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This paper proposes the use of the statistics of similarity values to evaluate the clusterability or structuredness associated with a
cell formation (CF) problem. Typically, the structuredness of a CF solution cannot be known until the CF problem is solved. In
this context, this paper investigates the similarity statistics of machine pairs to estimate the potential structuredness of a given
CF problem without solving it. One key observation is that a well-structured CF solution matrix has a relatively high percentage of
high-similarity machine pairs.Then, histograms are used as a statistical tool to study the statistical distributions of similarity values.
This study leads to the development of the U-shape criteria and the criterion based on the Kolmogorov-Smirnov test. Accordingly, a
procedure is developed to classify whether an input CF problem can potentially lead to awell-structuredor ill-structuredCFmatrix.
In the numerical study, 20 matrices were initially used to determine the threshold values of the criteria, and 40 additional matrices
were used to verify the results. Further, these matrix examples show that genetic algorithm cannot effectively improve the well-
structured CF solutions (of high grouping efficacy values) that are obtained by hierarchical clustering (as one type of heuristics).
This result supports the relevance of similarity statistics to preexamine an input CF problem instance and suggest a proper solution
approach for problem solving.

1. Introduction

Theresearch of this paper is like a crossroad ofmanufacturing
systems and computer science. Based on our disciplinary
background, we initially study the cell formation (CF) prob-
lem that seeks for the clustering of similar machines and
parts to support mass customization in [1]. In other words,
a CF problem is a two-mode clustering problem [2]. Due to
the NP-hard nature of the CF problem [3], many algorithms,
including exact, metaheuristic, and heuristic approaches,
have been proposed (to be discussed in Section 2.2.3). In
the study of hierarchical clustering (abbreviated as HC,
classified as a greedy-based heuristic approach), although
HC is not the most powerful in searching for near-optimal
solutions, it can yield satisfactory results comparable to some
powerful metaheuristic approaches (e.g., genetic algorithms)
for “well-structured” solutions. In this context, this research
investigates the conditions based on the statistics of similarity
values to estimate the potential structuredness of a given CF
problem without solving it.

In the domain of computer science, the notion of struc-
turedness somehow corresponds to the clusterability concept
[4]. Intuitively, clusterability can be interpreted as a measure
of an “intrinsic structure” of a dataset to be clustered [5].
Computer scientists have observed that a dataset of good
clusterability can be clustered quite effectively (i.e., less
impact from the NP-hard nature of the clustering problem).
This observation has been summarized in a statement that
“clustering is difficult only when it does not matter” (abbrevi-
ated as the CDNM thesis) [4, 6].

Notably, the measure of clusterability remains an open
topic in computer science. Ackerman andBen-David [4] have
surveyed different definitions of clusterability and shown
their incompatibility in pairwise comparisons. Nowakowska
et al. [5] argued that a clusterability measure should be
partition-independent so that it does not depend on the
clustering algorithms and the resulting solutions. Ackerman
et al. [7] proposed the use of the statistical distributions
of pairwise distances between any two objects to evaluate
clusterability.
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Figure 1: Comparison of well-structured and ill-structured matrices.

Back to the context of the CF problem, in response to
the CDNM thesis, we also observed that a heuristic approach
(e.g., HC in our case) can yield satisfactory results. To further
utilize this observation in practice, this research develops
the criteria that assess the potential structuredness (corre-
sponding to clusterability in computer science) of a given CF
problem and suggest either using HC or genetic algorithm
(GA) for problem solving. To verify the development, we
have applied numerical examples to examine the results of the
structuredness criteria and the quality of CF solutions via HC
and GA.

Though developed independently, we want to acknowl-
edge that our approach of evaluating the structuredness
criteria is similar to the statistical approach by Ackerman et
al. [7]. The difference lies in our application’s focus on the
CF problem, while Ackerman et al. [7] have focused on the
relatively high-level development for clustering tasks. This
difference explains our use of similarity measures (instead of
distances) in statistical analysis since they are common for the
CF problem and allow for some normalization in setting the
structuredness criteria. Further, our work numerically checks
the relations between structuredness criteria and the solution
quality by two different clustering approaches (i.e., HC and
GA).

Notably, this paper was extended from our conference
paper [8] with the improvement of the techniques (e.g., the
threshold setting and the normalization approach). Also,
additional numerical examples have been used in the eval-
uation.

The rest of this paper is organized as follows. Section 2
will overview theCFproblemanddiscuss the three properties
of a well-structured CF solution in order to clarify the logical
relation of similarity statistics. Section 3 will introduce the
histogram analysis of similarity values and develop the U-
shape criteria. Section 4 will introduce the Kolmogorov-
Smirnov (K-S) test, which is used to develop another criterion
to inform the matrix’s structuredness. Section 5 will discuss
the procedure that applies the developed criteria to classify

well-structured and ill-structured matrices. Section 6 will
examine the structuredness criteria via numerical examples,
which are also used to check the effectiveness of metaheuris-
tics via a two-stage solution process. Section 7 will conclude
this paper.

2. Background: Cell Formation Problem

2.1. Problem Introduction. In the design of a cellular man-
ufacturing system, one early and important decision is the
formation of machine groups and part families, and it is often
referred to as the cell formation (CF) problem. A simple
CF problem can be compactly captured by a machine-part
incidence matrix. Let M = {𝑚𝑖} (for i = 1 to m) be the set of
machines and P = {𝑝𝑗} (for j = 1 to n) be the set of parts.
Then, an incidence matrix, denoted as B = [b𝑖𝑗], indicates
whether machine m𝑖 is required to produce part p𝑗 (if so, b𝑖𝑗
= 1; otherwise, b𝑖𝑗 = 0). After solving the CF problem, the
matrix’s rows and columns can be reordered to reveal which
subset of machines (i.e., a machine group) is highly related to
which subset of parts (i.e., a part family).

By using the incidence matrices to represent CF solutions
(i.e., block-diagonal matrices), they can be roughly classified
into two types: well-structured and ill-structured matrix [2,
9]. As illustrated in Figure 1, a well-structured matrix has
few nonzero matrix entries outside the blocks (defined as
exceptional elements) and few zero matrix entries inside the
blocks (defined as voids). Precisely, exceptional elements are
the matrix entries of b𝑖𝑗 = 1 with m𝑖 and p𝑗 in different cells,
and voids are the matrix entries of b𝑖𝑗 = 0 with m𝑖 and
p𝑗 in the same call. The opposite conditions apply for
an ill-structured matrix (i.e., a matrix solution with many
exceptional elements and voids). A well-structured matrix
implies that part families can be produced quite exclusively by
somemachine groups so that the changes of few part families
will not be adversely impacting the production of other parts.
This is one desirable feature of cellularmanufacturing systems
[1].
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Toquantify the structuredness of aCFmatrix solution, we
use the traditional grouping efficacy (denoted as 𝜇), which is
formulated as follows [10].

𝜇 =
𝑛𝑒 − 𝑛𝑜𝑢𝑡
𝑛𝑒 + 𝑛𝑖𝑛

(1)

where n𝑒, n𝑜𝑢𝑡, n𝑖𝑛 are the total number of nonzero matrix
entries, exceptional elements, and voids, respectively. In a
perfect CF solution where n𝑜𝑢𝑡 = n𝑖𝑛 = 0, the grouping
efficiency is equal to its maximum value, i.e., one. When
there aremore exceptional elements (n𝑜𝑢𝑡 ) and voids (n𝑖𝑛), the
grouping efficacy value will become smaller.

Yet, not all incidence matrices can be converted to a
well-structured matrix due to the original complex interde-
pendency of the production requirements among machines
and parts. This situation cannot be resolved by advanced
optimization techniques as the root cause stems from the
original inputs of the CF problem. However, we cannot
practically know whether a given CF problem is going to
have a well-structured matrix or not until we actually solve
this problem. In this context, the purpose of this paper is to
assess the structuredness of a given CF problem by analyzing
the similarity of machines without actually solving it. In the
traditional CF notion, two machines can be said similar if
they are required mainly to produce a subset of common
parts. In this work, the Jaccard similarity coefficient is applied
[11, 12]. Let s𝑥𝑦 be the similarity value between machines m𝑥
and m𝑦. The formulation of the Jaccard similarity coefficient
is provided below.

𝑠𝑥𝑦 =
𝑎𝑥𝑦

𝑎𝑥𝑦 + 𝑏𝑥𝑦 + 𝑐𝑥𝑦
(2)

where a𝑥𝑦 is the number of parts that need both machinem𝑥
and m𝑦; b𝑥𝑦 is the number of parts that need machine m𝑥
but not machine m𝑦; c𝑥𝑦 is the number of parts that need
machine m𝑦 but not machine m𝑥. Conceptually, the Jaccard
similarity coefficient focuses on the number of common
features (e.g., a𝑥𝑦) that is normalized by the total number of
relevant features (e.g., a𝑥𝑦, b𝑥𝑦, and c𝑥𝑦). Notably, similarity is
only evaluated for any two machines (i.e., a machine pair).

After specifying the notion of machine similarity, let us
revisit the two examples in Figure 1. Each example has 30
machines, leading to 30×(30-1)/2 = 435 machine pairs. By
examining the similarity of any two machines (or machine
pairs), we find that the well-structured matrix has a higher
number of machine pairs with high-similarity values. In the
examples of Figure 1, we can get the following two statements
concerning the statistics of the machine similarity values.

(i) Well-structured matrix: 81 (out of 435) machine pairs
have similarity values higher than or equal to 0.80.

(ii) Ill-structured matrix: 4 (out of 435) machine pairs
have similarity values higher than or equal to 0.50.

In this illustration, it is roughly identified that a well-
structured matrix can have quite a different statistical distri-
bution of machine similarity values as compared to an ill-
structured matrix. This observation leads to an investiga-
tion question on the statistical conditions in which a well-
structured matrix can be classified. This investigation is the

focus of this paper. By knowing such statistical conditions,
engineers in the design of cellular manufacturing systems can
initially assess their production requirements via the statistics
ofmachine similarity. If the statistical data shows unfavorable
results (i.e., chance of getting a well-structured matrix is
low), they can either modify the production requirements
(e.g., buy more machines) or seek for other manufacturing
systems. It can save the efforts to solve the CF problem with
such initial assessment. Also, this paper will show that a
well-structured matrix can be satisfactorily obtained by some
less time-consuming heuristics (where complex optimization
methods may not bring additional benefits).

2.2. Properties of a Well-Structured CF Solution. To investi-
gate the statistical conditions of the structuredness of a CF
solution, this section will discuss the three properties of a
well-structured matrix. These three properties include (1)
high grouping efficacy, (2) high percentage of high-similarity
machine pairs, and (3) relative ease of obtaining satisfactory
CF solutions. Afterward, a research plan will be discussed.

2.2.1. Property I: High Grouping Efficacy. The original for-
mulation of the grouping efficacy (GE) in (1) can be found
in Kumar and Chandrasekharan [10], and it is intended to
replace a weighted sum function with a simple ratio to assess
the goodness of a CF solution (in a block-diagonal form).
Since then, the GE measure has become popular in the CF
research (e.g., [9, 13]). Despite its popularity, some researchers
have criticized its “built-in weights” [14], where a lower
number of voids (i.e., n𝑖𝑛) tend to give a better GE measure
(as compared to exceptional elements (i.e., n𝑜𝑢𝑡)). Brusco [15]
has commented that the nonlinearity of the GE measure has
incurred a challenge for finding the exact solutions for the CF
problems. As commented by Sarker and Mondal [16] in their
survey paper, it is not easy to develop a standard measure that
fits all CF problems. It is generally recognized that the GE
measure is good to discern the structuredness of the matrix-
based CF solutions [2]. Thus, we choose the GE measure in
this study.

Based on its definition, a well-structured matrix should
have few exceptional elements and voids, leading to a high
value of GE. While GE is effective in indicating the struc-
turedness of a CF solution (high value → well-structured
matrix), this value cannot be known until the CF problem
is solved. Thus, in this research, GE is used as a verification
measure to examine how well machine similarity can be
related to the structuredness of a CF solution.

2.2.2. Property II: High Percentage of High-SimilarityMachine
Pairs. Compared to the property of high grouping efficacy,
it is less obvious to know that a well-structured matrix has a
high percentage of high-similarity machine pairs. In view of
the Jaccard similarity coefficient in (2), there are two types
of factors used to assess the machine similarity. While a𝑥𝑦
(i.e., the number of common parts) is taken as a commonality
factor, both b𝑥𝑦 and c𝑥𝑦 (i.e., the number of parts processed
in one machine but not another one) serve as differentiating
factors to normalize the similarity measure. In turn, if the
similarity value of both machines is high, a𝑥𝑦 cannot be zero
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and the values of b𝑥𝑦 and c𝑥𝑦 should be small, implying
not only commonality but also exclusiveness of these two
machines to process their common parts. This feature can
potentially lead to smaller numbers of voids and exceptional
numbers, leading to a well-structured matrix.

In literature, the notion of similarity has been applied
for many years to address the CF problem, and the Jaccard
similarity coefficient is one of the early applications [11]. Since
then, many similarity coefficients have been proposed, and
the comparison study of similarity coefficients can be found
in Sarker [17], Mosier et al. [18], and Yin and Yasuda [19].
Notably, similarity is a context-dependent concept, and it
depends on the application and relevant information to assess
how similar between two objects. In our investigation, we
choose the Jaccard similarity coefficient because its notion
on the commonality and differentiating factors is straightfor-
ward to the simple CF application.

While similarity coefficients have been studied exten-
sively forCFproblems, the statistical distribution of similarity
values of a CF problem has not been investigated reasonably
in our understanding. Notably, these similarity values can be
found without solving the CF problems. Then, if we know
the relation between the statistical distribution of similarity
values and the GE measure, we can use the statistical
distribution of similarity values to assess the potential of
yielding a well-structured matrix for a CF problem. This is
the major aim of this paper.

2.2.3. Property III: Relative Ease of Obtaining Satisfactory CF
Solutions. At this point, we may wonder why it is important
to know the potential of yielding a well-structured matrix
before solving the CF problems. First of all, it has been
recognized that a CF problem is a NP-hard problem [3] so
that there will be less likely to find a practical algorithm that
can guarantee an exact solution for a moderate-size problem.
As a result, the effort required to solve a CF problem is
not trivial. In literature, many metaheuristic algorithms have
been proposed to solve the CF problems such as genetic
algorithms [20, 21] and simulated annealing [22, 23]. Related
comprehensive reviews can be found in Papaioannou and
Wilson [24] and Renzi et al. [25]. While metaheuristic
algorithms have capacities to yield high-quality solutions,
they generally require users to have good mathematical skills
to understand these algorithms [26] and good experiences
to make some “implementation decisions” [15, p. 293] (e.g.,
terminating conditions in genetic algorithms).

In contrast to metaheuristic algorithms, heuristic algo-
rithms are easier to implement but the quality of their
solutions is often targeted [27, p. 159]; [24]. In a nutshell, a
common feature of heuristic algorithms is their greedy or hill-
climbing approaches that focus on best solutions at a stage
without backtracking for other solution possibilities. This
feature allows them to converge to some feasible solutions
quickly with the trade-off of checking a smaller solution
space (thus, potentially weaker solution quality). Hierarchical
clustering (HC), which was one early approach for CF
problems [11], is one example of heuristic algorithms since
HC always groups the object pairs with the highest similarity
values progressively without backtracking.

As its third property, it is observed that a well-structured
matrix can be obtained relatively easily by a heuristic
approach (referred toHC specifically in this paper), where the
metaheuristic approach does not necessarily have an advan-
tage for getting higher-quality solutions. Alternately, the
advantage of the metaheuristic approach is observed more
often in the case of ill-structured matrices. As discussed
before, a well-structured matrix demonstrates sharp differ-
ences between similar and dissimilar machine pairs. This fea-
ture supports the “greedy” nature of the heuristic approach,
which can easily distinguish high-similarity pairs in the
progressive grouping process. In contrast, an ill-structured
matrix has moremachine pairs with middle-similarity values
so that some borderline cases can potentially lead to solutions
of lower quality. While this third property may not be
obvious, more verifying examples will be reported later in
Section 6.3 as part of the investigation effort of this paper.

Given this third property of a well-structured matrix,
the statistical analysis of similarity values can then lead to
another application, i.e., supporting the choice of the algo-
rithmic approach for solving CF problems. If the statistical
analysis shows a high potential to obtain a well-structured
matrix, we can choose a heuristic approach to solve the CF
problems. Alternately, if it indicates a high chance of getting
an ill-structured matrix, we may consider revising the input
incidence matrix (e.g., adding more machines or changing
some part requirements). Also, we can prepare to use the
metaheuristic approach to seek for high-quality solutions.
In sum, the statistical analysis can preliminarily probe the
structure of a given CF problem in order to determine the
next problem solving step.

2.3. Research Plan. In view of the three properties of a
well-structured matrix discussed above, the research and
development questions are set as follows.

(i) What are the criteria related to the statistics of
similarity values to assess the potential of getting a
well-structured matrix?

(ii) How do we decide on whether using a metaheuristic
or heuristic approach for solving a CF problem?

To address the first question, this paper will utilize two
statistical tools: histogram and the Kolmogorov-Smirnov (K-
S) test. Histogram will be used to analyze the distribution
of machine similarity values of a given CF problem, and
twenty CF solutions will be set to investigate the threshold
values for informing the potential structuredness of a matrix.
The K-S test will be used to assess the normality of the
distribution of machine similarity values. That is, if the set
of similarity values roughly follow the normal distribution, it
means that many machine pairs have the average similarity
value, implying a low proportion of high-similarity values
(i.e., an ill-structured matrix).

Based on the investigation using the histogram and the
K-S test, we will develop a procedure to probe the struc-
ture of a given CF matrix and suggest whether using a
metaheuristic or heuristic for problem solving (i.e., address
the second question). In this paper, we have implemented
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Figure 2: Histograms of well-structured and ill-structured matrices.

genetic algorithm (GA) and hierarchical clustering (HC) as
the metaheuristic and heuristic approaches, respectively, for
solving the CF problems. To verify the procedure, additional
forty CFmatrices will be set.These CFmatrices will be solved
by HC and then genetic algorithm to observe the relation
between the matrix’s structuredness and the utility of the
metaheuristic approach for better CF solutions.

3. Histogram Analysis of Similarity Values

3.1. Histogram and the U-Shape. In this study, histograms
are used to report the frequency distribution of machine
similarity values with an increment of 0.1. Figure 2 shows two
histograms for thewell-structured and ill-structuredmatrices
of Figure 1, respectively. In these histograms, the horizontal
axis stands for the machine similarity values ranging from 0
to 1, and the vertical axis stands for the number of machine
pairs within those ranges of similarity values. Notably, these
histograms are independent of the orders of a matrix’s
rows and columns. That is, we can get these histograms of
similarity values without solving the CF problem.

From these two histograms, it is observed that a well-
structured matrix tends to yield an U-shape histogram, i.e.,
relatively high numbers of extreme similarity values. The
right peak of the U-shape can be explained by the property of
high percentage of high-similaritymachine pairs discussed in
Section 2.2.2. While the numbers of low-similarity machine
pairs are high in both cases of well-structured and ill-
structured matrices, a well-structured matrix has a low
number of machine pairs of similarity values between 0.2
and 0.4. In contrast, an ill-structured matrix has a good
number of those middle-similarity machine pairs, which
cause a challenge of clear grouping in cell formation. Given
this general U-shape observation, the next subsections will
discuss the criteria that classify the structuredness of amatrix

(i.e., well-structured or ill-structured) based on the histogram
data.

3.2. Setup of 20 Benchmark Matrices. Since the frequency
distribution of a histogram will not be altered by the orders
of a matrix’s rows and columns, we can set the CF solu-
tion matrices with known structuredness and then observe
their histograms to develop the structuredness criteria. In
this investigation, twenty 30×40 solution matrices (i.e., 30
machines and 40 parts) with three cells (or blocks) are set.
These matrices are varied by two factors: (1) block sizes and
(2) numbers of exceptional elements and voids. Concerning
the block sizes, five cases are set as follows, where each bracket
indicates the size of a block as (number ofmachines×number
of parts).

(i) Case A → even case: (10×13) (10×13) (10×14)
(ii) Case B → uneven case with a large block: (20×26)

(5×7) (5×7)
(iii) Case C→ uneven numbers of machines and parts in

two blocks: (20×7) (5×26) (5×7)
(iv) Case D→ uneven numbers of machines and parts in

three blocks: (20×5) (5×17) (5×18)
(v) Case E→ uneven case with two large blocks: (14×18)

(14×19) (2×3)

Besides, four cases are set below to characterize the struc-
turedness of matrices via the control of the numbers of
exceptional elements and voids.

(i) Case I (well-structured): few exceptional elements
and no voids

(ii) Case II (well-structured): no exceptional elements
and few voids
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Figure 3: The resulting matrices of 20 benchmark cases.

(iii) Case III (well-structured): few exceptional elements
and few voids

(iv) Case IV: (ill-structured): good numbers of excep-
tional elements and voids

The resulting 20 matrices are shown in Figure 3. As general
inspections, the matrices in Cases I and II have clear bound-
aries of three cells. Thematrices in Case III have more excep-
tional elements and voids but their structures are still quite
discernible. In contrast, the structure of matrices in Case
IV is messier with higher numbers of exceptional elements
and voids. Based on these matrices, the next subsection will
investigate their histograms and develop the U-shape criteria
to classify the matrix’s structuredness.

3.3. Histogram-Based U-Shape Criteria. To inform the
matrix’s structuredness, two conditions as the U-shape

criteria are set toward the low and high-similarity values. Let
F𝑙𝑒𝑓𝑡 (x) be the fraction of similarity values that are lower
than x and F𝑟𝑖𝑔ℎ𝑡 (y) be the fraction of similarity values that
are higher than y. Then, the general U-shape criteria can be
expressed as follows.

𝐹𝑙𝑒𝑓𝑡 (𝑥) ≥ 𝑎 (3)

𝐹𝑟𝑖𝑔ℎ𝑡 (𝑦) ≥ 𝑏 (4)

where a and b are the thresholds of the minimum fractions of
low and high-similarity values, respectively, to characterize
the U-shape of a well-structured matrix. The setup of these
parametric values (i.e., x, y, a, and b) will be based on the
above 20 benchmark matrices.

Figure 4 shows the histograms of the 20 benchmark
matrices. As the preliminary observations, the frequency
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Figure 4: Histograms of 20 benchmark matrices.

distributions of these histograms are perceived quite different
between the well-structured (i.e., Cases I, II, and III) and ill-
structuredmatrices (i.e., Case IV). Yet, someU-shapes are not
plainly obvious (e.g., Cases A-III and C-II), and the peaks of
high-similarity values of the well-structured matrices are not

located at the rightmost region (e.g., Cases C-I and D-I). The
U-shape criteria will then be set based on these observations.

Concerning the region of low-similarity values (i.e., the
left side of the U-shape), it is found that both well-structured
(i.e., Cases I, II, and III) and ill-structured (i.e., Case IV)
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Table 1: Number of machine pairs with similarity values equal to zero.

Case I Case II Case III Case IV
A 34 300 110 32
B 7 225 83 23
C 23 240 121 57
D 22 225 116 15
E 11 252 73 14

Table 2: Number of machine pairs with similarity values greater than or equal to 0.5.

Case I Case II Case III Case IV
A 135 106 109 38
B 200 104 194 4
C 136 91 194 38
D 139 203 158 19
E 182 175 103 10

matrices have high proportions because many machines, as
long as they are not in the same cell, have less common parts
toworkwith in both cases. As a result, the proportions of low-
similarity values from a well-structured matrix can become
less discernible statistically. Thus, we choose to investigate
the extreme value when the similarity values equal to zero,
i.e., F𝑙𝑒𝑓𝑡(x=0). Table 1 records the number of machine pairs
with the similarity values equal to zero. As observed, while
thematrices of Cases II and III have low right-side peaks, they
have high proportions of such zero-similarity machine pairs.
As the U-shape criteria will be used for the early screening,
we set this criterion rather strictly as follows.

𝐹𝑙𝑒𝑓𝑡 (0) ≥ 0.5 (5)

This criterion requires 50% of machine pairs to have zero-
similarity values in order to qualify a well-structured matrix.
By checking the benchmark matrices with 30 machines (i.e.,
435 machine pairs), the threshold is 218 machine pairs, and
the matrices in Case II pass this criterion.

Concerning the region of high-similarity values (i.e., the
right side of the U-shape), as discussed earlier, not all well-
structured matrices have high proportions of high-similarity
values at the rightmost region. By inspecting the histograms
in Figure 4, we identify a reasonable cut-off of high-similarity
values should be 0.5, i.e., F𝑟𝑖𝑔ℎ𝑡(y=0.5). Table 2 records the
number of machine pairs with the similarity values greater
than or equal to 0.5. As observed, the proportions of high-
similarity values (s𝑥𝑦 ≥ 0.5) in Case IV (i.e., ill-structured
matrices) are relatively low. In contrast, Case C-II is the well-
structured matrix with the lowest number of high-similarity
values (i.e., 91), and the corresponding fraction is 91/435 ≈
0.21. As a result, another U-shape criterion for the right-hand
side is set as follows.

𝐹𝑟𝑖𝑔ℎ𝑡 (0.5) ≥ 0.2 (6)

In sum, if an input incidence matrix satisfies one of the
two U-shape criteria formulated in (5) and (6), this matrix
has a good chance to yield a well-structured CF solution.

Notably, we treat the histogram-based U-shape criteria as
a preliminary filter in this work. That is, if a matrix does
not satisfy these criteria, it does not immediately imply that
this matrix is ill-structured. In fact, other parameters of an
input incidence matrix, such as the number of machines
and the density of nonzero matrix entries, can impact the
frequency distribution of a histogram. Thus, the next section
will develop another criterion based on the K-S test.

4. Criterion Setting Based on
the Kolmogorov-Smirnov (K-S) Test

4.1. Background. The Kolmogorov-Smirnov (K-S) test is one
type of hypothesis testing in statistics (Corder and Foreman)
[28]. As one of its applications, the K-S test is used in this
paper to evaluate how well a dataset represents a normal
distribution (i.e., the normality of the dataset). The use of the
K-S test in this study is mainly motivated by the observation
of the histograms in Figure 2 that a well-structure matrix will
tend to give a U-shape. As the U-shape will generally exhibit
two peaks in the histogram representation, the normality of
the associated data (i.e., similarity values) will be weak in
comparison to that of an ill-structured matrix.

Figure 5 illustrates the concept of the normality of sim-
ilarity values with two cases: single-peak histogram and U-
shape histogram.TheK-S test essentially compares the curves
of two cumulative distribution functions (CDFs) [29, 30].
While one CDF represents the empirical data points (i.e.,
empirical CDF, solid line), another CDF is based on the
normal distribution curve fitted by the empirical data (i.e.,
hypothesized normal CDF, dashed line). As seen in Figures
5(c) and 5(d), the single-peak histogramhas higher normality
than the U-shape histogram since the single-peak histogram
yields a closer match between the empirical and hypothesized
normal CDFs. In contrast, the U-shape histogram yields its
empirical CDF in Figure 5(d) with rapid increases at the
beginning and the end, along with a relatively flat region in
the middle, and this CDF curve significantly deviates from
normality [31].
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(b) A U-shape histogram
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(d) CDFs of the U-shape histogram

Figure 5: CDFs of similarity values (solid line: empirical CDF; dashed line: hypothesized normal CDF).

The P value is a common concept in hypothesis testing
[32]. It can be interpreted as the smallest probability value
associated with a given dataset to reject the null hypothesis
(i.e., smaller P value → more likely to reject the null
hypothesis). In this work, we treat the P value of a K-S test
as a proxy measure on the normality of a set of similarity
values. That is, if the P value is smaller, the dataset tends to
be less-normal [33]. Interpreted in our context, a less-normal
condition implies a U-shape and thus a well-structured
matrix. For example, the P value of the single-peak histogram
in Figure 5(c) is 7.44×10-4, and the P value of the U-shape
histogram in Figure 5(d) is 9.27×10-22.

Notably, the purpose of using the K-S test in this work is
not about hypothesis testing, but only using its P value as a
proxy measure to assess the normality of a set of similarity
values and then inform the structuredness of a CF matrix.
Yet, the P values in our applications tend to be very small.
To conveniently handle this proxy measure, let P𝑣𝑎𝑙𝑢𝑒 be the
P value of a set of similarity values based on the K-S test, and
an alternative proxy measure (denoted as L𝑝) is defined as
follows:

𝐿𝑝 = −log10 𝑃V𝑎𝑙𝑢𝑒 (7)

As L𝑝 is the negative logarithm of the P value, a higher value
of L𝑝 implies a higher tendency of having a U-shape of the
dataset. For example, the values of L𝑝 for the single-peak
histogram (i.e., Figure 5(c)) and the U-shape histogram (i.e.,
Figure 5(d)) are 3.13 and 21.03, respectively. In other words, if
a CF matrix yields a higher value of L𝑝, it has a better chance
to be solved as a well-structured CF solution.

By knowing the property of the trend associated with
L𝑝, it leads to the next investigation question on setting
the threshold value of L𝑝 to classify ill-structured and well-
structured matrices. To do so, it is recognized that the values
of L𝑝 can be sensitive to the number of machines and the
density of nonzero entries of a given matrix. Thus, the next
subsection will investigate the upper bound of L𝑝 of a given
matrix to normalize the value of L𝑝 .Then, wewill apply the 20
benchmark matrices in Figure 3 to determine the threshold.

4.2. Estimate the Upper Bound of L𝑝 for Normalization. The
upper bound of L𝑝 can be estimated by a perfect block-
diagonal matrix, where the numbers of exceptional elements
(n𝑜𝑢𝑡) and voids (n𝑖𝑛) are zero (i.e., the grouping efficacy 𝜇 =
1). In this case, the machine pairs have similarity values equal
to either one (when two machines belong to the same block)
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Table 3: Lp, Lbp and their ratios of the benchmarkmatrices.

Case I Case II
Lp Lbp Lp/Lbp Lp Lbp Lp/Lbp

Case A 43.44 62.39 0.70 69.58 85.40 0.81
Case B 22.03 31.35 0.70 44.35 72.93 0.61
Case C 14.80 70.55 0.21 42.57 97.73 0.44
Case D 13.13 75.90 0.17 43.58 96.69 0.45
Case E 23.06 39.67 0.58 53.56 65.65 0.82

Case III Case IV
Lp Lbp Lp/Lbp Lp Lbp Lp/Lbp

Case A 39.67 76.05 0.52 10.77 73.53 0.15
Case B 26.84 54.38 0.49 3.77 72.19 0.05
Case C 23.06 88.52 0.26 7.69 86.15 0.09
Case D 18.77 91.49 0.21 3.13 83.92 0.04
Case E 17.56 67.29 0.26 1.97 67.14 0.03

or zero (when twomachines are in different blocks).This kind
of “bipolar” distribution can be viewed as a far extreme of the
normal distribution, and the corresponding P value can be
taken as the upper bound of L𝑝.

In the normalization process, we can first identify the size
and the number of nonzero entries of a given matrix. Let m
and n be the numbers of machines and parts, respectively, as
the size of the matrix. The number of nonzero matrix entries
has been denoted as n𝑒. Then, the density of nonzero entries
of a matrix (denoted as D𝑠) can be determined as follows.

𝐷𝑠 =
𝑛𝑒
𝑚 × 𝑛

(8)

Given an incidence matrix, its upper bound of L𝑝 can be
considered in a case when its nonzero entries can be freely
moved to form a nearly perfect block-diagonal matrix. By
fixing the values ofm, n, andD𝑠, there can be a corresponding
theoretical upper bound of L𝑝. Let L𝑏𝑝 denote such an
upper bound of L𝑝 of a given matrix. Then, for any given
matrix, we can determine its L𝑝 and L𝑏𝑝, where L𝑏𝑝 is
treated as a normalizing factor. Since this paper focuses on
machine similarity, we drop the consideration of n to simplify
the investigation. Then, the next step is to determine the
following function.

𝐿𝑏𝑝 = 𝑓 (𝑚,𝐷𝑠) (9)

To estimate the function of L𝑏𝑝, our strategy is to system-
atically generate a good number of perfect block-diagonal
matrices by varying the numbers of machines, parts, and
even-size cells (note: the number of even-size cells will
determine the number of nonzero entries). The ranges of
these varying parameters in this work are listed as follows.

(i) Number of machines: from 10 to 50 machines
(ii) Number of parts: from 10 to 110 parts (with an

increment of 10)
(iii) Number of even-size cells: from 2 to 14 cells (also

restricted by the matrix’s size to avoid extremely large
and small cells)

Further details of the setup of these perfect matrices can
be found in Zhu [34]. As a result, this work has generated
2519 perfect matrices. Then, the values of P value and L𝑝
are determined for these matrices, giving 2519 points to
approximate the function formulated in (9) via curve fitting
techniques. The resulting regression equation is found as
follows.

𝐿𝑏𝑝 (𝑚,𝐷𝑠) = −29.08 + 2.164𝑚 + 132.3𝐷𝑠

+ 0.1049𝑚2 − 10.35𝑚𝐷𝑠
(10)

In practice, we can determine the values of L𝑝 via (7) and L𝑏𝑝
via (10) for a given matrix. Then, we can check its ratio of L𝑝
to L𝑏𝑝 and examine the U-shapeness and then the possible
structuredness of the matrix.The next subsection will discuss
the criterion based on the ratio of L𝑝 to L𝑏𝑝.

4.3. Ratio Criterion Based on L𝑝 and L𝑏𝑝. The setting of the
ratio threshold for L𝑝 and L𝑏𝑝 is based on the 20 benchmark
matrices in Figure 3. The values of L𝑝, L𝑏𝑝 and their ratios
are recorded in Table 3. As a recall, Cases I, II, and III are
set to represent the well-structured matrices, and Case IV
represents ill-structured matrices. As an initial assessment,
the average of the ratios of Cases I, II, and III (i.e., well-
structured matrices) is 0.48, while the ratio average of Case
IV is 0.07.This observation indicates that the ratio L𝑝/L𝑏𝑝 can
make distinctions between well-structured and ill-structured
matrices quite effectively from a statistical standpoint.

Yet, when we examine the extreme situations, the lowest
ratio of the well-structured cases is 0.17 (i.e., Case D-I, bold
in Table 3), and the highest ratio of the ill-structured cases is
0.15 (i.e., Case A-IV, also bold in Table 3). As observed, the
gap between the two is close, and we intend to impose a tight
criterion to classify well-structured matrices. As a result, we
set the threshold value at 0.2, formulated as follows.

𝐿𝑝
𝐿𝑏𝑝
≥ 0.2 (11)

At this point, Case D-I is the only well-structured matrix that
does not satisfy this criterion. Yet, Case D-I satisfies one of
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Figure 6: Procedure to assess the potential structuredness of an
incidence matrix.

the earlier U-shape criteria. Thus, our next step is to combine
the U-shape criteria and the ratio criterion in a procedure to
examine the potential structuredness of an incidence matrix.
That is, if a given matrix satisfies one of these criteria, it
is indicated that this matrix has a high potential to yield a
well-structured CF solution. The next section will discuss
this procedure to apply these criteria to inform the potential
structuredness of a given matrix.

5. Procedure

This section provides a four-step procedure below to assess
the potential structuredness of an incidence matrix using the
histogram-based U-shape criteria and the criterion based on
the P value of the K-S test. Figure 6 illustrates the decision
branches of this procedure.

Step 1 (construct histogram). By receiving an incidence
matrix as an input, the similarity values of machine pairs are
first determined based on (2). If there are mmachines, there
will bem×(m-1)/2 machine pairs with their similarity values,
forming the dataset of the statistical analysis. A histogram is
then constructed to analyze these similarity values.

Step 2 (apply the histogram-based U-shape criteria). This
represents the preliminary check based on the frequencies
of having high and low-similarity values. If either one of
the criteria F𝑙𝑒𝑓𝑡(0) ≥ 0.5 or F𝑟𝑖𝑔ℎ𝑡(0.5) ≥ 0.2 is satisfied, the
incidence matrix is considered having a good potential to
yield a well-structured CF solution. If none of these two
criteria is satisfied, we will move on to the analysis based on
the P value of the K-S test.

Step 3 (compute 𝐿𝑝 and 𝐿𝑏𝑝). The dataset of similarity values
is treated as the input to determine the P value of the K-S

test in view of assessing the normality of the dataset. This
calculation can be performed via some statistics software
tools. In this work, we have used the statistics functions from
Matlab to compute the P value. Then, the value of L𝑝 can be
evaluated using (7). With the incidence matrix, the value of
L𝑏𝑝 can be evaluated using (10) by identifying the number of
machines (i.e.,m) and the density of nonzero entries (i.e.,D𝑠).

Step 4 (apply the ratio criterion 𝐿𝑝 / 𝐿𝑏𝑝). With the values
of L𝑝 and L𝑏𝑝, we can check the criterion if L𝑝 / L𝑏𝑝 ≥ 0.2.
If this criterion is satisfied, the input matrix should have a
good potential to yield a well-structured CF solution. If not,
the input matrix would have a good chance to result in an
ill-structured CF solution. The practitioners may consider
modifying the input matrix by adding machines or revising
the production requirements.

6. Application and Verification

To examine the statistical analysis of similarity values for CF
problems in this paper, other 40 matrices (in addition to
the earlier 20 benchmark matrices, making up a total of 60
matrices) will be generated and applied in this section. These
60 matrices will be used to examine the following two issues
specifically.

(i) Given the three criteria for assessing the potential
structuredness of a matrix, we are going to use these
60 matrices to examine their effectiveness to distin-
guish well-structured and ill-structured matrices.

(ii) While Property III (i.e., relative ease of obtaining
satisfactory CF solutions) of a well-structured matrix
has been discussed in Section 2.3, it will be verified via
these 60matrices by two stages of CF problem solving.

6.1. Setup of the 60 Incidence Matrices. The strategy to
generate 60 matrices is based on the extension of getting the
20 benchmarkmatrices in Section 3.2.The additional varying
factors include the following.

(i) In addition to the size of 30×40 matrix, another size
of 40×100 matrix is set.

(ii) We add cases with more numbers of cells (from 3 to
6, 8, and 12 cells)

(iii) The evenness of cell sizes is also varied for each case.

Table 4 shows the setup of 60 matrices, where Cases A and
E are repeated from Section 3.2 for comparison. Notably, the
structuredness of matrices, which were classified as Cases
I, II, III, and IV in Section 3.2, is also applied, leading to
the study of 15×4 = 60 incidence matrices. As the intention
of the setup, the matrices of Cases I and II have no voids
and exceptional elements, respectively. Then, they should
be classified as well-structured matrices. The matrices of
Case III have only few exceptional elements and voids, and
they should also be classified as well-structured matrices.
In contrast, the matrices of Case IV have more exceptional
elements and voids, and they should be classified as ill-
structured matrices. The images and histograms of these 60
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matrices are provided as supplementary materials (available
here).

6.2. Examination of the Criteria. To evaluate the effectiveness
of the criteria to assess the structuredness of the matrices,
we have evaluated the criteria values for the 60 matrices. The
results are provided in Table 5, where the values satisfying the
criteria of well-structured matrices are bold. As observed in
these results, the structuredness criteria can discern the well-
structured matrices of Cases I, II, and III, where each matrix
there satisfies at least one criterion. In contrast, no matrices
of Case IV satisfy any criteria of well-structured matrices.

In view of the effectiveness of individual criteria, it is
observed that F𝑙𝑒𝑓𝑡(0) is effective in filtering the matrices of
Case II (i.e., few voids and no exceptional elements). Due
to the absence of exceptional elements in this case, any two
machines of different blocks will have similarity values equal
to zero. This explains the high values of F𝑙𝑒𝑓𝑡(0) observed in
Case II. In contrast, F𝑟𝑖𝑔ℎ𝑡(0.5) is less effectiveness when the
matrices have more cells (e.g., Cases H and I) and large sizes
(e.g., Cases J to O). Notably, the values of F𝑟𝑖𝑔ℎ𝑡(0.5) for Case
IV are quite low (ranging from 0.00 to 0.09). In this view, the
criterion of F𝑟𝑖𝑔ℎ𝑡(0.5) is quite tight.

By comparison, the ratio criterion (i.e., L𝑝/L𝑏𝑝) seems
effective in distinguishing well-structured matrices, where
Case D-I is the only case not identified as a well-structured
matrix by this criterion only. Notably, the discernible gap of
well-structured matrices (lowest at 0.17 in Case D-I) and ill-
structured matrices (highest 0.16 in Case L-IV) is small. It
explains the need of having F𝑙𝑒𝑓𝑡(0) and F𝑟𝑖𝑔ℎ𝑡(0.5), along with
the ratio criterion, in the assessment of the structuredness of
the matrices.

6.3. Examination of Property III via Optimization. As a recall
from Section 2.2.3, Property III states that a well-structured
matrix can be fairly obtained via a heuristic approach, where
more complex metaheuristics may not bring in additional
benefits. To verify this property, the sixty matrices were tested
with a two-stage solution process. First, each matrix will
be solved by a hierarchical clustering (HC) method as one
heuristic to yield a CF solution. Then, we examine if we can
further optimize the obtained CF solution via the genetic
algorithm (GA), representing a metaheuristic method. In
this way, we can check the correlation between grouping
efficiency and the percentage of improvement of solution
quality by GA.The algorithmic details of the HCmethod and
the implementation details of GA applied in this study can be
found in Zhu [34].

Table 6 lists the grouping efficacy (𝜇) results for the
60 matrices after running hierarchical clustering (HC) and
then genetic algorithm (HC+GA). Also, the percentages of
improvement in view of grouping efficacy by GA are reported
for comparison. As observed, the matrix solutions in Cases I
and II cannot be further improved by GA, while three matrix
solutions in Case III can be improved by GA with small
percentages (between 0.20% and 0.25%). In contrast, the
ill-structured matrix solutions in Case IV can be improved
by GA in the percentages of improvement between 0.63%
and 22.69%. Overall, we consider that the numerical results
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Figure 7: Percentage of solution improvement versus grouping
efficacy.

generally follow Property III, given that the matrices in Case
III are close to the boundary between well-structured and ill-
structured matrices.

Figure 7 shows the plots of the percentages of solution
improvement versus the values of grouping efficacy based
on HC+GA. Based on the 60 matrices studied in this paper,
GA did not improve the quality of matrix solutions that
have 0.60 or higher grouping efficacy. For the data points
of grouping efficacy values less than 0.60, we find that these
data points are negatively correlated, where the correlation
value [32, p. 173] is -0.62. In the statistical interpretation,
we can state that a lower value of grouping efficacy tends to
allow a larger room of improvement by GA but its linearity
is not strong. Notably, the capabilities of HC and GA to
yield high-quality solutions can depend on other factors (e.g.,
density of nonzero entries in a matrix). Thus, it is not easy
to observe a linear correlation just between the percentage of
improvement and the grouping efficacy. More control factors
and samples should be required for an in-depth investigation.

7. Conclusions

This paper has explored the statistics of similarity values to
investigate the structuredness of cell formation (CF) matrix
solutions. Using grouping efficacy (𝜇) as one recognized
index to inform the quality of a CF matrix, it is found
that a well-structured matrix has a high percentage of high-
similarity machine pairs (i.e., Property II). Accordingly,
this paper sets up 20 benchmark matrices, with varying
structuredness, to develop the U-shape criteria and the
criterion based on the Kolmogorov-Smirnov test. Then, a
procedure is developed to assess the potential structuredness
of a CF matrix without solving the CF problem. The criteria
for assessing structuredness of matrices are examined via
additional 40 matrices, and agreeable results are observed.
Genetic algorithm (GA) is used to see if it can improve the
CF solutions obtained by hierarchical clustering (as one type
of heuristics). The results show that the matrix solutions with
high grouping efficacy values (i.e., well-structured matrices)
cannot be effectively improved by GA.

While the worst-case computational complexity of clus-
tering problems (e.g., NP hardness) is well recognized, the
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CDNM thesis (discussed in Section 1) has implied that not
all clustering problems in practice are difficult to solve. This
research corresponds to the “clustering pipeline” proposed by
Ackerman et al. [7], where clusterability (or structuredness
in our context) can be evaluated to inform the selection of
effective clustering algorithms. In this view, one intended
contribution of this work is to implement this idea in the
context of the CF problem. In future work, we will explore
more applications in manufacturing systems that require
grouping and combinatorial decisions (e.g., product and
systems modularity). Also, we can explore more statistical
and machine learning techniques such as multimodality
tests and random forest to replace the K-S test for better
predication performance.
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