φ
(

α1j − x′1iβ1

)

, for j = 1, . . . , J1 − 1 with α10 = 0,

Pr
(

ỹ1i = J1
)

= 1 −Φ
(

α1J1 − x′1iβ1

)

.

(2.24)

The marginal effects for the univariate ZIOP are given by Harris and Zhao [15]. Bayesian
analysis of the univariate ZIOP will be treated as a special case of the zero-inflated bivariate
order probit model in the next section.

3. Bayesian Analysis

3.1. Prior Distributions

The Bayesian hierarchical model requires prior distributions for each parameter in the model.
For this purpose, we can use noninformative conjugate priors. There are two reasons for
adopting noninformative conjugate priors. First, we prefer to let the data dictate the inference
about the parameters with little or no influence from prior distributions. Secondly, the
noninformative priors facilitate resampling using Markov Chain Monte Carlo algorithm
(MCMC) and have nice convergence properties. We assume noninformative (vague or
diffuse) normal priors for regression coefficients β, with mean β∗ and variance Ωβ which
are chosen to make the distribution proper but diffuse with large variances. Similarly, γ ∼
N(γ∗,Ωγ).

In choosing prior distributions for the threshold parameters, α’s, caution is needed
because of the order restriction on them. One way to avoid the order restriction is to
reparameterize them. Following Chib and Hamilton [18] treatment in the univariate ordered
probit case, we reparameterize the ordered threshold parameters

τr2 = log(αr2); τrj = log
(

αrj − αrj−1
)

, j = 3, . . . , Jr ; r = 1, 2 (3.1)

with the inverse map

αrj =
j
∑

m=2

exp(τrm), j = 2, . . . , Jr ; r = 1, 2. (3.2)

For r = 1, 2, let τ r = (τr2, τr3, . . . , τrJ)
′ so that τ = (τ1, τ2). We choose normal prior τ ∼

N(τ∗,Ωτ) without order restrictions for τr ’s.
The only unknown parameter associate with the distribution of (ε, μ) in (2.1) and (2.4)

is ρ12, the correlation between ε1 and ε2. The values of ρ12 by definition are restricted to be in
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the −1 to 1 interval. Therefore, the choice for prior distribution for ρ12 can be uniform (−1, 1)
or a proper distribution based on reparameterization. Let ν denote the hyperbolic arc-tangent
transformation of ρ12, that is,

ν = a tanh
(

ρ12
)

, (3.3)

and taking hyperbolic tangent transformation of ν gives us back ρ12 = tanh(ν). Then
parameter ν is asymptotically normal distributed with stabilized variance, 1/(N − 3), where
N is the sample size. We may also assume that ν ∼ N(ν∗, σ2

ν).

3.2. Bayesian Analysis via MCMC

For carrying out a Bayesian inference, the joint posterior distribution of the parameters of
the ZIBOP model in (2.6) conditional on the data is obtained by combining the likelihood
function given in (2.9) and the above-specified prior distributions via Bayes’ theorem, as:

f(Ψb | x, z) ∝
N
∏

i=1

∏

(j,l)=(0,0)

[

Φ
(−z′iγ

)

+ Φ
(

z′iγ
)

Φ2
(−x′1iβ1,−x′2iβ2, ρ12

)]dijl

×
N
∏

i=1

∏

(j,l)/= (0,0)

[

Φ
(

z′iγ
)[

Φ2
(

α1j+1 − x′1iβ1, α2l+1 − x′2iβ2; ρ12
)

−Φ2
(

α1j − x′1iβ1, α2l − x′2iβ2, ρ12
)]

]dijl

× f(Ψb),
(3.4)

where f(Ψb) ∝ f(β)f(γ)f(τ)f(ν) and the parameter vector Ψb now consists of β = (β′
1,β

′
2)

′,
γ , τ = (τ1, τ2), s and ν = a tanh(ρ12). Here f(β) ∝ |Ωβ|−1/2 exp{−1/2(β − β∗)′Ω−1

β
(β −

β∗)};f(γ) ∝ |Ωγ |−1/2 exp{−1/2(γ − γ ∗)′Ω−1
γ (γ − γ ∗)};f(τ) ∝ |Ωτ |−1/2 exp{−1/2(τ − τ∗)′Ω−1

τ (τ −
τ∗)};τrj are defined in (3.1), and αrj are given via the inverse map (3.2).

Full conditional posterior distributions are required to implement the MCMC
algorithm [19–22], and they are given as follows:

(1) fixed effects:

(a) zero state:

f
(

γ | x, z,Ψ−γ
) ∝ ∣∣Ωγ

∣

∣

−1/2 exp
{

−1
2
(γ − γ ∗)′Ω−1

γ (γ − γ ∗)
}

× f(Ψb | x, z); (3.5)

(b) nonzero state:

f
(

β | x, z,Ψ−β
) ∝ ∣∣Ωβ

∣

∣

−1/2 exp
{

−1
2
(

β − β∗)′Ω−1
β

(

β − β∗)
}

× f(Ψb | x, z). (3.6)
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(2) thresholds:

f(τ | x, z,Ψ−τ) ∝ |Ωτ |−1/2 exp
{

−1
2
(τ − τ∗)′Ω−1

τ (τ − τ∗)
}

×
N
∏

i=1

∏

(j,l)/= (0,0)

[

Φ
(

z′iγ
)[

Φ2
(

α1j+1 − x′1iβ1, α2l+1 − x′2iβ2; ρ12
)

−Φ2
(

α1j − x′1iβ1, α2l − x′2iβ2, ρ12
)]

]dijl

.

(3.7)

(3) bivariate correlation:

f(ν | x, z,Ψ−ν) ∝ σ−1
ν exp

{

− (ν − ν∗)2

2σ2
ν

}

× f(Ψb | x, z). (3.8)

The MCMC algorithm simulates direct draws from the above full conditionals
iteratively until convergence is achieved. A single long chain [23, 24] is used for the proposed
model. Geyer [23] argues that using a single longer chain is better than using a number of
smaller chains with different initial values. We follow this strategy in our empirical analysis.

The Bayesian analysis of the univariate ZIOP follows as a special case of that of the
ZIBOP presented above. In particular, the joint posterior distribution of the parameters of
the ZIOP model in (2.22) conditional on the data is obtained by combining the likelihood
function given in (2.23) and the above-specified prior distributions (with modified notations)
via Bayes’ theorem, as follows:

f(Ψ | x, z, ) ∝
N
∏

i=1

∏

j=0

[

Φ
(−z′iγ

)

+ Φ
(

z′iγ
)

Φ
(−x′iβ

)]dij

×
N
∏

i=1

∏

j>0

[

Φ
(

z′iγ
){

Φ
(

αj+1 − x′iβ
) −Φ

(

αj − x′iβ
)}]dij

× f(β)f(γ)f(τ),

(3.9)

where, using notation of Section 2.3 for β and the other parameter vectors, f(β) ∝
|Ωβ|−1/2 exp{−1/2(β −β∗)′Ω−1

β (β −β∗)}; f(γ) ∝ |Ωγ |−1/2 exp{−1/2(γ − γ ∗)′Ω−1
γ (γ − γ ∗)}; f(τ) ∝

|Ωτ |−1/2 exp{−1/2(τ −τ∗)′Ω−1
τ (τ −τ∗)}, τ2 = log(α2) and τj = log(αj −αj−1), j = 3, . . . , J . Apart

from dropping the bivariate correlation, we basically replace the bivariate normal cumulative
distribution Φ2(·, ·; ρ12) by the univariate counterpart Φ(·). Details are available upon request
from the authors.

Apart from Bayesian estimation of the regression parameters, the posterior distribu-
tions of other quantities of interest can be obtained. These include posteriors for marginal
effects and probabilities for nonparticipation, zero-consumption, and joint outcomes of
interest. These will be considered in the application section. Next, we summarize model
selection procedure.

The commonly used criteria for model selection like BIC and AIC are not appropriate
for the multilevel models (in the presence of random effects), which complicates the counting
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of the true number of free parameters. To overcome such a hurdle, Spiegelhalter et al. [25]
proposed a Bayesian model comparison criterion, called Deviance Information Criterion
(DIC). It is given as

DIC = goodness-of-fit + penalty for complexity, (3.10)

where the “goodness-of-fit” is measured by the deviance for θ = (β, γ, α)

D(θ) = −2 logL(data | θ) (3.11)

and complexity is measured by the “effective number of parameters”:

pD = Eθ|y[D(θ)] −D
(

Eθ|y[θ]
)

= D −D
(

θ
)

;
(3.12)

that is, posterior mean deviance minus deviance evaluated at the posterior mean of the
parameters. The DIC is then defined analogously to AIC as

DIC = D
(

θ
)

+ 2pD

= D + pD.

(3.13)

The idea here is that models with smaller DIC should be preferred to models with larger DIC.
Models are penalized both by the value ofD, which favors a good fit, but also (similar to AIC
and BIC) by the effective number of parameters pD. The advantage of DIC over other criteria,
for Bayesian model selection, is that the DIC is easily calculated from the MCMC samples. In
contrast, AIC and BIC require calculating the likelihood at its maximum values, which are
not easily available from the MCMC simulation.

4. Application

4.1. Data

We consider an application to tobacco consumption behavior of individuals based on the 2001
household Tobacco Prevalence survey data from Bangladesh. The Survey was conducted in
two administrative districts of paramount interest for tobacco production and consumption
in the country. Data on daily consumption of smoking and chewing tobacco along with other
socioeconomic and demographic characteristics and parental tobacco consumption habits
were collected from respondents of 10 years of age and above. The data set has been used
previously by Gurmu and Yunus [26] in the context of binary response models. Here we
focus on a sample consisting of 6000 individual respondents aged between 10 and 101 years.

The ordinal outcomes yr = 0, 1, 2, 3 used in this paper correspond roughly to zero,
low, moderate, and high levels of tobacco consumption in the form of smoking (y1) or
chewing tobacco (y2), respectively. The first dependent variable y1 for an individual’s daily
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Table 1: Bivariate frequency distribution for intensity of tobacco use.

Smoke group Chew group Total (N)
0 1 2

0 3931 302 324 4557
1 265 12 6 283
2 526 35 37 598
3 498 29 35 562

Total (N) 5220 378 402 6000

cigarette smoking intensities assumes the following 4 choices: y1 = 0 if nonsmoker, y1 = 1
if smoking up to 7 cigarettes per day, y = 2 if smoking between 8 and 12 cigarettes daily,
and y1 = 3 if smoking more than 12 cigarettes daily; likewise, for the intensity of chewing
tobacco, y2 = 0 if reported not chewing tobacco, y2 = 1 if uses up to 7 chewing tobacco,
and y2 = 2 if consuming 7 or more chewing tobacco. The frequency distribution of cigarette
smoking and tobacco chewing choices in Table 1 shows that nearly 66% of the respondents
identify themselves as nonusers of tobacco. Our modeling strategy recognizes that these self-
identified current nonusers of tobacco may include either individuals who never smoke or
chew tobacco (genuine nonusers) or those who do, but not during the reporting period
(potential users of tobacco). For example, potential tobacco users may include those who
wrongly claim to be nonusers, previous tobacco users that are currently nonusers, and those
most likely to use tobacco in the future due to changes in, say, prices and income. Table 1
also shows that 76% of the respondents are non-smokers and nearly 87% identify themselves
as nonusers of tobacco for chewing. Given the extremely high proportion of observed zeros
coupled with sparse cells on the right tail, we employ the zero-inflated bivariate ordered
probit framework.

Table 2 gives definition of the explanatory variables as well as their means and
standard deviations. The respondents are more likely to be Muslim, married, in early thirties,
live in rural area, and have about 7 years of formal schooling. Although the country is mostly
agrarian, only around 11% of the respondents were related to agricultural occupation in either
doing agricultural operations on their own farms or working as agricultural wage laborers.
About 12% of the respondents belong to the service occupation. The benchmark occupational
group consists of business and other occupations. More than one-half of the fathers and
slightly less than two-thirds of the mothers of the respondents currently use or have used
tobacco products in the past.

Among the variables given in Table 2, the two indicators of parental use of tobacco
products are included in z as part of the participation equation (2.4). The rest of the variables
are included in xr and z of (2.1) and (2.4). To allow for nonlinear effects, age and education
enter all three equations using a quadratic form. Due to lack of data on prices, our analysis
is limited to the study of other economic and demographic determinants of participation,
smoking, and chewing tobacco.

4.2. Results

We estimate the standard bivariate ordered probit (BOP) and zero-inflated bivariate ordered
probit regression models for smoking and chewing tobacco and report estimation results for
parameters, marginal effects, and choice probabilities, along measures of model selection.
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Table 2: Definition and summary statistics for independent variables.

Name Definition Meanb St. Dev.

Agea Age in years 30.35 (14.9)

Educationa Number of years of formal
schooling 6.83 (4.7)

Income Monthly family income in
1000s of Taka 7.57 (10.3)

Male = 1 if male 54.6
Married = 1 if married 57.2
Muslim = 1 if religion is Islam 78.4
Father use = 1 if father uses tobacco 54.0
Mother use = 1 if mother uses tobacco 65.1

Region = 1 if Rangpur resident,
= 0 if Chittagong resident 49.7

Urban = 1 if urban resident 38.0

Agriservice = 1 if agriculture labor or
service occupation 23.2

Self-employed = 1 if self-employed or
household chores 30.7

Student = 1 if student 26.8

Other = 1 if business or other
occupations (control) 19.3

a
In implementation, we also include age squared and education squared.

bThe means for binary variables are in percentage.

Table 3: Goodness-of-fit statistics via DIC.

Model Dbar Dhat pD DIC
Bivariate ordered
probit (BOP) 11417.1 11386.9 30.1 11447.2

Zero-inflated BOP 11301.1 11270.3 29.8 11329.9
Dbar: Posterior mean of deviance, Dhat: Deviance evaluated at the posterior mean of the parameters, pD: Dbar-Dhat, the
effective number of parameters, and DIC: Deviance information criterion.

An earlier version of this paper reports results from the standard ordered probit model as
well as the uncorrelated and correlated versions of the univariate zero-inflated ordered probit
model for smoking tobacco. Convergence of the generated samples is assessed using standard
tools (such as trace plots and ACF plots) within WinBUGS software. After initial 10,000
burn-in iterations, every 10th MCMC sample thereafter was retained from the next 100,000
iterations, obtaining 10,000 samples for subsequent posterior inference of the unknown
parameters. The slowest convergence is observed for some parameters in the inflation
submodel. By contrast, the autocorrelations functions for most of the marginal effects die
out quickly relative to those for the associated parameters.

Table 3 reports the goodness-of-fit statistics for the standard bivariate ordered probit
model and its zero-inflated version, ZIBOP. The ZIBOP regression model clearly dominates
BOP in terms of DIC and its components; compare the DIC of 11330 for the former and 11447
for the latter model. Table 4 gives posterior means, standard deviations, medians, and the
95 percent credible intervals (in terms of the 2.5 and 97.5 percentiles) of the parameters and
choice probabilities from ZIBOPmodel. For comparison, the corresponding results from BOP
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Table 4: Posterior mean, standard deviation, and 95% credible intervals of parameters from zibop for
smoking and chewing tobacco.

Variable Mean St. dev. 2.50% Median 97.50%

Main (β1,α1): smoking (y1):
Age/10 0.672 0.119 0.444 0.685 0.894
Age square/100 −0.070 0.012 −0.093 −0.071 −0.046
Education −0.071 0.014 −0.097 −0.071 −0.042
Education square 0.001 0.001 −0.002 0.001 0.003
Income 0.000 0.002 −0.005 0.000 0.005
Male 2.092 0.086 1.925 2.091 2.269
Married 0.213 0.070 0.074 0.213 0.353
Muslim −0.053 0.052 −0.157 −0.053 0.049
Region −0.007 0.048 −0.102 −0.007 0.086
Urban −0.096 0.051 −0.198 −0.097 0.004
Agriservice −0.234 0.056 −0.345 −0.233 −0.125
Self-employed −0.246 0.087 −0.414 −0.247 −0.069
student −0.476 0.137 −0.742 −0.478 −0.204
α12 0.284 0.017 0.252 0.283 0.318
α13 0.987 0.030 0.928 0.987 1.048
Main (β2,α2): chewing (y2)
Age/10 0.649 0.133 0.382 0.658 0.893
Age square/100 −0.046 0.013 −0.071 −0.046 −0.019
Education −0.020 0.016 −0.052 −0.020 0.012
Education square −0.002 0.001 −0.005 −0.002 0.000
Income 0.001 0.003 −0.004 0.002 0.007
Male −0.479 0.081 −0.641 −0.479 −0.320
Married −0.025 0.075 −0.171 −0.025 0.122
Muslim −0.072 0.056 −0.181 −0.072 0.039
Region 0.417 0.051 0.317 0.418 0.517
Urban −0.080 0.058 −0.194 −0.079 0.035
Agriservice 0.052 0.074 −0.096 0.052 0.194
Self-employed 0.127 0.092 −0.058 0.126 0.309
Student −0.450 0.221 −0.887 −0.448 −0.023
α22 0.484 0.023 0.439 0.484 0.531
Inflation (γ):
Age/10 −0.012 2.044 −4.755 0.253 2.861
Age square/100 0.509 0.552 −0.197 0.398 1.812
Education −0.218 0.115 −0.476 −0.204 −0.024
Education square 0.028 0.011 0.010 0.026 0.053
Income 0.006 0.022 −0.027 0.003 0.059
Male 0.239 0.827 −1.582 0.417 1.379
Married 2.306 4.478 −0.416 0.500 16.900
Muslim −0.528 0.356 −1.331 −0.494 0.068
Mother −0.170 0.267 −0.716 −0.164 0.345
Father −0.119 0.330 −0.664 −0.160 0.605
Region 0.630 0.291 0.061 0.625 1.222
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Table 4: Continued.

Variable Mean St. dev. 2.50% Median 97.50%

Urban 0.040 0.357 −0.737 0.071 0.675
Agrservice 5.312 5.416 1.017 2.674 20.470
Self-employed 3.783 5.025 0.124 1.275 17.990
Sstudent −0.344 0.411 −1.154 −0.339 0.466
ρ12 −0.185 0.033 −0.249 −0.186 −0.119
Select probabilities:
P (y1 = 0) 0.760 0.004 0.752 0.760 0.768
P (y2 = 0) 0.871 0.004 0.864 0.871 0.879
P (y1 = 0, y2 = 0) 0.662 0.005 0.652 0.662 0.671
P (zero-inflation) 0.242 0.048 0.151 0.243 0.323
Results for the constant terms in the main and inflation parts have been suppressed for brevity.

are shown in Table 6 of the appendix. Both models predict significant negative correlation
between the likelihood of smoking and chewing tobacco. The posterior estimates of the cut-
off points are qualitatively similar across models. In what follows, we focus on discussion
of results from the preferred ZIBOP model. The 95% credible interval for the correlation
parameter ρ12 from the zero-inflated model is in the range −0.25 to −0.12, indicating that
smoking and chewing tobacco are generally substitutes. Results of selected predicted choice
probabilities (bottom of Table 4) show that the ZIBOP regression model provides very good
fit to the data. The posterior mean for the probability of (zero, zero)-inflation is about 24%
while the 95% credible interval is [0.15, 0.32], indicating that a substantial proportion of zeros
may be attributed to nonparticipants. These results underscore the importance of modeling
excess zeros in bivariate ordered probit models.

To facilitate interpretation of results, we report in Tables 5 and 7 the same set of
posterior estimates for the marginal effects from ZIBOP and BOP models, respectively.
Since age and education enter the three equations non-linearly, we report the total marginal
effects coming from the linear and quadratic parts. We examine closely the marginal effects
on the unconditional marginal probabilities at all levels of smoking and chewing tobacco
(y1 = 0, 1, 2, 3; y2 = 0, 1, 2). The marginal effects reported in Table 5 show that the results for
covariates are generally plausible. Age has a negative impact on probabilities of moderate
and heavy use of tobacco. For heavy smokers, education has a significant negative impact on
the probability of smoking cigarettes. An additional year of schooling on average decreases
probability of smoking by about 6.9% for heavy smokers. Among participants, being male or
married has positive impact on probability of smoking, while the effects for being Muslim,
urban resident, and student are largely negative. Male respondents are more likely to smoke
cigarettes while women respondents are more likely to use chewing tobacco with heavy
intensity, a result which is in line with custom of the country [26].

Using (2.13), we decompose the marginal effect on probability of observing zero-
consumption into two components: the effect on nonparticipation (zero inflation) and zero-
consumption. For each explanatory variable, this decomposition is shown in Table 5 in the
first three rows for smoking and in rows 1, 7, and 8 for chewing tobacco. For most variables,
the effects on probabilities of nonparticipation and zero-consumption are on average opposite
in sign, but this difference seems to diminish at the upper tail of the distribution. For example,
looking at the posterior mean for age under smoking, getting older by one more year
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Table 5: Posterior mean, standard deviation, and 95% credible intervals of marginal effects of covariates
on probability of smoking and chewing tobacco (ZIBOP model).

Variable Probability Mean St. dev. 2.50% Median 97.50%

Age Nonparticipation −0.0259 0.0129 −0.0556 −0.0236 −0.0078
Zero-consumption, y1 0.0463 0.0102 0.0294 0.0453 0.0687

All zeros, y1 = 0 0.0204 0.0059 0.0078 0.0213 0.0304
y1 = 1 0.0058 0.0035 0.0009 0.0053 0.0138
y1 = 2 −0.0014 0.0029 −0.0057 −0.0019 0.0055
y1 = 3 −0.0690 0.0235 −0.1223 −0.0658 −0.0344

Zero-consumption, y2 0.0403 0.0116 0.0195 0.0386 0.0675
All zeros, y2 = 0 0.0145 0.0064 0.0018 0.0149 0.0264

y2 = 1 −0.0034 0.0021 −0.0071 −0.0035 0.0008
y2 = 2 −0.0019 0.0014 −0.0043 −0.0020 0.0011

Education Nonparticipation −0.2823 0.0768 −0.4260 −0.2837 −0.1252
Zero-consumption, y1 0.2447 0.0749 0.0917 0.2459 0.3851

All zeros, y1 = 0 −0.0377 0.0241 −0.0853 −0.0374 0.0094
y1 = 1 0.0498 0.0141 0.0231 0.0494 0.0789
y1 = 2 0.0241 0.0102 0.0045 0.0239 0.0444
y1 = 3 −0.5557 0.1536 −0.8415 −0.5588 −0.2417

Zero-consumption, y2 0.3136 0.0772 0.1561 0.3159 0.4546
All zeros, y2 = 0 0.0313 0.0161 −0.0009 0.0315 0.0618

y2 = 1 −0.0134 0.0080 −0.0288 −0.0135 0.0027
y2 = 2 −0.0222 0.0119 −0.0455 −0.0221 0.0009

Income Nonparticipation −0.0004 0.0015 −0.0038 −0.0002 0.0022
Zero-consumption, y1 0.0003 0.0014 −0.0022 0.0002 0.0035

All zeros, y1 = 0 −0.0001 0.0004 −0.0009 −0.0001 0.0008
y1 = 1 0.0001 0.0003 −0.0005 0.0000 0.0008
y1 = 2 0.0000 0.0002 −0.0003 0.0000 0.0004
y1 = 3 −0.0007 0.0030 −0.0075 −0.0004 0.0044

Zero-consumption, y2 0.0001 0.0016 −0.0025 0.0000 0.0036
All zeros, y2 = 0 −0.0002 0.0005 −0.0011 −0.0002 0.0007

y2 = 1 0.0001 0.0002 −0.0003 0.0001 0.0004
y2 = 2 0.0001 0.0001 −0.0002 0.0001 0.0003

Male Nonparticipation −0.0254 0.0599 −0.1268 −0.0305 0.1012
Zero-consumption, y1 −0.3595 0.0611 −0.4900 −0.3540 −0.2565

All zeros, y1 = 0 −0.3849 0.0116 −0.4078 −0.3849 −0.3618
y1 = 1 0.0630 0.0040 0.0555 0.0630 0.0711
y1 = 2 0.1560 0.0065 0.1435 0.1559 0.1689
y1 = 3 0.1659 0.0083 0.1503 0.1657 0.1829

Zero-consumption, y2 0.1012 0.0623 −0.0309 0.1064 0.2075
All zeros, y2 = 0 0.0758 0.0126 0.0511 0.0759 0.1004

y2 = 1 0.0501 0.0033 0.0438 0.0500 0.0567
y2 = 2 −0.1258 0.0112 −0.1478 −0.1258 −0.1040

Married Nonparticipation −0.0680 0.0777 −0.2274 −0.0433 0.0346
Zero-consumption, y1 0.0200 0.0705 −0.0778 −0.0001 0.1692

All zeros, y1 = 0 −0.0480 0.0149 −0.0796 −0.0472 −0.0207
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Table 5: Continued.

Variable Probability Mean St. dev. 2.50% Median 97.50%

y1 = 1 0.0056 0.0035 0.0006 0.0047 0.0132
y1 = 2 0.0161 0.0061 0.0060 0.0154 0.0296
y1 = 3 0.0263 0.0073 0.0116 0.0264 0.0406

Zero-consumption, y2 0.0709 0.0791 −0.0371 0.0474 0.2349
All zeros, y2 = 0 0.0028 0.0119 −0.0200 0.0026 0.0269

y2 = 1 0.0628 0.0032 0.0566 0.0627 0.0693
y2 = 2 −0.0656 0.0115 −0.0888 −0.0654 −0.0434

Muslim Nonparticipation 0.0393 0.0243 −0.0050 0.0384 0.0900
Zero-consumption, y1 −0.0239 0.0247 −0.0752 −0.0231 0.0216

All zeros, y1 = 0 0.0154 0.0090 −0.0016 0.0153 0.0334
y1 = 1 −0.0023 0.0011 −0.0044 −0.0022 −0.0002
y1 = 2 −0.0053 0.0027 −0.0106 −0.0053 −0.0001
y1 = 3 −0.0078 0.0060 −0.0200 −0.0077 0.0036

Zero-consumption, y2 −0.0260 0.0258 −0.0797 −0.0253 0.0222
All zeros, y2 = 0 0.0133 0.0092 −0.0046 0.0133 0.0315

y2 = 1 0.0613 0.0030 0.0554 0.0613 0.0674
y2 = 2 −0.0746 0.0091 −0.0926 −0.0746 −0.0569

Father use Nonparticipation 0.0122 0.0187 −0.0251 0.0124 0.0487
Zero-consumption, y1 −0.0102 0.0158 −0.0411 −0.0104 0.0214

All zeros, y1 = 0 0.0020 0.0030 −0.0040 0.0019 0.0082
y1 = 1 −0.0005 0.0008 −0.0022 −0.0005 0.0011
y1 = 2 −0.0009 0.0014 −0.0037 −0.0009 0.0018
y1 = 3 −0.0005 0.0008 −0.0023 −0.0005 0.0011

Zero-consumption, y2 −0.0116 0.0179 −0.0464 −0.0118 0.0240
All zeros, y2 = 0 0.0006 0.0011 −0.0012 0.0003 0.0033

y2 = 1 −0.0003 0.0006 −0.0019 −0.0002 0.0007
y2 = 2 −0.0002 0.0005 −0.0014 −0.0001 0.0005

Mother use Nonparticipation 0.0129 0.0257 −0.0343 0.0123 0.0634
Zero-consumption, y1 −0.0106 0.0215 −0.0527 −0.0103 0.0298

All zeros, y1 = 0 0.0024 0.0043 −0.0047 0.0020 0.0115
y1 = 1 −0.0006 0.0012 −0.0031 −0.0006 0.0014
y1 = 2 −0.0011 0.0019 −0.0051 −0.0009 0.0022
y1 = 3 −0.0007 0.0012 −0.0033 −0.0005 0.0012

Zero-consumption, y2 −0.0119 0.0242 −0.0587 −0.0118 0.0338
All zeros, y2 = 0 0.0010 0.0016 −0.0007 0.0004 0.0053

y2 = 1 −0.0006 0.0009 −0.0030 −0.0002 0.0005
y2 = 2 −0.0004 0.0007 −0.0023 −0.0001 0.0002

Region Nonparticipation −0.0480 0.0240 −0.0963 −0.0470 −0.0040
Zero-consumption, y1 0.0412 0.0237 −0.0039 0.0406 0.0889

All zeros, y1 = 0 −0.0068 0.0079 −0.0222 −0.0068 0.0086
y1 = 1 0.0021 0.0011 0.0001 0.0021 0.0046
y1 = 2 0.0033 0.0025 −0.0016 0.0033 0.0083
y1 = 3 0.0013 0.0052 −0.0087 0.0014 0.0114
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Table 5: Continued.

Variable Probability Mean St. dev. 2.50% Median 97.50%

Zero-consumption, y2 −0.0206 0.0252 −0.0672 −0.0217 0.0301
All zeros, y2 = 0 −0.0686 0.0078 −0.0840 −0.0686 −0.0533

y2 = 1 0.0756 0.0038 0.0682 0.0755 0.0832
y2 = 2 −0.0070 0.0070 −0.0207 −0.0070 0.0072

Urban Nonparticipation −0.0062 0.0261 −0.0595 −0.0054 0.0428
Zero-consumption, y1 0.0217 0.0258 −0.0271 0.0211 0.0733

All zeros, y1 = 0 0.0155 0.0088 −0.0018 0.0155 0.0324
y1 = 1 −0.0007 0.0012 −0.0029 −0.0008 0.0017
y1 = 2 −0.0042 0.0028 −0.0096 −0.0042 0.0014
y1 = 3 −0.0106 0.0056 −0.0215 −0.0106 0.0006

Zero-consumption, y2 0.0181 0.0275 −0.0337 0.0178 0.0739
All zeros, y2 = 0 0.0119 0.0090 −0.0062 0.0120 0.0295

y2 = 1 0.0597 0.0036 0.0528 0.0597 0.0668
y2 = 2 −0.0716 0.0075 −0.0864 −0.0717 −0.0566

Agriservice Nonparticipation −0.1989 0.0521 −0.3092 −0.1960 −0.1062
Zero-consumption, y1 0.2102 0.0506 0.1202 0.2075 0.3161

All zeros, y1 = 0 0.0113 0.0098 −0.0084 0.0115 0.0297
y1 = 1 0.0058 0.0018 0.0026 0.0057 0.0097
y1 = 2 0.0023 0.0033 −0.0039 0.0021 0.0092
y1 = 3 −0.0194 0.0060 −0.0311 −0.0194 −0.0077

Zero-consumption, y2 0.1838 0.0530 0.0871 0.1811 0.2940
All zeros, y2 = 0 −0.0151 0.0126 −0.0400 −0.0150 0.0091

y2 = 1 0.0680 0.0049 0.0588 0.0678 0.0782
y2 = 2 −0.0529 0.0096 −0.0716 −0.0530 −0.0338

Self-employed Nonparticipation −0.1287 0.0693 −0.2542 −0.1191 −0.0122
Zero-consumption, y1 0.1590 0.0686 0.0431 0.1508 0.2845

All zeros, y1 = 0 0.0303 0.0166 −0.0034 0.0305 0.0627
y1 = 1 0.0005 0.0025 −0.0042 0.0005 0.0058
y1 = 2 −0.0075 0.0060 −0.0192 −0.0075 0.0043
y1 = 3 −0.0233 0.0089 −0.0398 −0.0237 −0.0046

Zero-consumption, y2 0.1034 0.0704 −0.0179 0.0941 0.2327
All zeros, y2=0 −0.0254 0.0147 −0.0546 −0.0251 0.0035

y2 = 1 0.0684 0.0047 0.0594 0.0681 0.0781
y2 = 2 −0.0430 0.0118 −0.0660 −0.0431 −0.0195

Student Nonparticipation 0.0305 0.0357 −0.0312 0.0270 0.1076
Zero-consumption, y1 0.0548 0.0434 −0.0353 0.0564 0.1354

All zeros, y1 = 0 0.0852 0.0206 0.0437 0.0855 0.1247
y1 = 1 −0.0090 0.0027 −0.0149 −0.0089 −0.0041
y1 = 2 −0.0295 0.0079 −0.0455 −0.0294 −0.0143
y1 = 3 −0.0468 0.0106 −0.0657 −0.0475 −0.0244

Zero-consumption, y2 0.0284 0.0448 −0.0686 0.0313 0.1073
All zeros, y2 = 0 0.0588 0.0239 0.0065 0.0610 0.0995

y2 = 1 0.0390 0.0102 0.0207 0.0383 0.0604
y2 = 2 −0.0979 0.0142 −0.1211 −0.0994 −0.0659
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Table 6: Posterior mean, standard deviation and 95% credible intervals of parameters from BOP for
smoking and chewing tobacco.

Variable Mean St. Dev. 2.50% Median 97.50%

Smoking (y1) equation, (β1,α1)
Age/10 1.029 0.095 0.828 1.030 1.199
Age square/100 −0.104 0.010 −0.123 −0.105 −0.082
Education −0.078 0.014 −0.105 −0.078 −0.050
Education square 0.002 0.001 0.000 0.002 0.004
Income 0.000 0.002 −0.004 0.000 0.005
Male 2.066 0.091 1.888 2.067 2.245
Married 0.221 0.064 0.093 0.220 0.349
Muslim −0.083 0.049 −0.177 −0.083 0.015
Region 0.041 0.043 −0.044 0.041 0.125
Urban −0.091 0.048 −0.186 −0.091 0.002
Agriservice −0.121 0.050 −0.219 −0.122 −0.023
Self-employed −0.149 0.087 −0.318 −0.150 0.021
Sstudent −0.720 0.093 −0.905 −0.719 −0.538
α12 0.270 0.015 0.241 0.270 0.300
α13 0.956 0.028 0.901 0.956 1.012
Chewing (y2) equation, (β2,α2)
Age/10 0.797 0.091 0.609 0.801 0.977
Age square/100 −0.059 0.010 −0.079 −0.059 −0.039
Education −0.023 0.016 −0.055 −0.023 0.008
Education square −0.002 0.001 −0.005 −0.002 0.001
Income 0.002 0.003 −0.004 0.002 0.007
Male −0.441 0.074 −0.586 −0.441 −0.295
Married −0.010 0.073 −0.153 −0.011 0.134
Muslim −0.077 0.056 −0.187 −0.077 0.033
Region 0.430 0.049 0.334 0.430 0.528
Urban −0.082 0.056 −0.193 −0.081 0.026
Agriservice 0.078 0.073 −0.067 0.078 0.222
Self employed 0.177 0.087 0.010 0.176 0.351
Student −0.715 0.177 −1.070 −0.710 −0.378
α22 0.480 0.023 0.436 0.480 0.525
ρ12 −0.178 0.034 −0.244 −0.179 −0.111
Each equation includes father use and mother use variables as well as a constant term.

decreases probability of nonparticipation by about 2.6% but increases probability of zero-
consumption by 4.6%, implying a net increase of 2.0% in predicted probability of observing
zero. The effect of age in the case of chewing tobacco is qualitatively similar, negative effect on
genuine nonusers and positive effect on potential tobacco users, with the latter dominating
in the overall effect.

Income has opposite effects on probability of nonparticipation and zero-consumption,
predicting on average that tobacco is an inferior good for nonparticipants and a normal
good for participants. However, the 95% credible interval contains zero, suggesting that the
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Table 7: Posterior mean, standard deviation, and 95% credible intervals of marginal effects of covariates
on probability of smoking and chewing tobacco (BOP model).

Variable Probability Mean St. dev. 2.50% Median 97.50%

Age All zeros, y1 = 0 0.0368 0.0038 0.0288 0.0369 0.0438
y1 = 1 −0.0004 0.0003 −0.0009 −0.0004 0.0002
y1 = 2 −0.0073 0.0010 −0.0093 −0.0073 −0.0054
y1 = 3 −0.0292 0.0029 −0.0345 −0.0292 −0.0230

All zeros, y2 = 0 0.0213 0.0043 0.0125 0.0215 0.0298
y2 = 1 −0.0056 0.0013 −0.0082 −0.0057 −0.0031
y2 = 2 −0.0030 0.0008 −0.0047 −0.0030 −0.0014

Education All zeros, y1 = 0 −0.0342 0.0236 −0.0803 −0.0340 0.0126
y1 = 1 0.0038 0.0025 −0.0011 0.0039 0.0086
y1 = 2 0.0130 0.0084 −0.0039 0.0129 0.0293
y1 = 3 0.0174 0.0128 −0.0076 0.0172 0.0428

All zeros, y2 = 0 0.0322 0.0156 0.0002 0.0326 0.0616
y2 = 1 −0.0150 0.0077 −0.0296 −0.0151 0.0009
y2 = 2 −0.0201 0.0113 −0.0418 −0.0203 0.0024

Income All zeros, y1 = 0 −0.0001 0.0004 −0.0009 −0.0001 0.0007
y1 = 1 0.0000 0.0000 −0.0001 0.0000 0.0001
y1 = 2 0.0000 0.0001 −0.0002 0.0000 0.0002
y1 = 3 0.0000 0.0002 −0.0004 0.0000 0.0005

All zeros, y2 = 0 −0.0003 0.0005 −0.0012 −0.0003 0.0007
y2 = 1 0.0001 0.0002 −0.0002 0.0001 0.0004
y2 = 2 0.0001 0.0002 −0.0002 0.0001 0.0004

Male All zeros, y1 = 0 −0.3824 0.0121 −0.4064 −0.3826 −0.3586
y1 = 1 0.0641 0.0040 0.0567 0.0640 0.0722
y1 = 2 0.1540 0.0065 0.1416 0.1540 0.1667
y1 = 3 0.1643 0.0083 0.1487 0.1641 0.1807

All zeros, y2 = 0 0.0721 0.0123 0.0481 0.0721 0.0962
y2 = 1 0.0500 0.0032 0.0438 0.0500 0.0565
y2 = 2 −0.1222 0.0108 −0.1430 −0.1220 −0.1014

Married All zeros, y1 = 0 −0.0416 0.0124 −0.0666 −0.0415 −0.0174
y1 = 1 0.0039 0.0013 0.0015 0.0038 0.0067
y1 = 2 0.0131 0.0042 0.0053 0.0130 0.0218
y1 = 3 0.0246 0.0070 0.0106 0.0247 0.0385

All zeros, y2 = 0 0.0018 0.0118 −0.0207 0.0018 0.0254
y2 = 1 0.0622 0.0031 0.0563 0.0622 0.0685
y2 = 2 −0.0640 0.0114 −0.0873 −0.0640 −0.0420

Muslim All zeros, y1 = 0 0.0154 0.0092 −0.0029 0.0154 0.0331
y1 = 1 −0.0013 0.0008 −0.0028 −0.0013 0.0002
y1 = 2 −0.0044 0.0026 −0.0093 −0.0044 0.0008
y1 = 3 −0.0097 0.0058 −0.0211 −0.0097 0.0018

All zeros, y2 = 0 0.0126 0.0093 −0.0051 0.0125 0.0313
y2 = 1 0.0613 0.0031 0.0555 0.0613 0.0675
y2 = 2 −0.0739 0.0091 −0.0922 −0.0739 −0.0562

Father use All zeros, y1 = 0 0.7604 0.0042 0.7521 0.7604 0.7684
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Table 7: Continued.

Variable Probability Mean St. dev. 2.50% Median 97.50%

y1 = 1 0.0477 0.0027 0.0426 0.0477 0.0531
y1 = 2 0.0982 0.0035 0.0915 0.0982 0.1051
y1 = 3 0.0937 0.0032 0.0874 0.0936 0.1000

All zeros, y2 = 0 0.8713 0.0039 0.8635 0.8713 0.8789
y2 = 1 0.0623 0.0030 0.0566 0.0623 0.0684
y2 = 2 0.0664 0.0030 0.0607 0.0664 0.0724

Mother use All zeros, y1 = 0 0.7604 0.0042 0.7521 0.7604 0.7684
y1 = 1 0.0477 0.0027 0.0426 0.0477 0.0531
y1 = 2 0.0982 0.0035 0.0915 0.0982 0.1051
y1 = 3 0.0937 0.0032 0.0874 0.0936 0.1000

All zeros, y2 = 0 0.8713 0.0039 0.8635 0.8713 0.8789
y2 = 1 0.0623 0.0030 0.0566 0.0623 0.0684
y2 = 2 0.0664 0.0030 0.0607 0.0664 0.0724

Region All zeros, y1 = 0 −0.0075 0.0079 −0.0229 −0.0075 0.0080
y1 = 1 0.0006 0.0007 −0.0007 0.0006 0.0020
y1 = 2 0.0022 0.0023 −0.0023 0.0022 0.0067
y1 = 3 0.0047 0.0049 −0.0050 0.0047 0.0144

All zeros, y2 = 0 −0.0691 0.0078 −0.0846 −0.0691 −0.0539
y2 = 1 0.0756 0.0038 0.0684 0.0755 0.0832
y2 = 2 −0.0065 0.0070 −0.0200 −0.0065 0.0072

Urban All zeros, y1 = 0 0.0167 0.0087 −0.0003 0.0167 0.0339
y1 = 1 −0.0014 0.0008 −0.0030 −0.0014 0.0000
y1 = 2 −0.0049 0.0026 −0.0100 −0.0049 0.0001
y1 = 3 −0.0104 0.0054 −0.0210 −0.0104 0.0002

All zeros, y2 = 0 0.0130 0.0088 −0.0041 0.0129 0.0303
y2 = 1 0.0592 0.0036 0.0524 0.0591 0.0664
y2 = 2 −0.0721 0.0074 −0.0866 −0.0721 −0.0576

Agriservice All zeros, y1 = 0 0.0218 0.0088 0.0043 0.0219 0.0390
y1 = 1 −0.0018 0.0007 −0.0032 −0.0018 −0.0004
y1 = 2 −0.0062 0.0025 −0.0110 −0.0062 −0.0013
y1 = 3 −0.0138 0.0057 −0.0250 −0.0139 −0.0027

All zeros, y2 = 0 −0.0127 0.0119 −0.0366 −0.0127 0.0106
y2 = 1 0.0656 0.0043 0.0572 0.0655 0.0742
y2 = 2 −0.0528 0.0094 −0.0711 −0.0529 −0.0338

Self employed All zeros, y1 = 0 0.0277 0.0162 −0.0039 0.0277 0.0592
y1 = 1 −0.0028 0.0018 −0.0065 −0.0027 0.0003
y1 = 2 −0.0087 0.0053 −0.0194 −0.0086 0.0012
y1 = 3 −0.0163 0.0093 −0.0335 −0.0165 0.0025

All zeros, y2 = 0 −0.0290 0.0144 −0.0578 −0.0286 −0.0017
y2 = 1 0.0686 0.0046 0.0600 0.0685 0.0779
y2 = 2 −0.0396 0.0116 −0.0617 −0.0398 −0.0162

Student All zeros, y1 = 0 0.1287 0.0155 0.0980 0.1286 0.1588
y1 = 1 −0.0173 0.0030 −0.0235 −0.0171 −0.0118
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Table 7: Continued.

Variable Probability Mean St. dev. 2.50% Median 97.50%

y1 = 2 −0.0475 0.0069 −0.0614 −0.0475 −0.0343
y1 = 3 −0.0639 0.0063 −0.0758 −0.0640 −0.0510

All zeros, y2 = 0 0.0855 0.0151 0.0531 0.0866 0.1117
y2 = 1 0.0278 0.0071 0.0154 0.0274 0.0428
y2 = 2 −0.1133 0.0088 −0.1288 −0.1140 −0.0944

effect of income is weak. Generally, the opposing effects on probabilities of nonparticipation
and zeroconsumption would have repercussions on both the magnitude and the statistical
significance of the full effect of observing zero-consumption. Similar considerations apply
to positive levels of consumption since the marginal effect on probability of observing
consumption level j (j = 1, 2, . . .) can be decomposed into the marginal effects on (i)
participation P(si = 1) and (ii) levels of consumption conditional on participation, P(yri = j |
si = 1). These results show that policy recommendations that ignore excess zeros may lead to
misleading conclusions.

5. Conclusion

In this paper we analyze the zero-inflated bivariate ordered probit model in a Bayesian
framework. The underlying model arises as a mixture of a point mass distribution at (0, 0) for
nonparticipants and the bivariate ordered probit distribution for participants. The Bayesian
analysis is carried out using MCMC techniques to approximate the posterior distribution of
the parameters. Using household tobacco survey data with substantial proportion of zeros,
we analyze the socioeconomic determinants of individual problem of smoking and chewing
tobacco. In our illustration, we find evidence that accounting for excess zeros provides
very good fit to the data. The use of a model that ignores zero-inflation masks differential
effects of covariates on nonusers and users at various levels of consumption, including
zeros. The Bayesian approach to modeling excess zeros provides computational flexibility of
generalizing to multivariate ordered response models as well as ordinal panel data models.

The proposed zero-inflated bivariate model is particularly useful when most of the
bivariate ordered outcomes are zero (y1 = 0, y2 = 0). In addition to allowing for inflation
in the double-zero state, our approach can be extended to allow for zero inflation in each
component. If needed, other states in an ordered regression model may be inflated as well.
These extensions need to be justified empirically on a case-by-case basis and are beyond the
scope of this paper.

Appendices

A.

For more details see Tables 6 and 7.

B.

WinBUGS Code for Fitting the Proposed Models (see Algorithm 1).
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#Variable names in the tobacco data are given in y[,1:21]
model {

for(h in 1:N) {
## participation model ###

cov2[h]<- gama[1]+gama[2]*y[h,6]+gama[3]*y[h,7]+gama[4]*y[h,8]+gama[5]*y[h,9]
cov3[h]<- gama[6]*y[h,10]+gama[7]*y[h,11]+gama[8]*y[h,12]+gama[9]*y[h,13]
cov4[h]<- gama[10]*y[h,14] +gama[11]*y[h,15]+gama[12]*y[h,16]
cov5[h]<- gama[13]*y[h,17]+gama[14]*y[h,18]+gama[15]*y[h,19] +gama[16]*y[h,20]
cov[h] <- cov2[h]+cov3[h]+cov4[h] +cov5[h]
pi[h] <- phi(-cov[h])
ph.5a[h] <- phi(cov[h])

### consumption model #####
#Smoking #

covar2[h]<-beta[1]+beta[2]*y[h,6]+beta[3]*y[h,7]+beta[4]*y[h,8]+beta[5]*y[h,9]
covar3[h]<-beta[6]*y[h,10]+beta[7]*y[h,11]+beta[8]*y[h,12]+beta[9]*y[h,13]

+beta2[1]*y[h,16]
covar4[h]<-beta2[2]*y[h,17]+beta2[3]*y[h,18]+beta2[4]*y[h,19]+beta2[5]*y[h,20]
covar[h] <- covar2[h]+covar3[h]+covar4[h]

#Chewing #
covar2.chew[h]<-beta.chew[1]+beta.chew[2]*y[h,6]+beta.chew[3]*y[h,7]

+beta.chew[4]*y[h,8
covar3.chew[h] <- beta.chew[5]*y[h,9]+beta.chew[6]*y[h,10]+beta.chew[7]*y[h,11]
covar4.chew[h] <- beta.chew[8]*y[h,12]+beta.chew[9]*y[h,13]
covar5.chew[h] <- beta2.chew[1]*y[h,16]+beta2.chew[2]*y[h,17]

+beta2.chew[3]*y[h,18]
covar6.chew[h] <- beta2.chew[4]*y[h,19]+ beta2.chew[5]*y[h,20]
covar.chew2[h] <-covar2.chew[h]+covar3.chew[h]+covar4.chew[h]
covar.chew3[h] <-covar5.chew[h]+covar6.chew[h]+covar7.chew[h]
covar.chew[h] <- covar.chew2[h]+covar.chew3[h]

# Cumulative probability of < j
ph.2[h] <- (1/sqrt(2*3.14159))*exp(-0.5*covar[h]*covar[h])
ph.3[h] <- (1/sqrt(2*3.14159))*exp(-0.5*(alpha[1]-covar[h])*(alpha[1]-covar[h]))
ph.4[h] <- (1/sqrt(2*3.14159))*exp(-0.5*(alpha[2]-covar[h])*(alpha[2]-covar[h]))
ph.5b[h]<- phi(-covar[h])

#joint CDF probability for ((y1,y2)=(0,0))
nu.0[h] <- -rho12*ph.2[h]/phi(-covar[h])
s2.0[h] <-1+rho12*(-covar[h])*nu.0[h]-nu.0[h]*nu.0[h]
Q.00[h] <-ph.5b[h]*phi((-covar.chew[h]-nu.0[h])/sqrt(s2.0[h]))

#joint CDF probability for ((y1,y2)=(0,1))
Q.01[h] <-ph.5b[h]*phi((alpha.chew-covar.chew[h]-nu.0[h])/sqrt(s2.0[h]))

......
#joint CDF probability for ((y1,y2)=(3,2))

Q.32[h] <-1

mu[h,1] <- pi[h] + ph.5a[h]*Q.00[h] #p[0,0]
mu[h,2] <- ph.5a[h]*(Q.01[h]-Q.00[h]) #p[0,1]
mu[h,3] <- ph.5a[h]*(Q.02[h]-Q.01[h]) #p[0,2]
mu[h,4] <- ph.5a[h]*(Q.10[h]-Q.00[h]) #p[1,0]
mu[h,5] <- ph.5a[h]*(Q.11[h]-Q.10[h]-Q.01[h]+Q.00[h]) #p[1,1]
mu[h,6] <- ph.5a[h]*(Q.12[h]-Q.11[h]-Q.02[h]+Q.01[h]) #p[1,2]
mu[h,7] <- ph.5a[h]*(Q.20[h]-Q.10[h]) #p[2,0]
mu[h,8] <- ph.5a[h]*(Q.21[h]-Q.20[h]-Q.11[h]+Q.10[h]) #p[2,1]
mu[h,9] <- ph.5a[h]*(Q.22[h]-Q.21[h]-Q.12[h]+Q.11[h]) #p[2,2]
mu[h,10] <- ph.5a[h]*(Q.30[h]-Q.20[h]) #p[3,0]
mu[h,11] <- ph.5a[h]*(Q.31[h]-Q.30[h]-Q.21[h]+Q.20[h])

ph.5a[h]*(Q.32[h]-Q.31[h]-Q.22[h]+Q.21[h])
#p[3,1]
#p[3,2]mu[h,12] <-

y[h,21] ~dcat(mu[h,1:12])}}

Algorithm 1
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