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We propose a marginalized joint-modeling approach for marginal inference on the association bet-
ween longitudinal responses and covariates when longitudinal measurements are subject to in-
formative dropouts. The proposed model is motivated by the idea of linking longitudinal respons-
es and dropout times by latent variables while focusing on marginal inferences. We develop a sim-
ple inference procedure based on a series of estimating equations, and the resulting estimators are
consistent and asymptotically normal with a sandwich-type covariance matrix ready to be esti-
mated by the usual plug-in rule. The performance of our approach is evaluated through simula-
tions and illustrated with a renal disease data application.

1. Introduction

Longitudinal studies often encounter data attrition because subjects drop out before the des-
ignated study end. Both statistical analysis and practical interpretation of longitudinal data
can be complicated by dropouts. For example, in the Modification of Diet in Renal Disease
(MDRD) study [1, 2], one main interest was to investigate the efficacy of interventions of
blood pressure control and diet modification on patients with impaired renal functions. The
primary outcome was glomerular filtration rate (GFR), which measured filtering capacity of
kidneys, and was repeatedly measured over the study period. However, some patients could
leave the study prematurely for kidney transplant or dialysis, which precluded further GFR
measurements. This resulted in a dropout mechanism that could relate to patients’ kidney
function and correlate with their GFR values. Other patients were followed to the end of the
study or dropped out due to independent reasons. Thus, statistical analysis of longitudinal
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GFR needs to take into consideration the presence of mixed types of informative and inde-
pendent dropouts.

Many statistical models and inference approaches have been proposed to accommo-
date the nonignorable missingness into modeling longitudinal data (see reviews [3–8]).
According to the target of inference and the interpretation of model parameters, existing
methods can be classified into three categories: subject-specific inference, event-conditioning
inference, and marginal inference. First, a widely used modeling strategy for longitudinal
data with informative dropouts is to specify their joint distribution via shared or correlated
latent variables. Under such model assumptions, the longitudinal parameters have a con-
ditional, subject-specific interpretation (e.g., [9–11]). But the interpretation of longitudinal
parameters usually changes with the number and characteristics of latent variables assumed,
for example, a single random intercept versus a random intercept plus a random slope.

Second, event-conditioning approaches have also been widely used when the target
of inference is within subgroups of patients with particular dropout patterns or when the
dropout can potentially change the material characteristic of the longitudinal process (e.g.,
death). The inference is usually conducted conditioning on the dropout pattern or on the
occurrence of the dropout event. Thus, model parameters have an event-conditioning sub-
population-averaged interpretation, for example, pattern-mixture models for the group ex-
pectation of each dropout pattern [3, 12]; treatment effects among survivors [13]; gender
and age effects in mortal cohort [14]. Because the interpretation of such models is made
by conditioning on a future event, event-conditioning approaches may be natural in a ret-
rospective setting but may not be directly useful for the evaluation of treatment efficacy
prospectively.

Lastly, when the research objective is to study covariate effects at population level in a
dropout-free situation, marginal models address this concern directly. When data are without
missing or missing completely at random (using Rubin’s definition on missingness [15]), the
estimation of model parameters can be carried out by the generalized estimating equation
(GEE) approach assuming a “working” correlation matrix [16]. When dropouts are missing
at random, the inverse probability-weighted GEEmethods are commonly used [17, 18]. In the
presence of informative dropouts, the class of selection models that were originally proposed
to adjust selection bias in econometrics [19] have been widely used for the marginal
analysis of longitudinal data [20–22]. Recently, the marginalized transition model [23] and
marginalized pattern-mixture model [24] were proposed for binary longitudinal data with
finite nonignorable nonresponse patterns. These marginalized approaches provide a power-
ful tool for studying the marginal association between longitudinal outcomes and covariates
while incorporating nonignorable nonresponses.

In this paper, we shall adopt the idea of shared latent variables to account for the
dependence between longitudinal responses and informative dropouts while focusing on
marginal inference for the longitudinal responses. Here dropouts can occur on a continuous
time scale. We develop an effective estimation procedure built on a series of asymptotically
unbiased estimating equations with light computational burden. The resulting estimators for
longitudinal parameters are shown to be consistent and asymptotically normal, with a sand-
wich-type variance-covariance matrix that can be estimated by the usual plug-in rule.

The remainder of the paper is organized as follows. In Section 2, we introduce the nota-
tion and the proposed semiparametric marginalized model. In Section 3, a simple estimating
equation-based procedure is first proposed for the situation with pure informative dropouts
and is extended to a more general situation where there is a mixture of random dropouts
and informative dropouts. Asymptotic properties of resulting estimators are also studied.
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Simulation studies and an application to a renal disease data set are given in Section 4. Some
remarks are discussed in Section 5. All the technical details are provided in the appendix.

2. Notation and Model Specification

2.1. Data Notation

Consider that a longitudinal study follows n subjects over time period [0, τ]. For the ith
subject i = 1, . . . , n, the complete-data consist of {Yij , Xij , tij , j = 1, . . . , ni}, where Yij is the value
of response at the jth observation time tij andXij is a p×1 vector of covariates associated with
response Yij . Note that Xij includes baseline covariates that are separately denoted by Zi

and potential time-dependent covariates. Let Ti denote the informative dropout time and Ci

denote the random censoring time that is independent of (Yij , Ti) given the covariates. In
practice, we observe (T ∗

i , δi), where T ∗
i = min(Ti, Ci) and δi = I(Ti ≤ Ci) taking the value of

1 if the informative dropout time is observed and 0 otherwise. Throughout the paper, let I(·)
denote the indicator function. Due to the dropout, longitudinal responses and covariates can
only be observed at tij ≤ T ∗

i . Hence, the observed data are {Yij , Xij , tij , T
∗
i , δi, i = 1, . . . , n, j =

1, . . . , mi}, wheremi =
∑ni

j=1 I(tij ≤ T ∗
i ).

2.2. Semiparametric Marginalized Latent Variable Model

We first introduce the composition of our proposed model and then discuss the model moti-
vation and interpretation. The first component is a marginal generalized linear model for
longitudinal responses Yij ’s:

g
{
E
(
Yij | Xij

)}
� g

{
μij
}
= β′MXij , (2.1)

where g(·) is a known link function and μij denotes the marginal expectation. The second
component is a linear transformation model for the informative dropout time Ti:

H(Ti) = −θ′Zi + ηi, (2.2)

whereH(·) is an unspecified monotone transformation function and ηi is assumed to follow
a known continuous distribution F(·) that is independent of Zi. The last component is a con-
ditional mean model characterizing the dependence between longitudinal responses and in-
formative dropouts:

g
{
E
(
Yij | Xij , ηi

)}
� g

{
μij
(
ηi
)}

= Δij + α′bij
(
ηi
)
, (2.3)

where the latent random effects bi(ηi) = {b′i1(ηi), . . . , b′ini(ηi)} are investigator-specified func-
tions of ηi and covariates, and Δij is an implicit parameter whose value is determined by the
integral equation matching the conditional mean model (2.3) with the corresponding mar-
ginal model (2.1), that is,

g−1(β′MXij

)
= E

(
Yij | Xij

)
= E

{
E
(
Yij | Xij , ηi

)}
=
∫

g−1{Δij + α′bij
(
η
)}
dF
(
η
)
. (2.4)
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The marginal mean model (2.1) directly specifies the marginal relationship between
the responses and covariates, and βM is the p × 1 marginal regression parameters of main
interest. Next, the semiparametric linear transformation model (2.2) is chosen to provide
a flexible survival model for the informative dropout time while it still can be easily incor-
porated into model (2.3) for the dependence of the longitudinal responses and informative
dropouts. Model (2.2) includes the proportional hazards model [25], the proportional odds
model [26], and the Box-Cox transformation model as special cases and has been studied
intensively in survival analysis literature [27–29]. In addition, as we present in Section 3, the
explicit assumption on the error distribution in (2.2) can facilitate the “marginalization” pro-
cedure for parameter estimation.

The conditional meanmodel (2.3) is motivated by the construction of themarginalized
random-effects model [30, 31]. As a motivating example, we consider a continuous Gaussian
process following a simple random-effects model, Yij = β′Xij + b0i + b1itij + εij , where
(bi0, bi1) are the random intercept and slope, and error terms εij , j = 1, . . . , ni are assumed
to followN(0,Σi) but independent of (bi0, bi1) or ηi. Note that εij ’s can still exhibit temporal
dependence in addition to what has been accounted by the random effects, that is, Σi with
AR(1) covariance structure. Furthermore, as in joint modeling approaches via latent vari-

ables, the joint distribution of (b0i, b1i, ηi) is assumed to beN
(

0,
(

Σb,C
C′,1

))

. It is easy to see that

the conditional mean has the expression as model (2.3),

E
(
Yij | Xij , ηi

)
= Δij + C1ηi + C2ηitij . (2.5)

We use model (2.3) primarily as a parsimonious model for the dependence structure between
the longitudinal responses and informative dropout times. However, note that although
model (2.3) takes a similar form as the marginalized random-effects model, it does not
intend to fully specify the joint distribution of the repeated measurements since model
(2.3) only specifies the conditional mean function and there is no conditional independence
assumed.

Note that Δij is the solution of (2.4), and thus its value implicitly depends on βM,
α, the formulation of bij(ηi) and the distribution of ηi. The specification of bij(ηi) reflects
investigator’s assumptions on the dependence structure among the longitudinal responses
and their association with the dropout times. It is well known that the dependence assump-
tions between longitudinal measurements and informative dropouts are usually unverifiable
from the observed data, but it intrinsically affects the inference about βM. Thus, a sensitivity
analysis under various assumptions is always warranted. It is clear that the sensitivity ana-
lysis can be easily conducted within the framework of model (2.3). For example, the analysis
may start with a large model in the specification for α′bij(ηi), for example, α1ηi + α2ηitij +
α′3ηiXij , and then examine the statistical significance of estimates for α’s to further simplify
the model. As shown in the next subsection, complex structure can be imposed on bij(ηi)
without introducingmuch extra computation. Lastly, we note that themarginal interpretation
of longitudinal parameters in model (2.1) is invariant under different specifications of the
conditional mean model (2.3).
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3. Estimation and Asymptotic Properties

3.1. Conditional Generalized Estimating Equation

First, assume that ηi is known. We construct a “conditional” generalized estimating equation
for B = (β′M, α

′)′. More specifically, the estimating functionU(B) is specified as

n∑

i=1

A′
i·
(
ηi
)
Wi

[
Yi· − µi·

(
ηi
)]

=
n∑

i=1

A′
i·
(
ηi
)
Wi

[
Yi· − g−1{Δi· + bi·

(
ηi
)
α
}]
, (3.1)

where Yi· denotes the mi × 1 vector of observed responses of subject i; Δi· = (Δi1, . . . ,Δimi)
′;

bi·(ηi) = {bi1(ηi), . . . , bimi(ηi)}′; µi·(ηi) = {μi1(ηi), . . . , μimi(ηi)}′; Ai·(ηi) = [∂µi·(ηi)/∂β
′
M,

∂µi·(ηi)/∂α
′];Wi is ami ×mi weight matrix.

It is easy to see that U(B) has mean zero at the true parameter values B0 under model
(2.3). Note that the vector of marginal parameters βM is implicitly present in U(B) with Δi·
through the constrain equation (2.4). Thus, the Jacobian matrix Ai·(ηi) needs to be derived
using both the constrain (2.4) andmodels (2.1) and (2.3), which is different from the ordinary
GEE. More specifically, entries of the Jacobian matrix Ai·(ηi) are given by

∂μij
(
ηi
)

∂βM
= XijΥij

[
E
{
Υij
(
ηi
)}]−1Υij

(
ηi
)
,

∂μij
(
ηi
)

∂α
=
{
bij
(
ηi
) − E

{
bij
(
ηi
)
Υij
(
ηi
)}[

E
{
Υij
(
ηi
)}]−1}Υij

(
ηi
)
,

(3.2)

where Υij = 1/ġ{g−1(β′MXij)}, Υij(ηi) = 1/ġ[g−1{Δij + α′bij(ηi)}], and we use ȧ(x) to denote
the derivative of a function a(x) throughout this paper. In particular, we have Υij = μij(1−μij)
and Υij(ηi) = μij(ηi){1 − μij(ηi)} under the logit-link function for binary data; Υij = μij and
Υij(ηi) = μij(ηi) under the log-link function for count data. Thus, under these canonical link
functions, Υij = Var(Yij | Xij) and Υij(ηi) = Var(Yij | Xij , ηi) are the marginal variance and
conditional variance of the responses, respectively. In addition, these formulations also fa-
cilitate our selection of the weight matrix Wi. For example, for binary longitudinal data with
logit-link function, we can choose a weight matrix as W−1

i = diag{Var(Yij | Xij , ηi), j =
1, . . . , mi}.

It is clear that the implementation of the estimating function (3.1) requires the knowl-
edge of ηi, which is an unknown quantity and has to be estimated first. The estimation of the
semiparametric linear transformation model (2.2) has been studied by many authors [27–29].
In particular, Chen et al. [27] proposed a class of martingale-based estimating equations,

n∑

i=1

∫∞

0
Zi

[
dNi(t) − I

(
T ∗
i ≥ t)dΛ{θ′Zi +H(t)

}]
= 0,

n∑

i=1

[
dNi(t) − I

(
T ∗
i ≥ t)dΛ{θ′Zi +H(t)

}]
= 0, ∀t ≥ 0,

(3.3)
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whereNi(t) = I(T ∗
i ≤ t, δi = 1). Then an iterative algorithm can be carried out to solve θ and

H simultaneously. We estimate (θ,H) using the approach of Chen et al. [27] and shall denote
the estimates as Θ̂ � (θ̂, Ĥ).

3.2. Estimation Procedure for Pure Informative Dropouts

We first consider the situation of pure informative dropouts, that is, δi ≡ 1. Define η̂i = Ĥ(Ti)+
θ̂′Zi and replace ηi’s in (3.1) with their estimated counterparts η̂i’s. Denote the resulting
estimating function by U(B; Θ̂) and define the estimator of B as the solution to U(B; Θ̂) = 0.
The estimation of B entails an iteration between solving nonlinear equations for Δij and up-
dating a Newton-Ralphson equation for B. More specifically, given the current estimated
value of B(J) at the Jth step, we first estimate Δ(J)

ij from

g−1
{
β
(J)′

M Xij

}
=
∫

g−1
{
Δij + α(J)

′
bij
(
η
)}
dF
(
η
)
, (3.4)

and then update the parameters B by

B(J+1) = B(J) +

{
n∑

i=1

A(J)
i

′(
η̂i
)
W(J)

i A(J)
i

(
η̂i
)
}−1{ n∑

i=1

A(J)
i

′(
η̂i
)
W(J)

i

[
Yi· − µ(J)

i·
(
η̂i
)]
}

, (3.5)

where A(J)
i (η̂i),W

(J)
i , and µ(J)

i· (η̂i) are evaluated at the current parameter values B(J) and Δ(J)
ij .

The algorithm is iterated until it converges. Because ηi is assumed to follow an explicit para-
metric distribution F, it greatly simplifies the marginalization procedure (3.4). We propose to
use the Gaussian-quadrature approach [32] to numerically evaluate (3.4) and A(J)

i (η̂i). Since
the integrand of (3.4) is monotonic inΔ(J)

ij and so is the whole integral, it is easy to calculate a

large number ofΔ(J)
ij , i = 1, . . . , n, j = 1, . . . , mi, in all iterative steps. Moreover, the numerical

integration is only upon the one-dimensional space of ηi and requires light computation
even with complex structure assumed on bij(ηi). The proposed iterative algorithm has been
implemented using “R” codes, which are available from the authors upon request.

3.3. Estimation Procedure for Mixed Types of Dropouts

We generalize the proposed estimation function (3.1) to accommodate the situation where
there are mixed informative dropouts and random censoring. More specifically, the modified
estimating equation is given by

U∗(B;Θ) =
n∑

i=1

A∗′
i·
(
η∗i , δi

)
W∗

i

[
Yi· − µ∗

i·
(
η∗i , δi

)]
= 0, (3.6)

where η∗i = H(T ∗
i ) + θ

′Zi; the jth component of µ∗
i·(η

∗
i , δi) is

μ∗
ij

(
η∗i , δi

)
= δig−1{Δij + α′bij

(
η∗i
)}

+ (1 − δi)E
[
g−1{Δij + α′bij

(
η
)} | η ≥ η∗i

]
, (3.7)



Journal of Probability and Statistics 7

and the Jacobian matrix A∗
i·(η

∗
i , δi) = [∂µ∗

i·(η
∗
i , δi)/∂β

′
M, ∂µ

∗
i·(η

∗
i , δi)/∂α

′]. When δi = 1, the ith
component of U∗(B;Θ) is the same as the one in (3.1). For δi = 0, the entries of A∗

i·(η
∗
i , 0) are

given by

∂μ∗
ij

(
η∗i , 0

)

∂βM
= XijΥij

[
E
{
Υij
(
ηi
)}]−1E

{
Υij
(
η
) | η ≥ η∗i

}
,

∂μ∗
ij

(
η∗i , 0

)

∂α
= E

{
bij
(
η
)
Υij
(
η
) | η ≥ η∗i

} − E
{
bij
(
ηi
)
Υij
(
ηi
)}[

E
{
Υij
(
ηi
)}]−1E

{
Υij
(
η
) | η ≥ η∗i

}
.

(3.8)

In addition, the entries of the weight matrix can be changed to Var{Yij | Xij , η
∗
i , δi} accord-

ingly. Conditional expectations of various functions given η ≥ η∗i are computed using the
Gaussian-quadrature method. Let η̂∗i = Ĥ(T ∗

i ) + θ̂
′Zi and replace η∗i ’s in (3.6) with their es-

timated counterparts η̂∗i ’s. Denote the resulting estimating function by U∗(B; Θ̂). Then the
estimator B̂ ofB can be obtained from the equationU∗(B; Θ̂) = 0 using the same iterative algo-
rithm described in the previous subsection.

3.4. Asymptotic Properties of B̂

In this subsection, we establish the asymptotic properties of B̂. Towards this end, we need the
following assumptions.

(C1) The covariates Xij ’s are bounded with probability 1.

(C2) The true parameter values B0 and θ0 belong to the interior of a known compact set,
and the true transformation functionH0 has a continuous and positive derivative.

(C3) Let Λ(·) denote the cumulative hazard function of ηi. Define λ(t) = Λ̇(t) and ψ(t) =
λ̇(t)/λ(t). Then λ(·) is positive, ψ(·) is continuous, and limt→−∞λ(t) = 0 =
limt→−∞ψ(t).

(C4) τ is finite and satisfies P(T > τ) > 0 and P(C = τ) > 0.

(C5) The matrix Ω ≡ E{A∗′
1·(η

∗
1, δ1)W1A∗

1·(η
∗
1, δ1)} is positive finite, and the number of

repeated measurementsmi 
N.

The regularity conditions (C1)–(C4) are also used by Chen et al. [27] to derive the con-
sistency and asymptotically normality of the estimators Θ̂. Condition (C5) is needed to
establish the consistency and asymptotic normality of B̂, which is given in the following
theorem.

Theorem 3.1. Under conditions (C1)–(C5), with probability 1, |B̂ − B0| → 0. In addition, one has,
as n → ∞,

√
n
(
B̂ − B0

)
−→DN

(
0,Ω−1VΩ−1

)
. (3.9)

The definition of V and a sketch of the proof for Theorem 3.1 are given in the appendix.
The asymptotic variance-covariance matrix can be consistently estimated by its empirical
counterpart Ω̂−1V̂ Ω̂−1, which can be easily obtained using the usual plug-in rule.
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4. Numerical Studies

4.1. Simulations

We conducted a series of simulation studies to evaluate the finite-sample performance of our
proposed approach. Consider a binary longitudinal process with the marginal probability of
success as g−1(β0 + β1t + β2Z), where g was the logit-link function; observations occurred
at ti = {tij = j, j = 0, 1, . . . , 5}; Z was generated from a Bernoulli distribution with the
success probability of 0.5, and (β0, β1, β2) = (−1.5, 0.3, 1). The informative dropout time Ti
was generated from a linear transformation model H(Ti) = −θZi + ηi, where θ = −0.5. We
considered three distributions for ηi: the standard normal distribution (N.), the extreme
value distribution (E.), and the logistic distribution (L.), corresponding to the normal trans-
formation model, the Cox proportional hazard model, and the proportional odds model,
respectively, for the informative dropout time. We then generated the binary response Yij
independently from a Bernoulli distribution with the success probability of g−1{Δij+αbij(ηi)},
where Δij was calculated to match the marginal mean value as in (2.4) and α indicated the
level of dependence. We considered several combinations to specify the dependence between
longitudinal outcomes and informative dropout times. More specifically, when α = 0, there
was no informative dropouts; when α = 0.5 (or 0.25) and bij(ηi) = ηi, the dependence
existed and was linear in the latent variable ηi; when α = 0.25 (or 0.5) and bij(ηi) = ηitij ,
the dependence was present through an interaction between the latent variable and the
observation time.

For each scenario, we considered samples of size 100 and 200 and conducted 500 runs
of simulations. The Gaussian-quadrature approximation was calculated using 50 grid points.
We first considered the situation of pure informative dropouts and generated the dropout
time Ti from the transformation model with H0(t) = 2{arctan(t) + π/2}. Under the assump-
tions of ηi following the normal, the extreme value, and the logistic distributions, the average
numbers of repeated measurements were 3.91, 3.37, and 3.94, respectively. The estimation
results on β1 and α are summarized in Table 1. The proposed estimators are unbiased under
all simulated scenarios, and the Wald-type 95% confidence intervals all have reasonable
empirical coverage probabilities. The performance of the proposed method is consistent with
different distributional assumptions of ηi and different specifications of the dependence struc-
ture, and the results improve as the sample size increases.

Next, we consider the situation where there are mixed informative dropouts and ran-
dom censoring. For simplicity, let Ci be an administrative censoring at the end of the study,
that is, τ = 6. The informative dropout time Ti was generated from the transformation model
with H(t) = log(t) − 1 and ηi followed the standard normal distribution. This yielded the
proportion of informative dropouts of 69.6% and the average number of repeated meas-
urements about 4. Other settings were kept the same as in the previous simulations. The
simulation results are presented in Table 2. Again, the proposed approach gives unbiased
parameter estimates and reasonable coverage probabilities under all the scenarios. For com-
parison, we also implemented the ordinary GEEmethod [16]. When the informative dropout
is absent, that is, α = 0, the GEE method yields consistent parameter estimates of β1 as ex-
pected. But when there is informative dropout (α/= 0), the performance of the GEE method
deteriorates quickly as the magnitude of the dependence between the longitudinal data and
informative dropout increases.

Last, we conducted sensitivity analysis for the proposed approach and our simulations
consisted of two parts. First, as discussed in Section 2, to better characterize the dependence
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Table 1: Simulation results for pure informative dropouts.

F α bij(ηi)
β1 α

N Bias SSE SEE CP Bias SSE SEE CP

N.

0 ηi
100 0.001 0.084 0.082 0.948 0.004 0.130 0.127 0.954
200 0.006 0.057 0.058 0.952 −0.002 0.090 0.091 0.942

0.5 ηi
100 0.008 0.083 0.082 0.952 0.008 0.148 0.142 0.936
200 0.005 0.056 0.058 0.954 0.001 0.102 0.101 0.944

0.25 ηitij
100 0.004 0.102 0.101 0.940 0.006 0.083 0.081 0.938
200 0.009 0.071 0.071 0.948 −0.001 0.060 0.058 0.940

E.

0 ηi
100 0.007 0.107 0.097 0.920 0.001 0.150 0.140 0.942
200 0.002 0.069 0.069 0.950 −0.003 0.010 0.097 0.958

0.5 ηi
100 0.010 0.097 0.097 0.948 0.025 0.161 0.161 0.962
200 0.009 0.071 0.069 0.932 0.002 0.111 0.113 0.950

0.25 ηitij
100 0.026 0.138 0.135 0.936 0.001 0.124 0.114 0.926
200 0.009 0.089 0.095 0.954 0.001 0.079 0.082 0.952

L.

0 ηi
100 0.004 0.079 0.077 0.932 0.001 0.076 0.077 0.950
200 0.002 0.057 0.055 0.952 −0.001 0.058 0.054 0.938

0.5 ηi
100 0.009 0.079 0.076 0.944 0.007 0.114 0.105 0.928
200 0.002 0.053 0.054 0.964 0.006 0.074 0.075 0.956

0.25 ηitij
100 0.003 0.096 0.096 0.954 0.008 0.069 0.067 0.942
200 0.002 0.067 0.068 0.964 0.004 0.047 0.047 0.958

In Tables 1–3: F: error distribution of the semiparametric transformation model; N: sample size; SSE: sample standard
deviations of estimates; SEE: mean of estimates standard errors; CP: 95% coverage probability of Wald-type confidence
interval.

Table 2: Simulation results for mixed types of dropouts.

α bij(ηi) N
Proposed β1 Proposed α GEE β1

Bias SSE CP Bias SSE CP Bias SSE CP

0 ηi
100 0.003 0.075 0.958 −0.007 0.158 0.956 0.002 0.068 0.946
200 0.005 0.056 0.954 −0.003 0.114 0.944 0.005 0.049 0.956

0.25 ηi
100 0.006 0.073 0.948 0.009 0.156 0.964 0.061 0.068 0.878
200 0.004 0.055 0.950 −0.003 0.116 0.936 0.057 0.050 0.768

0.50 ηi
100 0.008 0.076 0.948 0.010 0.174 0.952 0.116 0.070 0.660
200 0.006 0.051 0.960 −0.008 0.121 0.956 0.113 0.049 0.380

0.25 ηitij
100 0.005 0.106 0.948 0.005 0.106 0.960 0.233 0.074 0.110
200 0.009 0.078 0.936 −0.007 0.077 0.940 0.233 0.054 0.000

0.50 ηitij
100 0.007 0.097 0.954 0.010 0.141 0.950 0.397 0.081 0.000
200 0.008 0.071 0.940 −0.008 0.104 0.936 0.395 0.059 0.000

structure between longitudinal responses and informative dropouts, we would suggest to
start with a large model in the specification for α′bij(ηi) and then examine the statistical
significance of estimates for α’s to further simplify the model. We simulated data from a
simple model with either α′bij(ηi) = α1ηi or α′bij(ηi) = α2ηitij , and then applied the proposed
approach by assuming a bigger model (2.3) as Δij + α1ηi + α2ηitij . The simulation results are
summarized in the top panel in Table 3. The proposed method can reasonably well estimate
all the parameters, and in particular, could correctly indicate the unnecessary zero term.
Second, we simulated data fromΔij +α1ηi+α2ηitij but fitted misspecified models that omitted
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Table 3: Sensitivity analysis for misspecified models under mixed types of dropouts.

True Fitted Proposed β1 Proposed α1 Proposed α2
N Bias CP Bias CP Bias CP

0.25ηi α1ηi + α2ηitij
100 0.009 0.946 0.014 0.956 0.002 0.950
200 0.009 0.964 −0.002 0.948 0.002 0.968

0.25ηitij α1ηi + α2ηitij
100 0.005 0.946 −0.004 0.954 0.007 0.956
200 0.009 0.936 0.001 0.956 −0.007 0.952

0.5ηi + 0.1ηitij α1ηi
100 0.071 0.860 0.119 0.918
200 0.069 0.788 0.103 0.896

0.2ηi + 0.25ηitij α2ηitij
100 −0.017 0.924 0.086 0.850
200 −0.017 0.902 0.078 0.692

some terms. The results are summarized in the lower panel of Table 3. It is evident that
misspecified models lead to biased estimates for both longitudinal regression coefficients and
dependence parameters.

4.2. Application to Renal Disease Data from MDRD Study

Here we considered a subgroup of 129 patients with low-protein diet in MDRD study B,
among whom, 62 patients were randomized to the group of normal-blood-pressure control
and 67 patients were randomized to the group of low-blood-pressure control. Besides the ran-
domized intervention, other covariates included time in study (time), baseline disease pro-
gression status (Prog), baseline blood pressure (Bp), and log-transformed baseline urine
protein level (log.Pt). There were 52 (40.3%) patients left the study prematurely for kidney
transplant or dialysis and were treated as informative dropouts.

We applied the proposed approach to estimate the marginal effects of covariates on
GFR values. To account for the possible informative dropouts, we assumed that the depen-
dence term α′bij(ηi) had a form of α1ηi+α2ηitij , analogous to the joint modeling approachwith
latent random intercept and random slope used in Schluchter et al. [33]. We considered the
situations of ηi following the standard normal, the extreme value, or the standard logistic
distributions. Because the outcome was a continuous variable, we used the identity link
function.

Our results are presented in Table 4 and compared with the results from the ordinary
GEE [16] with an independent working correlation matrix. More specifically, the slope
estimates from the proposed approach indicate a much faster decreasing rate of GFR (e.g.,
time Est = −0.27, SE = 0.03, under the normality assumption for ηi) than the result from the
ordinary GEE method (time Est = −0.14, SE = 0.03). A possible explanation is that those
patients remaining under observation usually have better kidney functions and thus higher
GFR values. The ordinary GEE approach that treats the observed patients as random repre-
sentatives of the population tends to underestimate the degressive trend of GFR.

The estimates for the intervention on blood pressure control show positive effect of the
low-blood-pressure control on the longitudinal GFR development. Although the results are
not statistically significant, the estimates from the proposed method (e.g., Intervention Est
= 0.82, SE = 1.07, under the normality assumption for ηi) are about twice large of the values
from the ordinary GEE method (Intervention Est = 0.35, SE = 0.90). Moreover, for the pro-
posed approach, the results under different distributional assumptions for ηi are quite similar.
The estimates of the dependency parameters (α1, α2) are positive and statistically significant.
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Table 4: Estimates of regression coefficients for the MDRD study.

Proposed GEE
Variable Normal EV Logistic

Est SE Est SE Est SE Est SE
Intercept 18.54 0.96 18.57 0.91 18.58 1.11 18.57 0.78
Time −0.27 0.03 −0.29 0.04 −0.28 0.03 −0.14 0.03
Intervention 0.82 1.06 0.74 1.01 0.71 1.17 0.35 0.90
Prog −0.14 1.07 −0.08 1.02 −0.14 1.19 −0.14 0.91
Bp −0.15 1.38 −0.20 1.34 −0.07 1.48 −0.36 0.49
log.Pt −1.09 0.39 −1.09 0.37 −1.12 0.42 −0.61 0.38
ηi 1.91 0.50 1.38 0.38 1.11 0.28
ηitij 0.14 0.04 0.14 0.04 0.08 0.03
Intervention: blood pressure control (1: low and 0: normal); Prog: baseline disease progression status (1: yes and 0: no);
Bp: baseline blood pressure; log.Pt: baseline log-transformed urine protein level.

This indicates that higher GFR values are positively associated with longer dropout times in
the study. In addition, our proposed approach shows that the baseline urine protein level
is significantly associated with the longitudinal GFR development, but the ordinary GEE
method does not show such significance. The results obtained using our proposed method
are also consistent with those reported in Schluchter et al. [33].

5. Discussion

In this paper, we propose a semiparametric marginalized model for marginal inference of the
relationship between longitudinal responses and covariates in the presence of informative
dropouts. The regression parameters represent the covariate effects on the population
level. The proposed estimators are expected to be insensitive to misspecification of the
latent variable distribution [31], which is desirable pertaining to the sensitivity analysis
on unverifiable assumptions for the informative dropouts. In practice, the choice between
marginal models and other types of joint modeling approaches should be determined by
study objective.

To estimate the regression parameters in the proposed marginalized model, we
proposed a class of simple conditional generalized estimating equations and demonstrated its
computational convenience. In general, a likelihood-based approach can be used to achieve
more efficient inference and is also of great interest. For example, a marginalized random
effects model [30, 31] can be used for the longitudinal process and a frailty model [34] can
be used for the dropout time. Furthermore, latent variables (bij , ηi) can be modeled by a
copula distribution or non-Gaussian distributions [35]. The likelihood-based methods enjoy
the high efficiency and facilitate the implementation of classical model selection procedures,
such as AIC or BIC; however, intensive computations are often involved when the dimension
of random effects is high.

Appendix

A. Proof of Theorem 3.1

Under the conditions (C1)–(C4), Chen et al. [27] established the consistency of θ̂ and the
uniform consistency of a transformed Ĥ(·), that is, supt∈[0,τ]| exp{Ĥ(t)}−exp{H0(t)}| = op(1).



12 Journal of Probability and Statistics

We first derive the consistency of the proposed estimator B̂, which is the solution of the equa-
tion U∗(B; Θ̂) = 0. Note that −(1/n)(∂U∗(B; Θ̂)/∂B) = (1/n)

∑
nA

∗′
i· (η̂

∗
i , δi)WiA∗

i·(η̂
∗
i , δi) is a

positive definite matrix, and by the law of large numbers and the consistency of θ̂ and Ĥ, it
converges uniformly to a deterministic positive definite matrix Ω(B) over a compact set of
B. In addition, we have that (1/n)U∗(B; Θ̂) converges uniformly to a deterministic function
u∗(B;Θ0) satisfying u∗(B0;Θ0) = 0 and −(∂u∗(B;Θ0)/∂B)|B=B0

= Ω(B0) = Ω. Thus, the esti-
mating equation U∗(B; Θ̂) = 0 exists a unique solution B̂. Since B0 is the unique solution of
u∗(B0;Θ0) = 0, the consistency of B̂ easily follows.

To prove the asymptotic normality, by the Taylor expansion, we have

√
n
(
B̂ − B0

)
=

⎧
⎨

⎩
− 1
n

∂U∗
(
B∗; Θ̂

)

∂B

⎫
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−1
1√
n
U∗
(
B0; Θ̂

)
, (A.1)

where B∗ lies between B̂ and B0. Since B̂ is consistent and −(1/n)(∂U∗(B; Θ̂)/∂B) converges
uniformly to Ω(B), we have that −(1/n)(∂U∗(B∗; Θ̂)/∂B) converges to Ω. Furthermore, the
Taylor expansion ofU∗(B0; Θ̂) around Θ0 gives
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(A.2)

whereOi = ∂Ĥ(T ∗
i ; θ)/∂θ|θ=θ0 and its asymptotic representation can be found in the appendix

of Chen et al. [27]. The asymptotic representations of θ̂ and Ĥ have also been derived by Chen
et al. [27],

√
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(
θ̂ − θ

)
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∗
1√
n
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0
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(A.3)

where Ni(t) = δiI(T ∗
i ≤ t) and ξi(t) = I(T ∗

i ≥ t) are the counting and at-risk processes,
respectively,Mi(t) =Ni(t)−

∫ t
0 ξi(s)dΛ{θ′0Zi+H0(s)} is themean-zeromartingale process, and
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the definitions of Σ∗ and the functions Λ∗(·), λ∗(·), B2(·), and μb(·) are given in the appendix
of Chen et al. [27].

Plugging these terms back to the expansion of (1/
√
n)U∗(B0; Θ̂) specified in (A.2),

some rearrangement yields that it is equal to
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The definition of B(t, s) can be found in Chen et al. [27].
Hence, (1/

√
n)U∗(B0; Θ̂) has been written as a standardized summation of indepen-

dent terms with mean zero. By the central limit theorem, it is asymptotically equivalent
to a multivariate Gaussian variable with zero mean and covariance matrix V , which is the
limit of

1
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From (A.1), it is easy to see that the estimator B̂ is asymptotically normal with mean zero and
the variance-covariancematrixΩ−1VΩ−1, which can be consistently estimated by its empirical
counterpart Ω̂−1V̂ Ω̂−1 using the usual plug-in rule.
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