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Mixed effects models are widely used for modelling clustered data when there are large variations between clusters, since mixed
effects models allow for cluster-specific inference. In some longitudinal studies such as HIV/AIDS studies, it is common that some
time-varying covariatesmay be left or right censored due to detection limits,may bemissing at times of interest, ormay bemeasured
with errors. To address these “incomplete data“ problems, a common approach is to model the time-varying covariates based on
observed covariate data and then use the fittedmodel to “predict” the censored ormissing ormismeasured covariates. In this article,
we provide a review of the common approaches for censored covariates in longitudinal and survival response models and advocate
nonlinear mechanistic covariate models if such models are available.

1. Introduction

Mixed effects models are widely used in the analysis of
clustered data, especially analysis of longitudinal data or
survival data. In a longitudinal study, some variables are
measured repeatedly over time, and these variables may be
used either as responses or covariates, depending on study
objectives. A common problem is that data on some of these
variablesmay be left or right censored due to detection limits,
may be missing at times of interest, or may be measured
with errors. For example, in HIV/AIDS studies, viral load
values may be left censored due to lower detection limits
and may be missing or measured with substantial errors.
In statistical analysis, these “incomplete data” issues must
be addressed for correct statistical inference. In this article,
we consider the case when these incompletely observed and
time-varying variables are used as important covariates in
mixed effects models for longitudinal response data or for
time-to-event response data. To simplify the discussion, we
focus on time-dependent covariates with left censoring, since
similar methods/models may be used for right censoring or
missing data or measurement errors in the covariates.

Longitudinal data with left censoring have received
increasing attention in the literature in recent years (e.g., [1–
8]). A common approach is to assume an empirical model for
the covariate of interest based on the observed data, such as a
linear mixed effects model.Then, the empirical model is used
to “predict” the true covariate values when these values are
censored, assuming the fittedmodel continues to hold for the
unobserved censored values. A potential problem with this
approach is that the assumed empirical covariatemodel based
on the observed data may not hold for the censored covariate
values, due to possibly different data-generation mechanisms
for these “too small to observe” values. For example, in
AIDS studies, censored viral loads below the detection limit
may behave very differently from those above detection limit
(observed values), due to a possibly different disease status for
suppressed viral loads [6]. Moreover, the assumedmodel and
distribution for the censored values cannot be verified based
on observed data.

Recently, Kong and Nan [4] proposed an interesting
approach based on ideas similar to that for right censored
survival data, i.e., they used ideas similar to Cox models for
right censored survival data for longitudinal data with left
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censoring. Yu et al. [6] proposed an approach which treats
censored values as point mass. While these two approaches
make no distributional assumptions for the censored values,
the methods may not be efficient if censored values indeed
follow a parametric distribution similar to that for the
observed values.

In some applications such as HIV viral dynamics and
pharmacokineticmodelling, mechanistic or scientificmodels
can be derived based on the underlying data-generation
mechanisms. These models are often nonlinear and are
derived based on a set of differential equations which approx-
imately describe the true data-generation mechanisms, so
thesemodels are justified biologically or scientifically (e.g., [9,
10]).Moreover, thesemechanisticmodels have been shown to
fit observed data quite well based on many data analyses [11].
Since these mechanistic models are based on underlying true
data-generation mechanisms, they should hold for censored
values, even though these values are not observed. Therefore,
these models can be used to better “predict” the unobserved
censored values than empirical models. In this article, we
will provide a review of such approaches. The approaches are
illustrated by an HIV/AIDS dataset.

2. Mixed Effects Models with
Censored Covariates

In this section, we focus on generalized linear mixed effects
models for longitudinal responses and survival models
for time-to-event responses, with left censored and time-
dependent covariates. The methods can be extended to other
types of regression models in a conceptually straightforward
way.

2.1. Generalized Linear Mixed Models with Censored Covari-
ates. We first consider generalized linear mixed models
(GLMMs) with a left censored and time-dependent covariate
in a longitudinal study, following Zhang et al. [7]. Let 𝑦𝑖𝑗
be the response of interest measured for individual 𝑖 at time
𝑡𝑖𝑗, 𝑖 = 1, 2, . . . , 𝑛; 𝑗 = 1, 2, . . . , 𝑛𝑖. Let 𝑥𝑖𝑗 be an important
time-dependent covariate which is subject to left censoring,
measurement errors, and missing data (assuming missing at
random). We denote the unobserved true value of 𝑥𝑖𝑗 by 𝑥∗𝑖𝑗
in the presence of censoring or missing data or measurement
errors. Let 𝑑 be a known detection limit for 𝑥𝑖𝑗 such that
𝑥-values cannot be observed (detected) if 𝑥𝑖𝑗 < 𝑑 (i.e., left
censoring), and let 𝑐𝑖𝑗 be the censoring indicator such that
𝑐𝑖𝑗 = 1 if 𝑥𝑖𝑗 < 𝑑 and 𝑐𝑖𝑗 = 0 otherwise. Let z𝑖𝑗 be a vector
of other covariates.

Consider the following GLMM:

𝑔 (𝐸 (𝑦𝑖𝑗)) = 𝑥∗𝑖𝑗𝛽1 + z𝑇𝑖𝑗𝛽2 + w𝑇𝑖𝑗a𝑖,
a𝑖 ∼ 𝑁 (0, 𝐴) , 𝑖 = 1, . . . , 𝑛; 𝑗 = 1, . . . , 𝑛𝑖,

(1)

where 𝑔(⋅) is a known link function, 𝛽𝑗’s are unknown
parameters, w𝑖𝑗 is a subset of (𝑥𝑖𝑗, z𝑖𝑗), a𝑖 contains random
effects, and 𝐴 is a unknown covariance matrix. We assume
that the response 𝑦𝑖𝑗 follows a distribution in the exponential
family such as a normal or Poisson or Binomial distribution.

When the covariate𝑥𝑖𝑗 is left censored ormissing ormeasured
with error, we may assume an empirical model for 𝑥𝑖𝑗 based
on the observed 𝑥-data, such as a linear mixed effects (LME)
model. Then we assume that the LME model continues to
hold for censored or unobserved values and proceed for
likelihood inference. However, as noted in Section 1, such an
approach may be problematic since censored values may not
follow the same model obtained based on the observed data.

When a mechanistic or scientific model is available for
covariate 𝑥𝑖𝑗, such as in HIV viral dynamics, the scientific
model should hold not only for observed data but also
for unobserved data (e.g., censored or mismeasured or
missing data), so that the model can be used to provide
better “predictions” for the unobserved true covariate values.
Such a scientific model is often nonlinear. For longitudinal
data with large between-individual variations, by introduc-
ing random effects in the nonlinear model to account for
between-individual variations and within-individual correla-
tions among repeated measurements, we obtain a nonlinear
mixed effects (NLME) model. Thus, we assume that the
covariate 𝑥𝑖𝑗 follows the following NLME model:

𝑥𝑖𝑗 = ℎ (𝑡𝑖𝑗, b𝑖, 𝛼) + 𝑒𝑖𝑗 (≡ 𝑥∗𝑖𝑗 + 𝑒𝑖𝑗) ,
b𝑖 ∼ 𝑁 (0, 𝐵) , 𝑒𝑖𝑗 i.i.d. ∼ 𝑁 (0, 𝜎2) ,

(2)

where ℎ(⋅) is a known nonlinear function, vector b𝑖 contains
random effects, vector 𝛼 contains fixed parameters, 𝑥∗𝑖𝑗 is the
true covariate value at time 𝑡𝑖𝑗, 𝐵 is an unknown covariance
matrix, and 𝑒𝑖𝑗’s are random errors (measurement errors).

Note that when ℎ(⋅) is a linear function (so model (2)
is an LME model), the covariate model (2) is an empirical
model which is chosen based on the observed covariate data.
In a more general sense, the empirical models also include
semiparametric or nonparametricmixed effectsmodels. Such
an empirical model is commonly used to address censoring,
missing data, and measurement errors in the literature (e.g.,
[1, 2, 11]). When covariate 𝑥𝑖𝑗 is not normal, such as binary or
count, generalized linear mixedmodels may be considered to
fit observed covariate data, which are still empirical models.
These empirical models may provide poor “predictions” to
the unobserved data such as censored data.

2.2. Survival Models with Censored Time-Dependent Covari-
ates. For survival models with time-dependent covariates,
the covariates may also be left censored. Moreover, param-
eter estimation and inference for Cox models require that
covariate values are available at event times [11]. However,
this is usually not the case, since covariate values are unlikely
to be available at all event times. Thus, this leads to missing
covariate problems. The covariates may also be measured
with errors, i.e., the observed covariate values may not be the
true values but values with errors. In all cases, a common
approach is to model the covariate process based on the
observed covariate data and then use the fitted covariate
model to “predict” the censored or missing covariate values.
As noted in the previous section, a mechanistic or scientific
covariate model may make better “predictions” than empiri-
cal covariate models, as shown in Zhang and Wu [8].



Journal of Probability and Statistics 3

Here we consider a Cox model for the survival data with
possible right censoring of the event times. For individual 𝑖,
we define 𝑇𝑖 to be the minimum of the observed event time
𝑇∗𝑖 and the right censoring time 𝐶𝑖 and define Δ 𝑖 to be the
censoring indicator such that Δ 𝑖 = 1 if the event time is right
censored and Δ 𝑖 = 0 otherwise, 𝑖 = 1, 2, . . . , 𝑛. Let 𝜆𝑖(𝑡) be
the hazard function for individual 𝑖 at time 𝑡. The Cox model
with time-dependent covariates can be written as

𝜆𝑖 (𝑡) = 𝜆0 (𝑡) exp (𝛽1𝑥∗𝑖 (𝑡) + 𝛽𝑇2 z𝑖) , 𝑖 = 1, 2, . . . , 𝑛, (3)

where 𝛽 = (𝛽𝑇1 , 𝛽2)𝑇 is a vector of regression coefficients and
𝜆0(𝑡) is the (unspecified) baseline hazard function.

When the time-dependent covariate 𝑥𝑖(𝑡) is left censored
or missing or measured with errors, inference for the Cox
model can be challenging. Similar to the GLMM in the
previous section, a common approach is to model the time-
dependent covariate 𝑥𝑖(𝑡) based on observed covariate data,
assuming the fitted covariate model holds for the censored
covariate values. Again, such an empirical approach can
be problematic if censored covariate values behave quite
differently than observed values.The problem can be fixed if a
mechanistic covariate model is available. We may again con-
sider the mechanistic NLME model (2) to address censoring
in the covariates.

3. Statistical Inference

For parameter estimation and inference, two methods are
commonly used: the two-step method and the joint likeli-
hood method. We briefly review the two methods below.

3.1. Two-Step Methods. To estimate the parameters in the
models, a simple approach would be the so-called two-step
method: in the first step we fit the covariate model based on
the observed covariate data, and then in the second step we fit
the response model separately, with the censored or missing
covariate values substituted by their predicted values from the
first step.

Specifically, consider the GLMM response model (1) and
the covariate model (2). In the first step, we fit the NLME
covariate model (2) to the observed covariate data and
obtain estimates of the parameters 𝛼̂ and the empirical Bayes

estimates of the random effects b̂𝑖. The predicted value of the
covariate at time 𝑡 is given by

𝑥𝑖 (𝑡) = ℎ (𝑡, b̂𝑖, 𝛼̂) . (4)

Then, in the second step, we fit the following GLMM to the
response data using the standard complete-data method for
fitting GLMM

𝑔 (𝐸 (𝑦𝑖𝑗)) = 𝑥𝑖𝑗𝛽1 + z𝑇𝑖𝑗𝛽2 + w𝑇𝑖𝑗a𝑖. (5)

If the covariate𝑥 value is censored ormissing ormismeasured
at time 𝑡𝑖𝑗, its value is imputed by the predicted value 𝑥𝑖(𝑡𝑖𝑗) =𝑥𝑖𝑗.

An obvious issue with the above simple two-step method
is that the estimation uncertainty in the first step is ignored in
the second step.The standard error of the parameter estimate
𝛽1 may be underestimated, leading to misleading inference
for the parameter 𝛽1. To fix this problem, we may use the
bootstrap method to obtain more reliable standard errors
of the parameters in the response model [11]. A parametric
bootstrap method, which generates samples from the above
fitted models, may be used to produce more reliable standard
errors of the estimates. Still, the two-step method may not
be efficient because covariate data and response data are not
used simultaneously.

If the response data are survival data, the issues men-
tioned above for the two-step method remain. Moreover, in
this case, the longitudinal covariate data may be truncated by
the events such as death or dropouts. In this case, the two-step
method may lead to biased estimation.

3.2. Joint Likelihood Method. A more desirable and formal
method than the two-step method is to use the likelihood
method based on the “joint likelihood” for both the response
and covariates. Maximum likelihood estimates (MLEs) of
all the unknown parameters in the two models may then
be obtained simultaneously based on the joint likelihood for
all observed data. If all assumed models and distributions
hold, the MLEs are the most efficient estimates. Let 𝜃 be
the collection of all unknown parameters in the response
and covariate models, and let 𝑓(⋅) denote a generic density
function. The joint log-likelihood for the observed data is
given by

𝑙𝑜𝑏𝑠 (𝜃) =
𝑛

∑
𝑖=1

log∫
𝑛𝑖

∏
𝑗=1

𝑓𝑦 (𝑦𝑖𝑗 | 𝑥𝑖𝑗, a𝑖; 𝛽) 𝑓𝑥 (𝑥𝑖𝑗 | b𝑖, 𝛼)1−𝑐𝑖𝑗 𝐹𝑥 (𝑑 | b𝑖, 𝛼)𝑐𝑖𝑗 𝑓 (a𝑖, b𝑖) 𝑑a𝑖𝑑b𝑖 (6)

where 𝑓𝑦(𝑦𝑖𝑗 | 𝑥𝑖𝑗, a𝑖; 𝛽) is a density function from the
exponential family, 𝐹𝑥(𝑑 | b𝑖, 𝛼) = 𝑃(𝑥𝑖𝑗 < 𝑑 | b𝑖, 𝛼), and𝑐𝑖𝑗 is the censoring indicator for the covariates.

Evaluation of the intractable integration in the log-
likelihood 𝑙𝑜𝑏𝑠(𝜃) can be computationally challenging, espe-
cially when the dimension of the random effects (a𝑖, b𝑖) is
higher. By treating the random effects (a𝑖, b𝑖) as “missing

data,” we may use the EM algorithm to find the MLEs. Let
x𝑖,𝑐𝑒𝑛 be the censoring components of the covariate vector
x𝑖. By treating (a𝑖, b𝑖, x𝑖,𝑐𝑒𝑛) as “missing data”, Zhang et al.
[7] proposed a Monte Carlo EM algorithm in which the E-
step is implemented with a Gibbs sampler combined with
rejection sampling methods.TheMonte Carlo EM algorithm
is still computationally intensive but is feasible. Alternatively,
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we may use computationally more efficient Laplace approx-
imations or linearization methods to 𝑙𝑜𝑏𝑠(𝜃) for approximate
inference [11].

For the survival response models, the joint log-likelihood
is given by

𝑙∗𝑜𝑏𝑠 (𝜃) =
𝑛

∑
𝑖=1

log∫
∞

−∞
∫
𝑑

−∞
[𝑓 (𝑇𝑖, Δ 𝑖 | a𝑖;𝛼,𝜆0,𝛽) × 𝑓𝑥 (𝑥𝑖𝑗 | b𝑖, 𝛼)1−𝑐𝑖𝑗 𝐹𝑥 (𝑑 | b𝑖, 𝛼)𝑐𝑖𝑗 × 𝑓 (a𝑖;A)] 𝑑a𝑖, (7)

where

𝑓 (𝑇𝑖, Δ 𝑖 | a𝑖;𝛼,𝜆0,𝛽)
= (𝜆𝑖 (𝑇𝑖 | 𝑋∗𝑖 (𝑇𝑖) ;𝛼,𝜆0,𝛽))Δ 𝑖 × 𝑆 (𝑇𝑖 | 𝑋∗𝑖 (𝑇𝑖)) ,

(8)

with 𝑆(𝑡) the survival function defined as 𝑆(𝑡) =
exp(− ∫𝑡

0
𝜆(𝑠)𝑑𝑠). Statistical inference can again be based on

a Monte Carlo EM algorithm, although the computation can
be more tedious due to the nonparametric baseline hazard in
the Cox model.

4. Examples

In the following, we show two examples from an HIV/AIDS
study. In the first example, we consider a Poisson generalized
linear mixed model with censored covariates. In the second
example, we consider a Cox survival model with censored
covariates. In both examples, the time-dependent covariate
is subject to left censoring and is modelled by a NLME
model to address the censoring as well as missing data and
measurement errors. The methods were implemented by
Monte Carlo EM algorithms in R. R code is available upon
request.

4.1. Generalized Linear Mixed Models with Censored Covari-
ates. We consider an AIDS longitudinal dataset and study
how viral load (VL) may relate to CD4 counts over time
during an anti-HIV treatment. Viral loads usually have a
lower detection limit so that viral load values below the limit
cannot be observed, i.e., viral load may be left censored.
Moreover, viral loads may be missing or measured with
errors. As an illustration, we view CD4 count (𝑦𝑖𝑗) as the
response and VL as a time-dependent covariate (𝑥𝑖𝑗), and we
model the longitudinal CD4 counts as a Poisson GLMM:

log (𝐸 (𝐶𝐷4𝑖𝑗)) = 𝛽0𝑖 + 𝛽1𝑖𝑡𝑖𝑗 + 𝛽2𝑖𝑉𝐿∗𝑖𝑗 + 𝛽3𝑇𝑅𝑖
+ 𝛽4𝑡𝑖𝑗 × 𝑇𝑅𝑖

(9)

where 𝛽𝑘𝑖 = 𝛽𝑘 + 𝑎𝑘𝑖, 𝑘 = 0, 1, 2, 𝑎𝑘𝑖’s are random effects,
and TR denotes a treatment indicator. Since VL may be left
censored and may be measured with errors, we consider
the following mechanistic NLME model which is justified
biologically [9, 10]:

𝑉𝐿 𝑖𝑗 = log10 (𝛼1𝑖𝑒−𝛼2𝑖𝑡𝑖𝑗 + 𝛼3𝑖𝑒−𝛼4𝑖𝑡𝑖𝑗) + 𝑒𝑖𝑗 ≡ 𝑉𝐿∗𝑖𝑗 + 𝑒𝑖𝑗, (10)

where 𝛼𝑘𝑖 = 𝛼𝑘 + 𝑏𝑘𝑖, 𝑘 = 1, 2, 3, 4, 𝑏𝑘𝑖’s are random effects,
and viral load values𝑉𝐿 𝑖𝑗 are log10-transformed.The random

effects are assumed to follow multivariate normal distribu-
tions with mean 0 and unstructured covariance matrices.
As a comparison, we also fit observed VL data based on an
empirical LME model (ELM):

𝑉𝐿 𝑖𝑗 = 𝛼1𝑖 + 𝛼2𝑖𝑡𝑖𝑗 + 𝛼3𝑖𝑡2𝑖𝑗 + 𝛼4𝑖𝑡3𝑖𝑗 + 𝑒𝑖𝑗. (11)

The unknown parameters (𝛼𝑘, 𝛽𝑘) are estimated using a
Monte Carlo EM algorithm as described in Zhang et al. [7].

Figure 1 shows the NLME and ELM models fit to the
observed viral loads of two randomly selected subjects,
where the times are rescaled to be in [0, 1]. It suggests
different fitted curves from the two covariate models. In
particular, the predicted lines based on the NLME model fit
the uncensored viral loads quite well; and for the censored
portion, the lines follow the mechanistic model and preserve
an overall nonlinear trend. On the other hand, the empirical
LME model renders noticeable deviation of the fitted lines
from the uncensored viral loads and imposes a linear or
quadratic curve for the censored viral loads. Such discrepan-
cies between the covariate model fitting, particularly in the
censored portion, induce different parameter estimates in the
response model. Table 1 summarizes the parameter estimates
of the response CD4model, with the covariate VL being fitted
based on theNLME and ELMmodels, respectively. As we can
see, the results of the parameter estimates are different. For
example, the estimate of 𝛽2, which measures the association
between CD4 and VL, is significant at 5% level based on
the NLME covariate model but is not significant based on
the ELM covariate model. The results based on the NLME
model should be more reliable since it provides more reliable
predictions for the censored viral loads, since the NLME
model may make better predictions for the unobserved
censored values than the ELMmethod as the NLMEmodel is
based on the underlying data-generationmechanismwhich is
the same for both observed and unobserved covariate values.
The higher the percentage of censored/missing values is, the
better the NLME model performs. This is confirmed by the
simulation study in Zhang et al. [7].

4.2. Survival Models with Censored Covariates. As another
example, we consider the foregoing dataset again, but nowwe
focus on the occurrences of the first CD4:CD8 decline. The
objective here is to determine if and how the time to the first
CD4:CD8 decline may be related to treatment and viral load.
We consider the following Cox survival model for the time to
first CD4:CD8 decline:

𝜆𝑖 (𝑡) = 𝜆0 (𝑡) exp (𝛽1𝑇𝑅𝑖 + 𝛽2𝑉𝐿∗𝑖 (𝑡)) . (12)
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Figure 1: Fitted viral load curves for two randomly selected subjects. The open circles are the observed viral loads (the censored values are
replaced by half the detection limit in log10 scale for simplicity).The solid line is the fitted curve based on the NLMEmodel, while the dashed
line is fitted curve based on the ELMmodel.

Table 1: Parameter estimates of the CD4 response model, based on the NLME and ELM covariate models respectively.

Response model parameter NLME covariate model ELM covariate model
Estimate SE p-value Estimate SE p-value

𝛽0 5.98 0.16 0.00 6.15 0.23 0.00
𝛽1 −0.07 0.14 0.49 0.02 0.13 0.57
𝛽2 −0.19 0.06 0.01 −0.06 0.04 0.09
𝛽3 −0.71 0.59 0.19 −0.84 0.71 0.61
𝛽4 0.56 0.33 0.16 0.39 0.26 0.17

For this dataset, the Weibull distribution seems to provide a
reasonable fit to the observed event times, so we consider the
parametric Weibull distribution for the event times. For viral
load, we use the same NLME and ELM models described in
the first example.

Figure 2 shows, for two randomly selected subjects, the
fitted lines to the observed viral loads based on the joint Cox
survival model with the mechanistic NLME covariate model
and empirical LMEmodel (ELM), respectively, together with
the corresponding estimated hazard functions and survival
probability functions. We see that the mechanistic NLME
model and the empirical LME model lead to different hazard
and survival estimates. The NLME based joint model pre-
dicts monotonically increasing hazards, indicating the ever
increasing risk of the event. On the other hand, the LME
based model predicts more curved risk functions. Table 2
shows the results of the parameter estimates for the survival
model. Here the differences seem relatively small, but as dis-
cussed, the predicted hazards and survival probabilities can
be substantial. Since the NLME covariate model is derived
based on reasonably biological justifications, they provide
better “predictions” for censored (unobserved) viral loads

and more reliable prediction for each individual’s hazard and
survival probability than the ELM covariate model, based on
similar reasons as that for Table 1, which is also confirmed by
simulations in Zhang and Wu [8].

5. Discussion

The nonlinear mechanistic covariate models are very appeal-
ing to address censoring and missing data in covariates,
since the “predicted values” based on such models are more
reliable than the commonly used empirical covariate models.
These nonlinear mechanistic models are widely used in
modelling HIV viral dynamics, pharmacokinetics, growth
or decay, and some other areas [12, 13]. However, in many
cases, such mechanistic models may not be available. In
this case, an alternative approach is to treat the censored
values as “point mass” to avoid unverifiable distributional
assumptions for the censored values. The advantages of the
nonlinear mechanistic covariate models are more obvious
when the percentage of the censored values is higher, as
confirmed in Zhang et al. [7].The limitations of the nonlinear
mechanistic covariate models are as follows: (i) in many
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Figure 2: Plot of two individuals' (first row and 2nd row) fitted (predicted) viral load values and the corresponding hazard, survival functions
based on the joint Cox and NLMEmodel and empirical LMEmodel (ELM), respectively. The open circles represent the observed viral loads.
Left censored viral loads are replaced by one-half of the detection limit (in log10-scale).

Table 2: Parameter estimates in the Cox model based on the NLME and ELM covariate models respectively.

Cox model parameter NLME covariate model ELM covariate model
Estimate SE p-value Estimate SE p-value

log (𝜆) 1.60 1.05 0.10 1.44 1.13 0.60
log (𝛾) 0.22 0.22 0.66 0.18 0.41 0.87
𝛽1 0.10 0.41 0.92 0.13 0.42 0.80
𝛽2 −0.40 0.54 0.39 −0.34 0.66 0.41

applications such mechanistic models may not be available
and (ii) computation can be challenging, as discussed below.

Since the mechanistic covariate models are often nonlin-
ear, computation is a main challenge in likelihood inference.
Although Monte Carlo EM algorithms can almost always
be used, they may offer potential problems such as very
slow convergence or even nonconvergence. Moreover, the
Monte Carlo EM algorithms usually need to be combined
with Markov Chain Monte Carlo (MCMC) methods which
are used to generate Monte Carlo samples in the E-step
of the EM algorithms, making the computation even more
challenging. When the dimensions of the random effects are
high, we recommend approximate methods such as Laplace
approximations and linearization methods as reviewed in
Wu [11]. These approximate methods can be computationally

much more efficient and provide reasonable approxima-
tions.
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