
Research Article
A Note on the Adaptive LASSO for Zero-Inflated
Poisson Regression

Prithish Banerjee,1 Broti Garai,2 Himel Mallick ,3,4

Shrabanti Chowdhury,5 and Saptarshi Chatterjee6

1 JP Morgan Chase & Co., USA
2NBCUniversal, USA
3Department of Biostatistics, Harvard T.H. Chan School of Public Health, USA
4Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, USA
5Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, USA
6Eli Lilly and Company, USA

Correspondence should be addressed to Himel Mallick; hmallick@hsph.harvard.edu

Prithish Banerjee, Broti Garai, and Himel Mallick contributed equally to this work.

Received 23 July 2018; Accepted 21 November 2018; Published 30 December 2018

Guest Editor: Ash Abebe

Copyright © 2018 Prithish Banerjee et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

We consider the problem of modelling count data with excess zeros using Zero-Inflated Poisson (ZIP) regression. Recently, various
regularizationmethods have been developed for variable selection in ZIPmodels. Among these, EMLASSO is a popularmethod for
simultaneous variable selection and parameter estimation. However, EM LASSO suffers from estimation inefficiency and selection
inconsistency. To remedy these problems, we propose a set of EM adaptive LASSOmethods using a variety of data-adaptive weights.
We show theoretically that the new methods are able to identify the true model consistently, and the resulting estimators can be
as efficient as oracle. The methods are further evaluated through extensive synthetic experiments and applied to a German health
care demand dataset.

1. Introduction

Modern research studies routinely collect information on a
broad array of outcomes including count measurements with
excess amount of zeros. Modeling such zero-inflated count
outcomes is challenging for several reasons. First, traditional
count models such as Poisson and Negative Binomial are
suboptimal in accounting for excess variability due to zero-
inflation [1, 2]. Second, alternative zero-inflated models such
as the Zero-Inflated Poisson (ZIP) [2] and Zero-Inflated
Negative Binomial (ZINB) [1] models are computationally
prohibitive in the presence of high-dimensional and collinear
variables.

Regularization methods have been proposed as a pow-
erful framework to mitigate these problems, which tend to
exhibit significant advantages over traditional methods [3,
4]. Essentially all these methods enforce sparsity through a

suitable penalty function and identify predictive features by
means of a computationally efficient Expectation Maximiza-
tion (EM) algorithm. Among these, EM LASSO is particu-
larly attractive due to its capability to perform simultaneous
model selection and stable effect estimation. However, recent
research suggests that EM LASSO may not be fully efficient
and its model selection result could be inconsistent [5, 6].
This led to a simple modification of the LASSO penalty,
namely, the EM adaptive LASSO (EM AL). EM AL achieves
“oracle selection consistency” by allowing different amounts
of shrinkage for different regression coefficients.

Previous studies have not, however, investigated the EM
AL at sufficient depth to evaluate its properties under diver-
sified and realistic scenarios. It is not yet clear, for example,
how reliable the resulting parameter estimates are in the
presence ofmulticollinearity. In particular, the actual variable
selection performance of EM AL depends on the proper
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construction of the data-adaptive weight vector. When the
features to be associated possess an inherent collinearity, EM
AL is expected to produce suboptimal results, a phenomenon
that is especially evident when the sample size is limited
[7]. Several remedies have been suggested for linear and
generalized linear models (GLMs) such as the standard error-
adjusted adaptive LASSO (SEAL) [7, 8]. However, there is
a lack of similar published methods for zero-inflated count
regression models. In addition, complete software packages
of these methods have not been made available to the
community.

We address these issues by providing a set of flexible vari-
able selection approaches to efficiently identify correlated fea-
tures associated with zero-inflated count outcomes in a ZIP
regression framework. We have implemented this method as
AMAZonn (A Multicollinearity-adjusted Adaptive LASSO
for Zero-inflated Count Regression). AMAZonn considers
two data-adaptive weights: (i) the inverse of the maximum
likelihood (ML) estimates (EM AL) and (ii) inverse of the
ML estimates divided by their standard errors (EM SEAL).
We show theoretically that AMAZonn is able to identify the
true model consistently, and the resulting estimator is as effi-
cient as oracle. Numerical studies confirmed our theoretical
findings. The rest of the article is organized as follows. The
AMAZonn method is proposed in the next section, and its
theoretical properties are established in Section 3. Simulation
results are reported in Section 4 and one real dataset is
analyzed in Section 5.Then, the article concludes with a short
discussion in Section 6. All technical details are presented in
the Appendix.

2. Methods

2.1. Zero-Inflated Poisson (ZIP) Model. Zero-inflated count
models assume that the observations originate either from
a “susceptible” population that generates zero and positive
counts according to a count distribution or from a “nonsus-
ceptible” population, which produces additional zeros [1, 2].
Thus, while a subject with a positive count is considered to
belong to the “susceptible” population, individuals with zero
counts may belong to either of the two latent populations.
We denote the observed values of the response variable as
y = (𝑦1, 𝑦2, . . . , 𝑦𝑛)󸀠. Following Lambert [2], a ZIP mixture
distribution can be written as

𝑃 (𝑦𝑖 = 𝑘) = {{{{{
𝑝𝑖 + (1 − 𝑝𝑖) 𝑒−𝜆𝑖 if 𝑘 = 0,
(1 − 𝑝𝑖) 𝑒−𝜆𝑖𝜆𝑘𝑖𝑘! if 𝑘 = 1, 2, . . . , (1)

where 𝑝𝑖 is the probability of belonging to the nonsusceptible
population and 𝜆𝑖 is the Poisson mean corresponding to the
susceptible population for the 𝑖th individual (𝑖 = 1, . . . , 𝑛). It
can be seen from (1) that ZIP reduces to the standard Poisson
model when 𝑝𝑖 = 0. Also, 𝑃(𝑦𝑖 = 0) > 𝑒−𝜆𝑖 , indicating zero-
inflation.Theprobability of belonging to the “nonsusceptible”
population, 𝑝𝑖, and the Poisson mean, 𝜆𝑖, are linked to the
explanatory variables through the logit and log links as

logit (𝑝𝑖) = z󸀠𝑖𝛾 and (2)

Table 1:The AMAZonn data-adaptive weights. 𝛽ML and 𝛾ML denote
the ML estimates based on the unpenalized ZIP model, corre-
sponding to count and zero submodels, respectively. SE denotes the
standard errors of the corresponding ML estimates.

Weighting Scheme Count Zero

AMAZonn - EM AL 1󵄨󵄨󵄨󵄨󵄨𝛽𝑗ML

󵄨󵄨󵄨󵄨󵄨
1󵄨󵄨󵄨󵄨󵄨𝛾𝑗ML

󵄨󵄨󵄨󵄨󵄨
AMAZonn - EM SEAL

𝑆𝐸 (𝛽𝑗ML
)󵄨󵄨󵄨󵄨󵄨𝛽𝑗ML

󵄨󵄨󵄨󵄨󵄨
𝑆𝐸 (𝛾𝑗ML

)󵄨󵄨󵄨󵄨󵄨𝛾𝑗ML

󵄨󵄨󵄨󵄨󵄨
log (𝜆𝑖) = x󸀠𝑖𝛽, (3)

where x𝑖 and z𝑖 are vectors of covariates for the 𝑖th subject
(𝑖 = 1, . . . , 𝑛) corresponding to the count and zero models,
respectively, and 𝛾 = (𝛾0, 𝛾1, . . . , 𝛾𝑞)󸀠 and 𝛽 = (𝛽0, 𝛽1, . . . , 𝛽𝑝)󸀠
are the corresponding regression coefficients including the
intercepts.

For 𝑛 independent observations, the ZIP log-likelihood
function can be written as

𝐿 (𝛽, 𝛾) = ∑
𝑦𝑖=0

log {𝑒𝑧󸀠𝑖𝛾 + 𝑒−𝑒𝑥󸀠𝑖𝛽}
+ ∑
𝑦𝑖>0

{𝑦𝑖𝑥󸀠𝑖𝛽 + 𝑒−𝑥󸀠𝑖𝛽} − 𝑛∑
𝑖=1

log {1 + 𝑒𝑧󸀠𝑖 𝛾}
− ∑
𝑦𝑖>0

log (𝑦𝑖!) .
(4)

2.2. 	e AMAZonn Method. AMAZonn considers two data-
adaptive weights in the EM adaptive LASSO framework: (i)
the inverse of the maximum likelihood (ML) estimates (EM
AL) and (ii) inverse of the ML estimates divided by their
standard errors (EM SEAL). As defined by Tang et al. [6], the
EM adaptive LASSO formulation for ZIP regression is given
by

𝜃̂
∗ = argmin {−𝐿 (𝜃)} + ]1

𝑝∑
𝑗=1

𝑤1𝑗 󵄨󵄨󵄨󵄨󵄨𝛽𝑗󵄨󵄨󵄨󵄨󵄨 + ]2
𝑝∑
𝑗=1

𝑤2𝑗 󵄨󵄨󵄨󵄨󵄨𝛾𝑗󵄨󵄨󵄨󵄨󵄨 , (5)

where 𝜃 = {𝛽, 𝛾} is the parameter vector of interest with
known weights 𝑤1 = (𝑤11, . . . , 𝑤1𝑝)󸀠 and 𝑤2 = (𝑤21, . . . ,𝑤2𝑝)󸀠. As noted by Qian and Yang [7], the inverse of the
maximum likelihood (ML) estimates as weights may not
always be stable, especially when the multicollinearity of
the design matrix is a concern. In order to adjust for this
instability, AMAZonn additionally considers the inverse of
the ML estimates divided by their standard errors as weights.
We refer to these two methods as AMAZonn - EM AL and
AMAZonn - EM SEAL, respectively (Table 1).

2.3. 	e EM Algorithm. In order to efficiently estimate the
parameters in the above optimization problem (5), we resort
to the EM algorithm. To this end, we define a set of latent
variables 𝑧𝑖 as follows:𝑧𝑖 = 1 if 𝑦𝑖 is from the zero state, and
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𝑧𝑖 = 0 if 𝑦𝑖 is from the count state, 𝑖 = 1, . . . , 𝑛.
(6)

We consider the latent variables 𝑧𝑖’s as the “missing data” and
rewrite the complete-data log-likelihood function in (4) as
follows:

𝐿 (𝜃) = 𝑛∑
𝑖=1

[𝑧𝑖𝑋𝑖𝛾 − log (1 + exp (𝑋𝑖𝛾))
+ (1 − 𝑧𝑖) {𝑦𝑖𝑋𝑖𝛽 − (𝑦𝑖 + 1) log (1 + 𝑋𝑖𝛽)}] .

(7)

With the above formulation, the objective function in (5) can
be rewritten as

𝑄∗ (𝜃) = −𝐿 (𝜃) + ]1
𝑝∑
𝑗=1

𝑤1𝑗 󵄨󵄨󵄨󵄨󵄨𝛽𝑗󵄨󵄨󵄨󵄨󵄨 + ]2
𝑝∑
𝑗=1

𝑤2𝑗 󵄨󵄨󵄨󵄨󵄨𝛾𝑗󵄨󵄨󵄨󵄨󵄨 , (8)

which can be iteratively solved as follows:

(1) At iteration t, the E step computes the expectation of𝑄∗(𝜃) by substituting 𝑧𝑖 with its conditional expec-
tation given observed data and current parameter
estimates

𝑧̂(𝑡)𝑖 = {{{{{{{{{
(1 + [[[

exp (−𝑋𝑖𝛾̂(𝑡))1 + exp (−𝑋𝑖𝛽̂(𝑡))]]]) if 𝑦𝑖 = 0,
0 if 𝑦𝑖 > 0.

(9)

(2) In theM step, the expected penalized complete-data
log-likelihood (5) can be minimized the with respect
to 𝜃 as

𝑄∗ (𝜃 | 𝜃(𝑡)) = −2𝐸(𝐿 (𝜃 | 𝜃(𝑡)) + ]1
𝑝∑
𝑗=1

𝑤1𝑗 󵄨󵄨󵄨󵄨󵄨𝛽𝑗󵄨󵄨󵄨󵄨󵄨
+ ]2
𝑝∑
𝑗=1

𝑤2𝑗 󵄨󵄨󵄨󵄨󵄨𝛾𝑗󵄨󵄨󵄨󵄨󵄨 .
(10)

(3) Continue this process until convergence, 𝑡 = 1, 2, . . ..
It is to be noted that (10) can be further decomposed as

𝑄∗ (𝜃 | 𝜃(𝑡)) = 𝑄∗1 (𝛽 | 𝜃(𝑡)) + 𝑄∗2 (𝛾 | 𝜃(𝑡)) , (11)

where 𝑄∗1 is the weighted penalized Poisson log-likelihood
defined as

𝑄∗1 (𝛽 | 𝜃(𝑡)) = −2 [ 𝑛∑
𝑖=1

(1 − 𝑧̂(𝑡)𝑖 )
⋅ {𝑦𝑖𝑋𝑖𝛽 − (𝑦𝑖 + 1) log (1 + 𝑋𝑖𝛽)}]
+ ]1
𝑝∑
𝑗=1

𝑤1𝑗 󵄨󵄨󵄨󵄨󵄨𝛽𝑗󵄨󵄨󵄨󵄨󵄨 ,
(12)

and 𝑄∗2 is the penalized logistic log-likelihood defined as

𝑄∗2 (𝛾 | 𝜃(𝑡)) = −2[ 𝑛∑
𝑖=1

𝑧̂(𝑡)𝑖 𝑋𝑖𝛾 − log (1 + exp (𝑋𝑖𝛾))]
+ ]2
𝑝∑
𝑗=1

𝑤2𝑗 󵄨󵄨󵄨󵄨󵄨𝛾𝑗󵄨󵄨󵄨󵄨󵄨 ,
(13)

both of which can be minimized separately using computa-
tionally efficient coordinate descent algorithms developed for
GLMs [9].

2.4. Selection of Tuning Parameters. We select the tuning
parameters based on the minimum BIC [10] criterion, which
is known to provide better variable selection performance
as compared to other information criteria [11]. This can be
effortlessly incorporated in our formulation by using existing
implementations for zero-inflated count models [3, 4, 6].

3. Oracle Properties

Recently, Tang et al. [6] showed that the EM adaptive
LASSO (i.e., AMAZonn - EMAL) enjoys the so-called oracle
properties, i.e., the estimator is able to identify the true model
consistently, and the resulting estimator is as efficient as
oracle. Here we extend these results to the AMAZonn - EM
SEAL estimator and show that the AMAZonn - EM SEAL
estimator also maintains the same theoretical properties. For
the sake of completeness, we provide a combined general
proof for both AMAZonn estimators.

Without being too rigorous mathematically, recall that
the log-likelihood function for the ZIP regression model is
given by

𝐿 (𝜃; 𝜐𝑖) = ∑
𝑦𝑖=0

log [𝜓𝑖 + (1 − 𝜓𝑖) 𝑓 (0; 𝜆𝑖)]
+ ∑
𝑦𝑖>0

log [(1 − 𝜓𝑖) 𝑓 (𝑦𝑖; 𝜆𝑖)] , (14)

where 𝜐𝑖’s are the observed data (i.i.d observations from the
ZIP distribution), 𝑓(.; 𝜆𝑖) is the probability mass function
of Poisson distribution with parameter 𝜆𝑖 = exp(𝑋𝑖𝛽) and𝜓𝑖 = exp(𝑋𝑖𝛾)/(1+exp(𝑋𝑖𝛾)), 𝑖 = 1, . . . , 𝑛.The corresponding
penalized log-likelihood is given by

𝑄 (𝜃) = −𝐿 (𝜃; 𝜐𝑖) + ]1𝑛
𝑝∑
𝑗=1

𝑤1𝑗 󵄨󵄨󵄨󵄨󵄨𝛽𝑗󵄨󵄨󵄨󵄨󵄨 + ]2𝑛
𝑝∑
𝑗=1

𝑤2𝑗 󵄨󵄨󵄨󵄨󵄨𝛾𝑗󵄨󵄨󵄨󵄨󵄨 . (15)

Let us denote the true coefficient vector as 𝜃0 = (𝛽𝑇0 , 𝛾𝑇0 )𝑇.
Decompose 𝜃0 = (𝜃𝑇10, 𝜃𝑇20)𝑇 and assume that 𝜃𝑇20 contains
all zero coefficients. Let us denote the subset of true nonzero
coefficients as A = {𝑗 : 𝜃𝑗0 ̸= 0} and the subset of selected
nonzero coefficients as Â = {𝑗 : 𝜃𝑗 ̸= 0}. With this
formulation, the Fisher information matrix can be written as

𝐼 (𝜃0) = [𝐼11 𝐼12𝐼21 𝐼22] , (16)
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where 𝐼11 is the Fisher information corresponding the true
nonzero submodel.The oracle property of AMAZonnmay be
developed based on certain mild regularity conditions which
are as follows:

(A1): The Fisher information matrix 𝐼(𝜃) is finite and
positive definite for all values of 𝜃.

(A2): There exists functions 𝐺𝑗𝑘𝑙 such that

𝜕3𝐿 (𝜃; 𝜐𝑖)𝜕𝜃𝑗𝜕𝜃𝑘𝜕𝜃𝑙 ≤ 𝐺𝑗𝑘𝑙 (𝜐𝑖) ∀𝜃, (17)

where 𝑔𝑗𝑘𝑙 = 𝐸𝜃0(𝐺𝑗𝑘𝑙(𝜐𝑖)) < ∞ for all 𝑗, 𝑘, 𝑙.
Theorem 1. Under (A1) and (A2), if ]1𝑛 󳨀→ ∞, ]2𝑛 󳨀→ ∞,
]1𝑛/√𝑛 󳨀→ 0, ]2𝑛/√𝑛 󳨀→ 0, then the AMAZonn estimators
obey the following oracle properties:

(1) consistency in variable selection: lim𝑛𝑃(Â = A) = 1,
and

(2) asymptotic normality of the nonzero coefficients:√𝑛(𝜃̂−
𝜃0)󳨀→𝑑N(0, 𝐼−111 ).

4. Simulation Studies

In this section, we conduct simulation studies to evaluate
the finite sample performance of AMAZonn. For compar-
ison purposes, the performance of both AMAZonn and
EM LASSO is evaluated. For each simulated dataset, the
associated tuning parameters are selected by the minimum
BIC criterion for all the methods under consideration. All
the examples reported in this section are obtained from
published papers with slight modifications within the scope
of the current study [11, 12].

Specially, three scenarios are considered: in the data
generatingmodels of Simulations 1 and 2, we consider all con-
tinuous predictors, whereas in Simulation 3, both continuous
and categorical variables are included. For each experimental
instance, we randomly partition the data into training and
test sets: models are fitted on the training set and prediction
errors based on mean absolute scaled error (MASE) are
calculated on the held-out samples in the test set. For an
exhaustive comparison, we considered three sets of sample
sizes {𝑛𝑇, 𝑛𝑃} = {200, 200}, {500, 500}, and {1000, 1000},
where 𝑛𝑇 and 𝑛𝑃 represent the size of the training and test
data, respectively. The corresponding regression coefficients
and intercepts are chosen so that a desired level of sparsity
proportion (𝜙) is achieved. In order to remain as model-
agnostic as possible, we consider the same set of predictors
for both zero and count submodels (i.e., X = Z). Such
models are common in many practical applications where no
domain-specific prior information about the zero-inflation
mechanism is available. Below we provide the detailed data
generation steps for both simulation examples:

Simulation 1.

(1) Generate 40 predictors from the multivariate normal
distribution with mean vector 0, variance vector 1,

and variance-covariance matrix 𝑉, where the ele-
ments of 𝑉 are 𝜌|𝑗1−𝑗2| ∀𝑗1 ̸= 𝑗2 = 1, . . . , 40.
The values of pairwise correlation 𝜌 varies from 0
(uncorrelated) to 0.4 (moderate collinearity) to 0.8
(high collinearity).

(2) The count and zero regression parameters are chosen
as follows:(𝛽1, . . . , 𝛽8)= (−1, −0.5, −0.25, −0.1, 0.1, 0.25, 0.5, 0.75)󸀠 ,

(𝛽9, . . . , 𝛽16) = (0.2, . . . , 0.2)󸀠 ,
(𝛽17, . . . , 𝛽40) = (0, . . . , 0)󸀠 ,
(𝛾1, . . . , 𝛾8)= (−0.4, −0.3, −0.2, −0.1, 0.1, 0.2, 0.3, 0.4)󸀠 ,
(𝛾9, . . . , 𝛾16) = (0.2, . . . , 0.2)󸀠 ,
(𝛾17, . . . , 𝛾40) = (0, . . . , 0)󸀠 .

(18)

(3) The zero-inflated count outcome 𝑦 is simulated
according to (1) with the above parameters and input
data.

Simulation 2. It is similar to Simulation 1 except that the
count and zero regression parameters are chosen as follows:

(𝛽1, . . . , 𝛽10) = (0.05, −0.25, 0.05, 0.25,
− 0.15, 0.15, 0.25, −0.2, 0.25, −0.25)󸀠 ,

(𝛽11, . . . , 𝛽30) = (−0.2, 0.25, 0.15,
− 0.25, 0.2, 0, . . . , 0)󸀠 ,

(𝛽31, . . . , 𝛽40) = (0.27, −0.27, 0.14, 0.2,
− 0.2, 0.2, 0, . . . , 0)󸀠 ,

(𝛾1, . . . , 𝛾10) = (−0.5, −0.4, −0.3, −0.2,
− 0.1, 0.1, 0.2, 0.3, 0.4, 0.5)󸀠 ,

(𝛾11, . . . , 𝛾30) = (−0.2, 0.25, 0.15, −0.25, 0.2, 0, . . . , 0)󸀠 ,
(𝛾31, . . . , 𝛾40) = (0.27, −0.27, −0.14, −0.2,

− 0.2, 0.2, 0, . . . , 0)󸀠 .

(19)

Simulation 3.

(1) First simulate 𝑋1, . . . , 𝑋6 independently from the
standard normal distribution. Consider the fol-
lowing as the continuous predictors: {𝑋1}, {𝑋2},{𝑋3, 𝑋23, 𝑋33}, {𝑋4}, {𝑋5} and {𝑋6, 𝑋26, 𝑋36}.

(2) Simulate 5 continuous variables from themultivariate
normal distribution with mean 0, variance 1, and
AR(𝜌) correlation structure for varying 𝜌 in {0, 0.4,
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Table 2: Results of Simulations 1–3. Average (over 200 replications) of Mean Absolute Scale Errors (MASEs) of AMAZonn and EM LASSO
is reported.

𝜌 𝜙 𝑛 Simulation 1 Simulation 2 Simulation 3
AMAZonn

- EM
SEAL

AMAZonn
- EM AL

EM
LASSO

AMAZonn
- EM
SEAL

AMAZonn
- EM AL

EM
LASSO

AMAZonn
- EM
SEAL

AMAZonn
- EM AL

EM
LASSO

0.0

0.3 200 0.91 0.92 0.91 0.60 0.61 0.62 0.97 1.03 1.00500 0.90 0.90 0.91 0.60 0.60 0.61 0.97 0.99 1.001000 0.91 0.91 0.92 0.58 0.58 0.60 0.97 0.98 0.980.4 200 1.12 1.13 1.12 0.75 0.75 0.76 1.18 1.23 1.23500 1.05 1.05 1.06 0.73 0.73 0.74 1.11 1.17 1.201000 1.03 1.03 1.04 0.71 0.71 0.72 1.11 1.16 1.160.5 200 1.28 1.28 1.27 0.87 0.87 0.87 1.40 1.46 1.46500 1.16 1.16 1.17 0.84 0.84 0.85 1.28 1.33 1.361000 1.15 1.15 1.19 0.80 0.80 0.82 1.23 1.30 1.31

0.4

0.3 200 1.05 1.06 1.09 0.63 0.63 0.63 0.96 1.01 0.99500 1.04 1.04 1.05 0.61 0.61 0.62 0.95 0.97 0.991000 0.96 0.96 0.98 0.58 0.58 0.59 0.97 0.98 0.980.4 200 1.21 1.22 1.22 0.75 0.75 0.76 1.19 1.22 1.23500 1.18 1.18 1.21 0.71 0.71 0.72 1.14 1.19 1.221000 1.13 1.14 1.18 0.68 0.68 0.70 1.13 1.18 1.170.5 200 1.42 1.43 1.42 0.83 0.84 0.83 1.34 1.40 1.43500 1.26 1.26 1.32 0.80 0.81 0.82 1.27 1.32 1.351000 1.23 1.23 1.30 0.75 0.75 0.77 1.27 1.34 1.33

0.8

0.3 200 1.32 1.31 1.36 0.62 0.63 0.63 0.96 1.00 1.01500 1.13 1.13 1.23 0.59 0.59 0.61 0.97 0.99 1.011000 1.13 1.13 1.21 0.56 0.56 0.58 0.95 0.96 0.960.4 200 1.52 1.52 1.58 0.71 0.72 0.72 1.18 1.21 1.23500 1.31 1.32 1.45 0.68 0.68 0.69 1.12 1.19 1.201000 1.24 1.24 1.37 0.64 0.64 0.64 1.12 1.17 1.160.5 200 1.56 1.58 1.61 0.78 0.78 0.78 1.37 1.42 1.44500 1.44 1.45 1.65 0.73 0.73 0.76 1.29 1.34 1.391000 1.33 1.36 1.52 0.69 0.70 0.69 1.26 1.33 1.34

0.8} as before, and quantile-discretize each of them
into 5 new variables based on their quantiles: (−∞,Φ−1(1/5)], (Φ−1(1/5),Φ−1(2/5)], (Φ−1(2/5),Φ−1(3/5)], (Φ−1(3/5),Φ−1(4/5)], and (Φ−1(4/5),∞), leading
to a total of 20 categorical variables.

(3) With the above input data and parameters, the zero-
inflated count outcome 𝑦 is simulated according to
(1), where the two sets of regression parameters are
chosen as follows:

(𝛽1, . . . , 𝛽10) = (0, 0, 0.1, 0.2, 0.1, 0, 0, 23 , −1, 13) ,(𝛽11, . . . , 𝛽30) = (−2, −1, 1, 2, 0, . . . , 0) ,
(𝛾1, . . . , 𝛾10) = (0, 0, 0.1, 0.2, 0.1, 0, 0, 23 , −1, 13) ,(𝛾11, . . . , 𝛾30) = (−2, −1, 1, 2, 0, . . . , 0) .

(20)

The resulting performance measures iterated over 200 repli-
cations (Table 2) reveal that AMAZonn performs as well
as or better than EM LASSO in most of the simulation
scenarios. For highly collinear designs, AMAZonn - EM
SEAL stands out to be the best estimator for almost every
sample size and zero-inflation proportion, highlighting the
benefit of incorporating data-adaptive weights based on both
ML estimates and their standard errors. This phenomenon is
also apparent in the analysis of German health care data in
Section 5, where the parameter estimates from theAMAZonn
- EM SEAL method appear to be more parsimonious than
those from other methods.

5. Application to German Health Care
Demand Data

Next, we apply our method to the German health care
demand data [3], a subset of the German Socioeconomic
Panel (GSOEP) dataset [13], which has also been used for
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Table 3: Summary of predictors in German health care demand data.

Variables Mean (sd) or Frequency Description
health 6.84 (2.19) health satisfaction: 0 (low) - 10 (high)
handicap 216 / 1596 1 : handicap, 0 : otherwise
hdegree 6.16 (18.49) degree of handicap in percentage points
married 1257 / 555 1 :married, 0 : otherwise
schooling 11.83 (2.49) years of schooling
hhincome 4.52 (2.13) household income per month in German marks/1000
children 703 / 1109 1 : children under 16 in household, 0 : otherwise
self 153 / 1659 1 : self-employed, 0 : otherwise
civil 198 / 1614 1 : civil servant, 0 : otherwise
bluec 566 / 1246 1 : blue collar employee, 0 : otherwise
employed 1506 / 306 1 : employed, 0 : otherwise
public 1535 / 277 1 : public health insurance, 0 : otherwise
addon 33 / 1779 1 : addon insurance, 0 : otherwise
age30 1480 / 332 1 if age ≥ 30
age35 1176 / 636 1 if age ≥ 35
age40 919 / 893 1 if age ≥ 40
age45 716 / 1096 1 if age ≥ 45
age50 535 / 1227 1 if age ≥ 50
age55 351 / 1461 1 if age ≥ 55
age60 147 / 1665 1 if age ≥ 60

Table 4: Model selection performance of EM LASSO and AMA-
Zonn on German health care data.

Methods BIC Time (in seconds)
EM LASSO 9062.744 50.252
AMAZonn - EM AL 9002.487 26.215
AMAZonn - EM SEAL 8982.924 26.528

illustration purposes in previous studies [3, 14]. The original
data contains number of doctor office visits for 1, 812 West
German men aged 25 to 65 years in the last three months of
1994 (response variable of interest), which is supplemented
with complementary information on twelve annual waves
from 1984 to 1995 including health care utilization, cur-
rent employment status, and insurance arrangements under
which subjects are protected [3].Thegoal of the original study
was to investigate how the employment characteristics of the
Germannationals are related to their health care demand.The
distribution of the dependent variable (Figure 1) reveals that
many doctor visits are zeros (41.2%), confirming that classical
methods such as Poisson regression are inappropriate for
modeling this outcome.

In the model fitting process, along with the original
variables, the interactions between age groups and health
condition are also considered, resulting in 28 candidate
predictors (Table 3). The fitting results from the full models
indicate that both EM adaptive LASSO methods provide
competitive model selection performance (Table 4), often
leading to sparser model selection than EM LASSO (Table 5).
In addition, the AMAZonn - EM SEAL method appears
to choose even fewer numbers of variables. Such feature of
AMAZonn - EM SEAL can be appealing in many practical

situations, where data collinearity between variables is a
concern and a more aggressive feature selection is desired.
While the computational overheads of both EM adaptive
LASSO methods are similar, they are an order of magnitude
faster than EM LASSO (Table 4), further confirming that
AMAZonn offers a viable alternative to existing methods.

6. Discussion

In recent years, there has been a huge influx of zero-
inflated count measurements spanning several disciplines
including biology, public health, and medicine. This has
motivated the widespread use of zero-inflated count models
in many practical applications such as metagenomics, single-
cell RNA sequencing, and health care research. In this
article, we propose the AMAZonn method for adaptive
variable selection in ZIP regression models. Both our sim-
ulation and real data experience suggest that AMAZonn
can outperform EM LASSO under a variety of regression
settings while maintaining the desired theoretical properties
and computational convenience. Our preliminary results are
rather encouraging, and for practical purposes, we provide
a publicly available R package implementing this method:
https://github.com/himelmallick/AMAZonn.

We envision a number of improvements that may further
refine AMAZonn’s performance. While AMAZonn relies on
ML estimates to construct the weight vector, these estimates
may not be available in ultrahigh dimensions [7]. Alternative
initialization schemes could further improve on this such
as the ridge estimates [15]. Extension to other zero-inflated
models such as marginalized zero-inflated count regression
[16, 17], two-part and hurdle models [18], and multiple-
inflation models [19] can form a useful basis for further

https://github.com/himelmallick/AMAZonn


Journal of Probability and Statistics 7

Ta
bl
e
5:
Es
tim

at
ed

co
effi

ci
en
ts
fro

m
th
eb

es
t-fi

tti
ng

ZI
P
m
od

el
si
n
G
er
m
an

he
al
th

ca
re

de
m
an
d
da
ta
an
al
ys
is.

(a
)

M
et
ho

ds
C
ou

nt
C
oe
ffi
ci
en
ts

(In
te
rc
ep
t)

hl
th

ha
nd

ic
ap

dd
eg
re
e

m
ar
rie

d
sc
ho

ol
in
g

hh
in
co
m
e

ch
ild

re
n

se
lf

ci
vi
l

bl
ue
c

em
pl
oy
ed

pu
bl
ic

ad
do

n
EM

LA
SS
O

2.
32
2

-0
.14

0.
20
7

-0
.0
02

-0
.9
7

0.
0

0.
0

0.
07
8

-0
.17

8
-0
.16

6
0.
03
8

-0
.10

6
0.
08
9

0.
20
5

A
M
A
Zo

nn
-E

M
A
L

2.
30
5

-0
.13

5
0.
111

0.
0

-0
.9
47

0.
0

0.
0

0.
07
9

-0
.2
34

-0
.2
45

0.
0

-0
.0
59

0.
04
3

0.
20
5

A
M
A
Zo

nn
-E

M
SE

A
L

2.
37
8

-0
.14

2
0.
09
8

0.
0

-0
.0
66

0.
0

0.
0

0.
04

6
-0
.18

9
-0
.2
22

0.
0

-0
.0
55

0.
0

0.
14

M
et
ho

ds
C
ou

nt
C
oe
ffi
ci
en
ts

ag
30

ag
35

ag
40

ag
45

ag
50

ag
55

ag
60

ag
30
:h
lth

ag
35
:h
lth

ag
40

:h
lth

ag
45
:h
lth

ag
50
:h
lth

ag
55
:h
lth

ag
60

:h
lth

EM
LA

SS
O

0.
0

0.
0

0.
0

0.
58
6

0.
0

-0
.2
7

0.
08
1

0.
0

0.
0

-0
.0
06

-0
.0
76

0.
00

6
0.
08
2

-0
.0
34

A
M
A
Zo

nn
-E

M
A
L

0.
0

0.
0

-0
.0
47

0.
76
9

0.
0

-0
.4
02

0.
09

9
0.
0

0.
0

0.
0

-0
.10

1
0.
0

0.
10
6

-0
.0
34

A
M
A
Zo

nn
-E

M
SE

A
L

0.
0

0.
0

0.
0

0.
58
6

0.
0

-0
.2
5

0.
0

0.
0

0.
0

0.
0

-0
.0
81

0.
0

0.
08
1

-0
.0
17

(b
)

M
et
ho

ds
Ze

ro
C
oe
ffi
ci
en
ts

(In
te
rc
ep
t)

hl
th

ha
nd

ic
ap

dd
eg
re
e

m
ar
rie

d
sc
ho

ol
in
g

hh
in
co
m
e

ch
ild

re
n

se
lf

ci
vi
l

bl
ue
c

em
pl
oy
ed

pu
bl
ic

ad
do

n
EM

LA
SS
O

-2
.19

3
-0
.2
62

-0
.0
98

-0
.0
03

-0
.12

1
0.
0

-0
.0
12

0.
25
3

0.
112

0.
13
4

0.
0

0.
0

-0
.0
12

0.
0

A
M
A
Zo

nn
-E

M
A
L

-2
.2
26

-0
.2
61

-0
.16

2
0.
0

0.
0

0.
0

0.
0

0.
16
3

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

A
M
A
Zo

nn
-E

M
SE

A
L

-2
.4
03

-0
.2
83

0.
0

0.
0

-0
.0
53

0.
0

0.
0

0.
23
8

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

M
et
ho

ds
Ze

ro
C
oe
ffi
ci
en
ts

ag
30

ag
35

ag
40

ag
45

ag
50

ag
55

ag
60

ag
30
:h
lth

ag
35
:h
lth

ag
40

:h
lth

ag
45
:h
lth

ag
50
:h
lth

ag
55
:h
lth

ag
60

:h
lth

EM
LA

SS
O

0.
0

0.
0

0.
0

0.
0

-0
.4
59

0.
0

-0
.2
17

0.
01
3

0.
0

0.
00

5
0.
0

0.
0

0.
02
3

0.
0

A
M
A
Zo

nn
-E

M
A
L

0.
04

7
0.
0

0.
06
5

0.
00

9
-0
.52

7
0.
0

-0
.19

8
0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

A
M
A
Zo

nn
-E

M
SE

A
L

0.
0

0.
0

0.
0

0.
0

-0
.4
43

0.
0

0.
0

0.
00

9
0.
0

0.
0

0.
0

0.
0

0.
0

0.
0



8 Journal of Probability and Statistics

0 1 2 3 4 5 6 7 8 9 11 13 15 17 19 21 24 27 36 39 42 47

Number of Doctor Office Visits

Fr
eq

ue
nc

y

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0

Figure 1: Number of doctor office visits in the German health care data.

investigations. Although we only focused on variable selec-
tion for fixed effects models, future work could include an
extension to other regularization problems such as grouped
variable selection [12, 20] as well as sparse mixed effects
models [21].

Appendix

Proof. It is to be noted that both logistic and Poisson
distributions belong to the exponential family. Since the
objective function in (10) can be decomposed into weighted
logistic and Poisson log-likelihoods (each belonging to the
GLM family without the penalties), Theorem 1 is the direct
application ofTheorem4 inZou [22].Therefore, if ]1𝑛 󳨀→ ∞,
]2𝑛 󳨀→ ∞, ]1𝑛/√𝑛 󳨀→ 0, and ]2𝑛/√𝑛 󳨀→ 0, then both the
AMAZonn - EM AL and AMAZonn - EM SEAL estimators
hold the oracle properties: with probability tending to 1, the
estimate of zero coefficients is 0, and the estimate for nonzero
coefficients has an asymptotic normal distribution withmean
being the true value and variance which approximately equals
the submatrix of the Fisher information matrix containing
nonzero coefficients. Hence the proof is complete.
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