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The analysis of misspecification was extended to the recently introduced stochastic restricted biased estimators when multi-
collinearity exists among the explanatory variables.The Stochastic Restricted Ridge Estimator (SRRE), Stochastic RestrictedAlmost
Unbiased Ridge Estimator (SRAURE), Stochastic Restricted Liu Estimator (SRLE), Stochastic Restricted Almost Unbiased Liu
Estimator (SRAULE), Stochastic Restricted Principal Component Regression Estimator (SRPCRE), Stochastic Restricted 𝑟-𝑘 (SRrk)
class estimator, and Stochastic Restricted 𝑟-𝑑 (SRrd) class estimator were examined in the misspecified regression model due to
missing relevant explanatory variables when incomplete prior information of the regression coefficients is available. Further, the
superiority conditions between estimators and their respective predictors were obtained in the mean square error matrix (MSEM)
sense. Finally, a numerical example and a Monte Carlo simulation study were used to illustrate the theoretical findings.

1. Introduction

Misspecification due to left out relevant explanatory variables
is very often when considering the linear regression model,
which causes these variables to become a part of the error
term. Consequently, the expected value of error term of the
model will not be zero. Also, the omitted variables may be
correlated with the variables in the model. Therefore, one
or more assumptions of the linear regression model will
be violated when the model is misspecified, and hence the
estimators become biased and inconsistent. Further, it is
well-known that the ordinary least squares estimator (OLSE)
may not be very reliable if multicollinearity exists in the
linear regression model. As a remedial measure to solve
multicollinearity problem, biased estimators based on the
sample model 𝑦 = 𝑋𝛽 + 𝜀 with prior information which
can be exact or stochastic restrictions have received much
attention in the statistical literature.The intention of thiswork
is to examine the performance of the recently introduced
stochastic restricted biased estimators in the misspecified
regression model with incomplete prior knowledge about

regression coefficients when there exists multicollinearity
among explanatory variables.

When we consider the biased estimation in misspecified
regression model without any restrictions on regression
parameters, Sarkar [1] discussed the consequences of exclu-
sion of some important explanatory variables from a linear
regression model when multicollinearity exists. Şiray [2] and
Wu [3] examined the efficiency of the 𝑟-𝑑 class estima-
tor and 𝑟-𝑘 class estimator over some existing estimators,
respectively, in the misspecified regression model. Chandra
and Tyagi [4] studied the effect of misspecification due to
the omission of relevant variables on the dominance of the𝑟-(𝑘, 𝑑) class estimator. Recently, Kayanan and Wijekoon [5]
examined the performance of existing biased estimators and
the respective predictors based on the sample information in
a misspecified linear regression model without considering
any prior information about regression coefficients.

It is recognized that the mixed regression estimator
(MRE) introduced by Theil and Goldberger [6] outperforms
ordinary least squares estimator (OLSE) when the regression
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model is correctly specified. The biased estimation with
stochastic linear restrictions in the misspecified regression
model due to inclusion of an irrelevant variable with the
incorrectly specified prior information was discussed by
Teräsvirta [7]. Later Mittelhammer [8], Ohtani and Honda
[9], Kadiyala [10], and Trenkler and Wijekoon [11] discussed
the efficiency of MRE under misspecified regression model
due to exclusion of a relevant variable with correctly specified
prior information. Further, the superiority of MRE over the
OLSE under the misspecified regression model with incor-
rectly specified sample and prior information was discussed
by Wijekoon and Trenkler [12]. Hubert and Wijekoon [13]
have considered the improvement of Liu estimator (LE)
under amisspecified regressionmodelwith stochastic restric-
tions and introduced the Stochastic Restricted Liu Estimator
(SRLE).

In this paper, the performance of the recently intro-
duced stochastic restricted estimators, namely, the Stochastic
Restricted Ridge Estimator (SRRE) proposed by Li and Yang
[14], Stochastic Restricted Almost Unbiased Ridge Estimator
(SRAURE), and Stochastic Restricted Almost Unbiased Liu
Estimator (SRAULE) proposed byWuandYang [15], Stochas-
tic Restricted Principal Component Regression Estimator
(SRPCRE) proposed byHe andWu [16], Stochastic Restricted𝑟-𝑘 (SRrk) class estimator, and Stochastic Restricted 𝑟-𝑑
(SRrd) class estimator proposed by Wu [17], was examined
in the misspecified regression model when multicollinearity
exists among explanatory variables. Further, a generalized
form to represent these estimators is also proposed.

The rest of this article is organized as follows. The model
specification and the estimators are written in Section 2.
In Section 3, the mean square error matrix (MSEM) com-
parison between two estimators and respective predictors is
considered. In Section 4, a numerical example and a Monte
Carlo simulation study are given to illustrate the theoretical
results in ScalarMean Square Error (SMSE) criterion. Finally,
some concluding remarks are mentioned in Section 5. The
references and appendixes are given at the end of the paper.

2. Model Specification and the Estimators

Assume that the true regression model is given by𝑦 = 𝑋1𝛽1 + 𝑋2𝛽2 + 𝜀 = 𝑋1𝛽1 + 𝛿 + 𝜀, (1)

where 𝑦 is the 𝑛 × 1 vector of observations on the dependent
variable, 𝑋1 and 𝑋2 are the 𝑛 × 𝑙 and 𝑛 × 𝑝 matrices of
observations on the 𝑚 = 𝑙 + 𝑝 regressors, 𝛽1 and 𝛽2 are
the 𝑙 × 1 and 𝑝 × 1 vectors of unknown coefficients, and 𝜀
is the 𝑛 × 1 vector of disturbances such that 𝐸(𝜀) = 0 and𝐸(𝜀𝜀󸀠) = Ω = 𝜎2𝐼.

Let us say that the researcher misspecifies the regression
model by excluding 𝑝 regressors as𝑦 = 𝑋1𝛽1 + 𝑢. (2)

Let us also assume that there exists prior information on 𝛽1
in the form of 𝑟 = 𝑅𝛽1 + 𝑔 + V, (3)

where 𝑟 is the 𝑞×1 vector,𝑅 is the given 𝑞×𝑙matrix with rank𝑞, 𝑔 is the 𝑞 × 1 unknown fixed vector, V is the 𝑞 × 1 vector of
disturbances such that 𝐸(V) = 0, 𝐷(V) = 𝐸(VV󸀠) = Ψ = 𝜎2𝑊,
where𝑊 is positive definite, and 𝐸(V𝑢󸀠) = 0

By combining sample model (2) and prior information
(3), Theil and Goldberger [6] proposed the mixed regression
estimator (MRE) as

𝛽MRE = (𝑋󸀠1Ω−1𝑋1 + 𝑅󸀠Ψ−1𝑅)−1 (𝑋󸀠1Ω−1𝑦 + 𝑅󸀠Ψ−1𝑟)
= (𝑋󸀠1𝑋1 + 𝑅󸀠𝑊−1𝑅)−1 (𝑋󸀠1𝑦 + 𝑅󸀠𝑊−1𝑟) . (4)

To combat multicollinearity, several researchers introduce
different types of stochastic restricted estimators in place
of MRE. Seven such estimators are SRRE, SRAURE, SRLE,
SRALUE, SRPCRE, SRrk class estimator, and SRrd class
estimator defined below, respectively:

𝛽SRRE = (𝑋󸀠1𝑋1 + 𝑘𝐼)−1𝑋󸀠1𝑋1𝛽MRE

𝛽SRAURE = (𝐼 − 𝑘2 (𝑋󸀠1𝑋1 + 𝑘𝐼)−2) 𝛽MRE

𝛽SRLE = (𝑋󸀠1𝑋1 + 𝐼)−1 (𝑋󸀠1𝑋1 + 𝑑𝐼) 𝛽MRE

𝛽SRAULE = (𝐼 − (1 − 𝑑)2 (𝑋󸀠1𝑋1 + 𝐼)−2) 𝛽MRE

𝛽SRPCRE = 𝑇ℎ𝑇󸀠ℎ𝛽MRE

𝛽SRrk = 𝑇ℎ𝑇󸀠ℎ (𝑋󸀠1𝑋1 + 𝑘𝐼)−1𝑋󸀠1𝑋1𝛽MRE

𝛽SRrd = 𝑇ℎ𝑇󸀠ℎ (𝑋󸀠1𝑋1 + 𝐼)−1 (𝑋󸀠1𝑋1 + 𝑑𝐼) 𝛽MRE,

(5)

where 𝑘 > 0, 0 < 𝑑 < 1, and 𝑇ℎ = (𝑡1, 𝑡2, . . . , 𝑡ℎ) are the first ℎ
columns of 𝑇 = (𝑡1, 𝑡2, . . . , 𝑡ℎ, . . . , 𝑡𝑙) which is an orthogonal
matrix of the standardized eigenvectors of𝑋󸀠1𝑋1.

According to Kadiyala [10], now we apply the simultane-
ous decomposition to the two symmetric matrices𝑋󸀠1𝑋1 and𝑅󸀠Ψ−1𝑅, as

𝐵󸀠𝑋󸀠1𝑋1𝐵 = 𝐼,
𝐵󸀠𝑅󸀠Ψ−1𝑅𝐵 = Λ, (6)

where 𝑋󸀠1𝑋1 is a positive definite matrix and 𝑅󸀠Ψ−1𝑅 is a
positive semidefinite matrix, 𝐵 is a 𝑙 × 𝑙 nonsingular matrix,
and Λ is a 𝑙 × 𝑙 diagonal matrix with eigenvalues 𝜆𝑖 > 0 for𝑖 = 1, 2, . . . , 𝑞 and 𝜆𝑖 = 0 for 𝑖 = 𝑞 + 1, . . . , 𝑙.

Let 𝑋∗ = 𝑋1𝐵, 𝑅∗ = 𝑅𝐵, 𝛾 = 𝐵−1𝛽1, 𝑋󸀠∗𝑋∗ = 𝐼, and𝑅󸀠∗Ψ−1𝑅∗ = Λ; then themodels (1), (2), and (3) can be written
as

𝑦 = 𝑋∗𝛾 + 𝛿 + 𝜀, (7)

𝑦 = 𝑋∗𝛾 + 𝑢, (8)

𝑟 = 𝑅∗𝛾 + 𝑔 + V. (9)



Journal of Probability and Statistics 3

According toWijekoon and Trenkler [12], the corresponding
MRE is given by

𝛾MRE = (𝑋󸀠∗𝑋∗ + 𝑅󸀠∗Ψ−1𝑅∗)−1 (𝑋󸀠∗𝑦 + 𝑅󸀠∗𝑊−1𝑟)
= (𝐼 + 𝜎2Λ)−1 (𝑋󸀠∗𝑦 + 𝑅󸀠∗𝑊−1𝑟) . (10)

Hence, the respective expectation vector, bias vector, and
dispersion matrix are given by

𝐸 (𝛾MRE) = 𝛾 + (𝐼 + 𝜎2Λ)−1 (𝑋󸀠∗𝛿 + 𝑅󸀠∗𝑊−1𝑔) ,
Bias (𝛾MRE) = (𝐼 + 𝜎2Λ)−1 (𝑋󸀠∗𝛿 + 𝑅󸀠∗𝑊−1𝑔) ,
𝐷 (𝛾MRE) = 𝜎2 (𝐼 + 𝜎2Λ)−1 .

(11)

In the case of misspecification, now the SRRE, SRAURE,
SRLE, SRAULE, SRPCRE, SRrk, and SRrd for model (7) can
be written as𝛾SRRE = (𝑋󸀠∗𝑋∗ + 𝑘𝐼)−1𝑋󸀠∗𝑋∗𝛾MRE

= (1 + 𝑘)−1 𝛾MRE = 𝐶𝑘𝛾MRE

𝛾SRAURE = (𝐼 − 𝑘2 (𝑋󸀠∗𝑋∗ + 𝑘𝐼)−2) 𝛾MRE

= (1 + 𝑘)−2 (1 + 2𝑘) 𝛾MRE= (1 + 2𝑘) (𝐶𝑘)2 𝛾MRE = 𝐶∗𝑘𝛾MRE

𝛾SRLE = (𝑋󸀠∗𝑋∗ + 𝐼)−1 (𝑋󸀠∗𝑋∗ + 𝑑𝐼) 𝛾MRE

= 2−1 (1 + 𝑑) 𝛾MRE = 𝐶𝑑𝛾MRE

𝛾SRAULE = (𝐼 − (1 − 𝑑)2 (𝑋󸀠∗𝑋∗ + 𝐼)−2) 𝛾MRE

= 2−2 (1 + 𝑑) (3 − 𝑑) 𝛾MRE= 2−1 (3 − 𝑑) 𝐶𝑑𝛾MRE = 𝐶∗𝑑𝛾MRE𝛾SRPCRE = 𝑇ℎ𝑇󸀠ℎ𝛾MRE = 𝐶ℎ𝛾MRE𝛾SRrk = (1 + 𝑘)−1 𝑇ℎ𝑇󸀠ℎ𝛾MRE = 𝐶𝑘𝐶ℎ𝛾MRE= 𝐶ℎ𝑘𝛾MRE𝛾SRrd = 2−1 (1 + 𝑑) 𝑇ℎ𝑇󸀠ℎ𝛾MRE = 𝐶𝑑𝐶ℎ𝛾MRE= 𝐶ℎ𝑑𝛾MRE,

(12)

respectively, where 𝐶𝑘 = (1 + 𝑘)−1, 𝐶∗𝑘 = (1 + 2𝑘)(𝐶𝑘)2, 𝐶𝑑 =2−1(1 + 𝑑), 𝐶∗𝑑 = 2−1(3 − 𝑑)𝐶𝑑, 𝐶ℎ = 𝑇𝑟𝑇󸀠𝑟 , 𝐶ℎ𝑘 = 𝐶𝑘𝐶ℎ, and𝐶ℎ𝑑 = 𝐶𝑑𝐶ℎ.
It is clear that𝐶𝑘,𝐶∗𝑘 ,𝐶𝑑, and𝐶∗𝑑 are positive definite and𝐶ℎ, 𝐶ℎ𝑘, and 𝐶ℎ𝑑 are nonnegative definite.
Since all these estimators can be written by incorporating𝛾MRE, now we write a generalized form to represent SRRE,

SRAURE, SRLE, SRAULE, SRPCRE, SRrk, and SRrd as given
below: 𝛾(𝑗) = 𝐺(𝑗)𝛾MRE, (13)

where 𝐺(𝑗) is positive definite matrix if it stands for 𝐶𝑘, 𝐶∗𝑘 ,𝐶𝑑, and 𝐶∗𝑑 , and it is nonnegative definite matrix if it stands
for 𝐶ℎ, 𝐶ℎ𝑘, and 𝐶ℎ𝑑.

Now the expectation vector, bias vector, the dispersion
matrix, and the mean square error matrix can be written as𝐸 (𝛾(𝑗)) = 𝐺(𝑗)𝐸 (𝛾MRE)

= 𝐺(𝑗) (𝛾 + (𝐼 + 𝜎2Λ)−1 (𝑋󸀠∗𝛿 + 𝑅󸀠∗𝑊−1𝑔))= 𝐺(𝑗) (𝛾 + 𝜏𝐴)
Bias (𝛾(𝑗)) = 𝐸 (𝛾(𝑗) − 𝛾) = 𝐺(𝑗) (𝛾 + 𝜏𝐴) − 𝛾

= (𝐺(𝑗) − 𝐼) 𝛾 + 𝐺(𝑗)𝜏𝐴
𝐷(𝛾(𝑗)) = 𝐺(𝑗)𝐷(𝛾MRE) 𝐺󸀠(𝑗) = 𝜎2𝐺(𝑗) (𝐼 + 𝜎2Λ)−1

⋅ 𝐺󸀠(𝑗) = 𝜎2𝐺(𝑗)𝜏𝐺󸀠(𝑗)
MSEM (𝛾(𝑗)) = 𝐸 (𝛾(𝑗) − 𝛾) (𝛾(𝑗) − 𝛾)󸀠 = 𝐷(𝛾(𝑗))

+ Bias (𝛾(𝑗))Bias (𝛾(𝑗))󸀠 = 𝜎2𝐺(𝑗)𝜏𝐺󸀠(𝑗)
+ ((𝐺(𝑗) − 𝐼) 𝛾 + 𝐺(𝑗)𝜏𝐴) ((𝐺(𝑗) − 𝐼) 𝛾 + 𝐺(𝑗)𝜏𝐴)󸀠 ,

(14)

where 𝜏 = (𝐼 + 𝜎2Λ)−1 and 𝐴 = (𝑋󸀠∗𝛿 + 𝑅󸀠∗𝑊−1𝑔).
Based on (14), the respective bias vector, dispersion

matrix, and MSEM of the MRE, SRRE, SRAURE, SRLE,
SRAULE, SRPCRE, SRrk, and SRrd can easily be obtained
and are given in Table B1 in Appendix B.

By using the approach of Kadiyala [10] and (3) and (4), the
generalized prediction function can be defined as follows:𝑦0 = 𝑋∗𝛾 + 𝛿𝑦(𝑗) = 𝑋∗𝛾(𝑗), (15)

where 𝑦0 is the actual value and 𝑦(𝑗) is the corresponding
predictor.

The MSEM of the generalized predictor is given by

MSEM (𝑦(𝑗)) = 𝐸 (𝑦(𝑗) − 𝑦0) (𝑦(𝑗) − 𝑦0)󸀠
= 𝑋∗ (MSEM (𝛾(𝑗)))𝑋󸀠∗− 𝑋∗ (Bias (𝛾(𝑗))) 𝛿󸀠

− 𝛿 (Bias (𝛾(𝑗)))󸀠𝑋󸀠∗ + 𝛿𝛿󸀠.
(16)

Note that the predictors based on the MRE, SRRE, SRAURE,
SRLE, SRAULE, SRPCRE, SRrk, and SRrd are denoted by𝑦MRE,𝑦SRRE,𝑦SRAURE,𝑦SRLE,𝑦SRAULE,𝑦SRPCRE,𝑦SRrk, and𝑦SRrd,
respectively.

3. Mean Square Error Matrix
(MSEM) Comparisons

If two generalized biased estimators 𝛾(𝑖) and 𝛾(𝑗) are given,
the estimator 𝛾(𝑗) is said to be superior to 𝛾(𝑖) with respect to
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MSEM sense if and only if MSEM(𝛾(𝑖)) − MSEM(𝛾(𝑗)) ≥ 0.
Also, if two generalized predictors 𝑦(𝑖) and 𝑦(𝑗) are given, the
predictor 𝑦(𝑗) is said to be superior to 𝑦(𝑖) with respect to
MSEM sense if and only if MSEM(𝑦(𝑖)) −MSEM(𝑦(𝑗)) ≥ 0.

Now let 𝐷(𝑖,𝑗) = 𝐷(𝛾(𝑖)) − 𝐷(𝛾(𝑗)), 𝑏(𝑖) = Bias(𝛾(𝑖)), 𝑏(𝑗) =
Bias(𝛾(𝑗)), and Δ (𝑖,𝑗) = MSEM(𝛾(𝑖)) − MSEM(𝛾(𝑗)) = 𝐷(𝑖,𝑗) +𝑏(𝑖)𝑏󸀠(𝑖) − 𝑏(𝑗)𝑏󸀠(𝑗).

By applying Lemma A1 (see Appendix A), the following
theorem can be stated for the superiority of 𝛾(𝑗) over 𝛾(𝑖) with
respect to the MSEM criterion.

Theorem 1. If 𝐷(𝑖,𝑗) is positive definite, then 𝛾(𝑗) is superior to𝛾(𝑖) in MSEM sense when the regression model is misspecified
due to excluding relevant variables if and only if

𝑏󸀠(𝑗) (𝐷(𝑖,𝑗) + 𝑏(𝑖)𝑏󸀠(𝑖))−1 𝑏(𝑗) ≤ 1. (17)

Proof. Let 𝐷(𝑖,𝑗) be a positive definite matrix. According to
Lemma A1 (see Appendix A), Δ (𝑖,𝑗) is nonnegative definite
matrix if 𝑏󸀠(𝑗)(𝐷(𝑖,𝑗) + 𝑏(𝑖)𝑏󸀠(𝑖))−1𝑏(𝑗) ≤ 1. This completes the
proof.

The following theorem can be stated for the superiority of𝑦(𝑗) over 𝑦(𝑖) with respect to the MSEM criterion.

Theorem 2. If 𝐴 ≥ 0, 𝑦(𝑗) is superior to 𝑦(𝑖) in MSEM sense
when the regression model is misspecified due to excluding
relevant variables if and only if 𝜃 ∈ R(𝐴) and 𝜃󸀠𝐴−1𝜃 ≤ 1,
where 𝐴 = 𝑋∗Δ (𝑖,𝑗)𝑋󸀠∗ + 𝑋∗(𝑏(𝑖) − 𝑏(𝑗))(𝑏(𝑖) − 𝑏(𝑗))󸀠𝑋󸀠∗ + 𝛿𝛿󸀠,𝜃 = 𝛿 +𝑋∗(𝑏(𝑖) − 𝑏(𝑗)), andR(𝐴) stands for column space of 𝐴
and 𝐴−1 is an independent choice of 𝑔-inverse of 𝐴.
Proof. According to (16), we can write MSEM(𝑦(𝑖)) −
MSEM(𝑦(𝑗)) as

MSEM (𝑦(𝑖)) −MSEM (𝑦(𝑗))
= 𝑋∗ (MSEM (𝛾(𝑖)) −MSEM (𝛾(𝑗)))𝑋󸀠∗− 𝑋∗ (Bias (𝛾(𝑖)) − Bias (𝛾(𝑗))) 𝛿󸀠

− 𝛿 (Bias (𝛾(𝑖)) − Bias (𝛾(𝑗)))󸀠𝑋󸀠∗= 𝑋∗Δ (𝑖,𝑗)𝑋󸀠∗ − 𝑋∗ (𝑏(𝑖) − 𝑏(𝑗)) 𝛿󸀠
− 𝛿 (𝑏(𝑖) − 𝑏(𝑗))󸀠𝑋󸀠∗.

(18)

After some straight forward calculation, it can be written as

MSEM (𝑦(𝑖)) −MSEM (𝑦(𝑗)) = 𝐴 − 𝜃𝜃󸀠, (19)

where 𝐴 = 𝑋∗(Δ (𝑖,𝑗) + (𝑏(𝑖) − 𝑏(𝑗))(𝑏(𝑖) − 𝑏(𝑗))󸀠)𝑋󸀠∗ + 𝛿𝛿󸀠 and𝜃 = 𝛿 + 𝑋∗(𝑏(𝑖) − 𝑏(𝑗)).
Due to Lemma A3 (see Appendix A), MSEM(𝑦(𝑖)) −

MSEM(𝑦(𝑗)) is nonnegative definite matrix if and only if 𝐴 ≥0, 𝜃 ∈ R(𝐴) and 𝜃󸀠𝐴−1𝜃 ≤ 1, whereR(𝐴) stands for column
space of 𝐴 and 𝐴−1 is an independent choice of 𝑔-inverse of𝐴. This completes the proof.

Based on Theorems 1 and 2, we can define Corollaries
C1–C28, written in Appendix C, for the superiority condi-
tions between two selected estimators and for the respec-
tive predictors by substituting the relevant expressions for
Bias(𝛾(𝑖)), Bias(𝛾(𝑗)), 𝐷(𝛾(𝑖)), and 𝐷(𝛾(𝑗)) given in Table B1 in
Appendix B.

4. Illustration of Theoretical Results

4.1. Numerical Example. To illustrate the theoretical results,
we considered the dataset which gives the total National
Research and Development Expenditures as a Percent of
Gross National Product by Country from 1972 to 1986. The
dependent variable 𝑌 of this dataset is the percentage spent
by theUnited States, and the four other independent variables
are𝑋1,𝑋2,𝑋3, and𝑋4.The variable𝑋1 represents the percent
spent by the former Soviet Union,𝑋2 that spent by France,𝑋3
that spent by West Germany, and𝑋4 that spent by the Japan.
The data has been analysed by Gruber [18], Akdeniz and Erol
[19], and Li and Yang [14], among others. Now we assemble
the data as follows:

𝑋 =
((((((((((((((((
(

1.9 2.2 1.9 3.71.8 2.2 2.0 3.81.8 2.4 2.1 3.61.8 2.4 2.2 3.82.0 2.5 2.3 3.82.1 2.6 2.4 3.72.1 2.6 2.6 3.82.2 2.6 2.6 4.02.3 2.8 2.8 3.72.3 2.7 2.8 3.8

))))))))))))))))
)

𝑦 =
((((((((((((((((
(

2.32.22.22.32.42.52.62.62.72.7

))))))))))))))))
)

.

(20)

Note that the eigenvalues of𝑋󸀠𝑋 are 302.96, 0.728, 0.044, and
0.035, the condition number is 93, and the Variance Inflation
Factor (VIF) values are 6.91, 21.58, 29.75, and 1.79.This implies
the existence of serious multicollinearity in the dataset.

The corresponding OLS estimator of 𝛽 is𝛽 = (𝑋󸀠𝑋)−1𝑋󸀠𝑦 = (0.645, 0.089, 0.143, 0.152) and the
estimate of 𝜎2 is 𝜎̂2 = 0.00153. In this example, we consider
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𝑅 = (1, −2, −2, −2) and 𝑔 = 𝑐(1, −1, 2, 0). The SMSE values of
the estimators are summarized in Tables B2-B3 in Appendix
B.

Table B2 shows the estimated SMSEvalues ofMRE, SRRE,
SRAURE, SRLE, SRAULE, SRPCRE, SRrk, and SRrd for the
regression model when (𝑙, 𝑝) = (4, 0), (𝑙, 𝑝) = (3, 1), and(𝑙, 𝑝) = (2, 2) with respect to shrinkage parameters (𝑘/𝑑),
where 𝑙 denotes the number of variables in the model and 𝑝
denotes the number of misspecified variables. Table B3 shows
the estimated SMSE values of the predictor of MRE, SRRE,
SRAURE, SRLE, SRAULE, SRPCRE, SRrk, and SRrd for the
regression model when (𝑙, 𝑝) = (4, 0), (𝑙, 𝑝) = (3, 1), and(𝑙, 𝑝) = (2, 2) for some selected shrinkage parameters (𝑘/𝑑).

Note that when (𝑙, 𝑝) = (4, 0) the model is correctly
specified, when (𝑙, 𝑝) = (3, 1) one variable is omitted from
the model, and when (𝑙, 𝑝) = (2, 2) two variables are
omitted from the model. For simplicity, we choose shrinkage
parameter values 𝑘 and 𝑑 in the range (0, 1).

From Table B2, we can observe that the MRE is superior
to the other estimators when (𝑙, 𝑝) = (4, 0) and SRAULE,
SRRE, SRLE, and SRAURE outperform the other estimators
for (𝑘/𝑑) < 0.2, 0.2 ≤ (𝑘/𝑑) < 0.5, 0.5 ≤ (𝑘/𝑑) < 0.7, and(𝑘/𝑑) ≥ 0.7, respectively, when (𝑙, 𝑝) = (3, 1). Similarly, SRLE
and SRRE are superior to the other estimators for (𝑘/𝑑) < 0.5
and (𝑘/𝑑) ≥ 0.5, respectively, when (𝑙, 𝑝) = (2, 2).

From Table B3, we further observe that predictors based
on SRLE and SRRE outperform the other predictors for(𝑘/𝑑) < 0.5 and (𝑘/𝑑) ≥ 0.5, respectively, when (𝑙, 𝑝) = (4, 0)
and (𝑙, 𝑝) = (3, 1), and predictors based on SRrd and SRrk
are superior to the other predictors for (𝑘/𝑑) < 0.5 and(𝑘/𝑑) ≥ 0.5, respectively, when (𝑙, 𝑝) = (2, 2).
4.2. Simulation. For further clarification, a Monte Carlo
simulation study is done at different levels of misspecification
using R 3.2.5. Following McDonald and Galarneau [20], we
can generate the explanatory variables as follows:

𝑥𝑖𝑗 = (1 − 𝜌2)1/2 𝑧𝑖𝑗 + 𝜌𝑧𝑖,𝑚;𝑖 = 1, 2, . . . , 𝑛. 𝑗 = 1, 2, . . . , 𝑚, (21)

where 𝑧𝑖𝑗 is an independent standard normal pseudorandom
number and 𝜌 is specified so that the theoretical correlation
between any two explanatory variables is given by 𝜌2. A
dependent variable is generated by using the following
equation:

𝑦𝑖 = 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + 𝛽3𝑥𝑖3 + 𝛽4𝑥𝑖4 + 𝛽5𝑥𝑖5 + 𝜀𝑖;𝑖 = 1, 2, . . . , 𝑛, (22)

where 𝜀𝑖 is a normal pseudorandom number with mean zero
and variance one. Also, we select 𝛽 = (𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝛽5)
as the normalized eigenvector corresponding to the largest
eigenvalue of 𝑋󸀠𝑋 for which 𝛽󸀠𝛽 =1. Further we choose 𝑅 =(1, 1, 1, 1, 1) and 𝑔 = (1, −2, 0, 3, 1).

Then the following setup is considered to investigate
the effects of different degrees of multicollinearity on the
estimators:

(i) 𝜌 = 0.9, condition number = 9.49, and VIF =(5.99, 5.88, 5.94, 5.96, 20.47).
(ii) 𝜌 = 0.99, condition number = 34.77, and VIF =(57.66, 56.50, 57.26, 57.31, 225.06).
(iii) 𝜌 = 0.999, condition number = 115.66, and VIF =(574.3, 562.8, 570.7, 570.8, 2271.4).

Three different sets of observations are considered by select-
ing (𝑙, 𝑝) = (5, 0), (𝑙, 𝑝) = (4, 1), and (𝑙, 𝑝) = (3, 2) when𝑛 = 50, where 𝑙 denotes the number of variables in the model
and𝑝 denotes the number ofmisspecified variables. Note that
when (𝑙, 𝑝) = (5, 0) the model is correctly specified, when(𝑙, 𝑝) = (4, 1) one variable is omitted from the model, and
when (𝑙, 𝑝) = (3, 2) two variables are omitted from themodel.
For simplicity, we select values 𝑘 and 𝑑 in the range (0, 1).

The simulation is repeated 2000 times by generating new
pseudorandom numbers and the simulated SMSE values of
the estimators andpredictors are obtained using the following
equations:

SMSE (𝛾(𝑗)) = 12000 2000∑𝑟=1 tr (MSEM (𝛾(𝑗)𝑟)) ,
SMSE (𝑦(𝑗))

= 12000 2000∑𝑟=1 tr (MSEM (𝑦(𝑗)𝑟)) respectively.
(23)

The simulation results are summarized in Tables B4–B9 in
Appendix B.

Tables B4, B5, and B6 show the estimated SMSE values
of the estimators for the regression model when (𝑙, 𝑝) =(5, 0), (𝑙, 𝑝) = (4, 1), and (𝑙, 𝑝) = (3, 2) and 𝜌 = 0.9, 𝜌 =
0.99, and 𝜌 = 0.999 for the selected values of shrinkage
parameters (𝑘/𝑑), respectively. Tables B7, B8, and B9 show
the corresponding estimated SMSE values of the predictors
for the above regression models, respectively.

From Table B4, we can observe that MRE and SRAULE
outperform the other estimators for (𝑘/𝑑) < 0.8 and (𝑘/𝑑) ≥0.8, respectively, when (𝑙, 𝑝) = (5, 0) and (𝑙, 𝑝) = (4, 1).
Further, SRLE and SRRE are superior to the other estimators
for (𝑘/𝑑) < 0.5 and (𝑘/𝑑) ≥ 0.5, respectively, when (𝑙, 𝑝) =(3, 2) under 𝜌 = 0.9.

From Table B5, we can observe that SRAULE, MRE, and
SRAURE outperform the other estimators for (𝑘/𝑑) < 0.3,0.3 ≤ (𝑘/𝑑) < 0.7, and (𝑘/𝑑) ≥ 0.7, respectively, when(𝑙, 𝑝) = (5, 0). Similarly, SRAULE, SRRE, SRLE, and SRAURE
are superior to the other estimators when (𝑘/𝑑) < 0.2, 0.2 ≤(𝑘/𝑑) < 0.5, 0.5 ≤ (𝑘/𝑑) < 0.7, and (𝑘/𝑑) ≥ 0.7, respectively,
when (𝑙, 𝑝) = (4, 1), and both SRLE and SRRE outperform the
other estimators for (𝑘/𝑑) < 0.5 and (𝑘/𝑑) ≥ 0.5, respectively,
when (𝑙, 𝑝) = (3, 2) and 𝜌 = 0.99.

The results in Table B6 indicate that MRE is superior
to the other estimators when (𝑙, 𝑝) = (5, 0), and SRAULE,
SRRE, SRLE, and SRAURE outperform the other estimators
for (𝑘/𝑑) < 0.2, 0.2 ≤ (𝑘/𝑑) < 0.5, 0.5 ≤ (𝑘/𝑑) < 0.7, and(𝑘/𝑑) ≥ 0.7, respectively, when (𝑙, 𝑝) = (4, 1). Further, SRLE
and SRRE outperform the other estimators for (𝑘/𝑑) < 0.5
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Figure 1: SMSE values of the estimators in the misspecified
regression model ((𝑙, 𝑝) = (3, 2)) when 𝑛 = 50 and 𝜌 = 0.9.
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Figure 2: SMSE values of the estimators in the misspecified
regression model when 𝑛 = 50 and 𝜌 = 0.99.
and (𝑘/𝑑) ≥ 0.5, respectively, when (𝑙, 𝑝) = (3, 2) and 𝜌 =0.999.

From Tables B7–B9, we further observe that the predic-
tors based on SRrd and SRrk always outperform the other
predictors for (𝑘/𝑑) < 0.5 and (𝑘/𝑑) ≥ 0.5, respectively, when(𝑙, 𝑝) = (5, 0), (𝑙, 𝑝) = (4, 1), and (𝑙, 𝑝) = (3, 2).

The SMSE values of the selected estimators are plotted
with different 𝜌 values to demonstrate the results graphically
when (𝑙, 𝑝) = (3, 2). Figures 1–3 show the graphical illus-
tration of the performance of estimators in the misspecified
regression model ((𝑙, 𝑝) = (3, 2)) when 𝜌 = 0.9, 𝜌 = 0.99,
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Figure 3: SMSE values of the estimators in the misspecified
regression model when 𝑛 = 50 and 𝜌 = 0.999.
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Figure 4: SMSE values of the predictors in the misspecified
regression model when 𝑛 = 50 and 𝜌 = 0.9.
and 𝜌 = 0.999, respectively. Similarly, Figures 4–6 present the
graphical illustration of the performance of predictors in the
misspecified regression model ((𝑙, 𝑝) = (3, 2)) when 𝜌 = 0.9,𝜌 = 0.99, and 𝜌 = 0.999, respectively.

5. Conclusion

Theorems 1 and 2 give the common form of superiority
conditions to compare the estimators (MRE, SRRE, SRAURE,
SRLE, SRAULE, SRPCRE, SRrk, and SRrd) and their respec-
tive predictors in MSEM criterion in the misspecified linear
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Figure 5: SMSE values of the predictors in the misspecified
regression model when 𝑛 = 50 and 𝜌 = 0.99.
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Figure 6: SMSE values of the predictors in the misspecified
regression model when 𝑛 = 50 and 𝜌 = 0.999.

regression model when the prior information of the regres-
sion coefficients is incomplete, and the multicollinearity
exists among the explanatory variables.

From the simulation study, the superior estimators and
predictors over the others when the conditions are different
can be identified. The results obtained in this research will
produce significant improvements in the parameter estima-
tion in misspecified regression models with incomplete prior
information, and the results are applicable to real-world
applications.
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